
The Expressive Power of Two-Variable Logic
on Words

Howard Straubing, Boston College

Simons Institute for the Theory of Computing
November 7, 2016

FO[<]

Formulas of first-order logic interpreted in words over a fixed finite
alphabet A.

‘There are two positions containing a with no positions between them.’
(i.e., there is a pair of consecutive a’s).

∃x∃y
(

x < y ∧ a(x) ∧ a(y) ∧ ¬∃z(x < z ∧ z < y)
)

If the input alphabet is {a, b}, this sentence defines the regular
language (a + b)∗aa(a + b)∗

Some facts about FO[<]:

• (Regularity) Every language in FO[<] is regular.

• (Alternative characterization in temporal logic) L ⊆ A∗ is in FO[<] if and
only if L is definable by a formula of LTL (linear propositional temporal
logic). [Kamp]

• (Hierarchy) FO[<] contains languages of arbitrarily large quantifier
alternation depth if |A| ≥ 2. (i.e., for all k , Σk [<] (FO[<].)
[Brzozowski-Knast]

• (Deciding expressibility) There is an algebraic decision procedure for
determining if a given regular language is definable in FO[<].
[Schützenberger]

The algebraic decision procedure.

Syntactic monoid M(L) of regular language L ⊆ A∗ =
transition semigroup of minimal DFA of L.
Example: L = (a + b)∗aa(a + b)∗

M(L) = {1,a = aba,b = b2 = bab,ab,ba,a2 = 0}.

L is definable in FO[<] if and only if M(L) contains no
nontrivial groups.
Equivalently: M(L) is aperiodic, M(L) satisfies the identity xωx = xω,

where mω denotes the idempotent power of m ∈ M. In this example,
x3 = x2 for all x ∈ M.

FO2[<]

• Every sentence of FO[<] is equivalent to one using only three
variables. [Kamp; Immerman and Kozen]

• FO2[<] denotes the fragment consisting of formulas using only two
variables.

• Example: The language b∗aa(a + b)∗ is in FO2[<]:

∃x
(

a(x) ∧ ∃y(y < x ∧ a(y))

∧ ∀y
(
(y < x ∧ b(y)→ ∀x(x < y → b(x))

))
• As we will see, you cannot define the language (a + b)∗aa(a + b)∗.

Some facts about FO2[<]

(mostly Etessami, Vardi, Wilke, Thérien)

• (Alternative characterization in temporal logic) L ⊆ A∗ is in FO2[<] if
and only if L is definable in the fragment of LTL with only past and future
modalities.

F(a ∧ Pa ∧ ¬P(b ∧ Pa)).

• Similar characterizations in terms of one-pebble EF games, two-pebble
EF games, ‘rankers’, ‘turtle languages’,....

• (Position in the quantifier alternation hierarchy) FO2[<] ⊆ Σ2[<] (in fact
FO2[<] = Σ2[<] ∩ Π2[<]).

• (Deciding expressibility) Algebraic decision procedure for definability: A
regular language L is definable in FO2[<] if and only if M(L) ∈ DA.
(What’s that?)

The monoid variety DA (Schützenberger)

• (Equational characterization) M ∈ DA if and only if M
satsifies the identity

(xy)ωx(xy)ω = (xy)ω.

(Many other characterizations in terms of equations, ideal structure,
semidirect product decompositions...)

• Example: L = (a + b)∗aa(a + b)∗. In M(L), (ab)ω = ab,
(ab)ωa(ab)ω = 0 6= ab, so M(L) /∈ DA. Thus L not
definable in FO2[<].

Quantifier Alternation Depth in FO2[<].

• The formula

∃x
(

a(x) ∧ ∃y(y < x ∧ a(y))

∧ ∀y
(
(y < x ∧ b(y)→ ∀x(x < y → b(x))

))
has alternation depth 2.

• Is the quantifier alternation depth hierarchy infinite?
• Can one effectively determine the exact quantifier

alternation depth of a language in FO2[<]?

Is the quantifier alternation depth hierarchy infinite?

• Yes and No!

• (Weis and Immerman) There are languages in FO2[<] of
arbitrarily large alternation depth...

• ..but for each fixed alphabet A, the alternation depth is
bounded by |A|+ 1.

Can one effectively determine the exact quantifier
alternation depth of a language in FO2[<]?

• Yes!

• (Krebs and Straubing, Kufleitner and Weil)Two different
algebraic decision procedures, discovered independently.

System of equations for alternation depth

Set
u1 = (x1x2)ω, v1 = (x2x1)ω,

and for n ≥ 1,

un+1 = (x1 · · · x2nx2n+1)ωun(x2n+2x1 · · · x2n)ω,

vn+1 = (x1 · · · x2nx2n+1)ωvn(x2n+2x1 · · · x2n)ω.

Theorem
L ⊆ A∗ is definable in FO2[<] with quantifier alternation depth
≤ n if and only if M(L) is aperiodic and

M(L) |= un = vn.

‘Dot-depth’

In contrast, computing quantifier alternation depth wrt FO[<] is
a long-open problem! A recent breakthrough (Place, Zeitoun)
decides membership in Σ3[<], maybe Σ4[<], and the boolean
closure of Σ2[<].

Strictness of the hierarchy follows from these
equations

Recursive definition of congruence ∼= on A∗:

• For w ∈ A∗, α(w) ⊆ A∗ denotes set of letters in w .
• w 7→ (u,a1,a2, v), where α(u) (α(ua1) = α(w),
α(v) (α(a2v) = α(w). For example,
baabcac 7→ (baab, c,b, cac).

• Let w 7→ (u,a1,a2, v), w ′ 7→ (u′,a′1,a
′
2, v
′). w ∼= w ′ if and

only if a1 = a′1, a2 = a′2, u ∼= u′, v ∼= v ′.
• Let MA = A∗/ ∼=, where |A| = n. This is the free idempotent

monoid on A, and satisfies the identity xω = x .

Strictness of the hierarchy follows from these
equations

• Easy to define each congruence class by a 2-variable
formula with alternation depth |A|.

• We have
u1 ∼= x1x2 6∼= x2x1 ∼= v1,

if A = {x1, x2},

u2 ∼= x1x2x3u1x4x1x2 6∼= x1x2x3v1x4x1x2 ∼= v2

if A = {x1, x2, x3, x4} etc.
• So if |A| = 2n, a congruence class is not definable in

FO2[<] with n alternations.
• Collapse of the hierarchy for fixed A can also be deduced

from these equations—if M is generated by n elements
then uk = vk implies un = vn for k > n.

Adding a Successor Relation

• FO2[<,+1] allows y = x + 1 as an atomic formula.
• For example (a + b)∗aa(a + b)∗ is now definable by

∃x∃y(a(x) ∧ a(y) ∧ y = x + 1).

• Almost everything works more or less the same way:
counterpart in temporal logic, bounded alternation depth
wrt FO[<], algebraic decision procedure for definability and
for alternation depth, strictness of hierarchy....

Adding a Between Relation (Krebs, Lodaya, Pandya,
Straubing)

• Roughly speaking, FO2[<] (FO[<] because you cannot say that a
position is strictly between two other positions.

• What happens if we add to two-variable logic a relation that says ‘there
is an a between positions x and y ’?

a(x , y) ≡ ∃z(x < z ∧ z < y ∧ a(z)).

• Example: (a + b)∗aa(a + b)∗ defined by

∃x∃y(x < y ∧ a(x) ∧ a(y) ∧ ¬b(x , y)).

• Example: Successor function y = x + 1 defined by

x < y ∧
∧
a∈A

¬a(x , y).

• Notation: FO2[<, bet].

Is FO2[<,bet] strictly contained in FO[<]?

Yes. They are separated by L = (a(ab)∗b)∗.

Is the quantifier alternation depth (wrt FO[<]) of
languages in FO2[<,bet] bounded?

No, but the ‘No’ is qualified.
Let An = {0,1,∧1,∨2,∧3, . . . ,∨n} (if n even, use ∧n if n
odd).
Ln ⊆ A∗n is set of prefix encodings of depth n boolean
circuits, together with input bits, evaluating to 1.
For each n, Ln ⊆ FO2[<,bet]\Σn[<].

This requires an alphabet of n + 2 letters. If |A| = 2 then
FO2[<,bet] ⊆ Σ3[<], and we conjecture that for each fixed
alphabet it is bounded as well.

Is there an algebraic decision procedure for
definability in FO2[<,bet]?

Maybe. We have a necessary condition:

• M finite monoid, m1,m2 ∈ M. m1 ≤J m2 iff m1 ∈ Mm2M.

• If e ∈ M idempotent (e2 = e), Me denotes submonoid generated by
{m : e ≤J m}.

• If L is definable, then eMee ∈ DA for all idempotents e of M.

• This condition is also sufficient for two-letter alphabets—we conjecture
that it holds for larger alphabets.

Separation of FO2[<,bet] from FO[<]

Minimal DFA of L = (a(ab)∗b)∗

e = ba = (ba)ω,

x = ebe, y = eae ∈ e ·M(L)e · e.
(xy)ω fixes middle state, (xy)ωx(xy)ω does not, so
e ·M(L)e · e /∈ DA.

Are there other equivalent formulations in predicate or
temporal logic?

Of course!

For example, we can generalize the new relation to (a, k)(x , y) to mean
x < y and there are at least k occurrences of a between x and y .

We call the resulting logic FO2[<,Thr]. We have (for languages)

FO2[<,Thr] = FO2[<, bet].

• However, note that a(x , y) is not equivalent to a formula of FO2[<, bet]
with two free variables!

Are there other equivalent formulations in predicate or
temporal logic?

Let B ⊆ A. A simple threshold constraint is a condition on words of the
form #B ≥ k , meaning that the word contains at least k occurrences of
letters in B.

A threshold constraint is a boolean combination of simple threshold
constraints.

We can augment the {F,P} with threshold constraints—if c is such a
constraint, we interpret (w , i) |= Fcφ to mean that for some j > i ,
(w , j) |= φ and w [i + 1, j − 1] satisfies the constraint c.

..and others. For each formulation we find the computational complexity
of formula satisfiability. (This version is EXPSPACE-complete.)

A Note on the Proofs

• Showing necessity of an equational condition is ‘easy’:
Usually this can be done with an EF-game argument.

• Showing sufficiency of an equation is hard: Usually this
entails showing that satisfaction of the equations implies a
semidirect product decomposition of the monoid, and from
this it is often possible to extract logical formulas.

Limitations of this approach

This algebraic method is a powerful tool for characterizing
the expressive power of logics on words that define only
regular languages.
Extending these methods to regular languages of trees,
and to logics that can define non-regular languages,
remains a major challenge!

