The Expressive Power of Two-Variable Logic on Words

Howard Straubing, Boston College

Simons Institute for the Theory of Computing November 7, 2016

$F O[<]$

Formulas of first-order logic interpreted in words over a fixed finite alphabet A.
'There are two positions containing a with no positions between them.' (i.e., there is a pair of consecutive a's).

$$
\exists x \exists y(x<y \wedge a(x) \wedge a(y) \wedge \neg \exists z(x<z \wedge z<y))
$$

If the input alphabet is $\{a, b\}$, this sentence defines the regular language $(a+b)^{*} a a(a+b)^{*}$

Some facts about $F O[<]$:

- (Regularity) Every language in $F O[<]$ is regular.
- (Alternative characterization in temporal logic) $L \subseteq A^{*}$ is in $F O[<]$ if and only if L is definable by a formula of $L T L$ (linear propositional temporal logic). [Kamp]
- (Hierarchy) $F O[<]$ contains languages of arbitrarily large quantifier alternation depth if $|A| \geq 2$. (i.e., for all $k, \Sigma_{k}[<] \subsetneq F O[<]$.) [Brzozowski-Knast]
- (Deciding expressibility) There is an algebraic decision procedure for determining if a given regular language is definable in $\mathrm{FO}[<]$. [Schützenberger]

The algebraic decision procedure.

Syntactic monoid $M(L)$ of regular language $L \subseteq A^{*}=$ transition semigroup of minimal DFA of L.
Example: $L=(a+b)^{*} a a(a+b)^{*}$

$M(L)=\left\{1, a=a b a, b=b^{2}=b a b, a b, b a, a^{2}=0\right\}$.
L is definable in $F O[<]$ if and only if $M(L)$ contains no nontrivial groups.

Equivalently: $M(L)$ is aperiodic, $M(L)$ satisfies the identity $x^{\omega} x=x^{\omega}$, where m^{ω} denotes the idempotent power of $m \in M$. In this example, $x^{3}=x^{2}$ for all $x \in M$.

$F O^{2}[<]$

- Every sentence of $F O[<]$ is equivalent to one using only three variables. [Kamp; Immerman and Kozen]
- $F O^{2}[<]$ denotes the fragment consisting of formulas using only two variables.
- Example: The language $b^{*} a(a+b)^{*}$ is in $F O^{2}[<]$:

$$
\begin{aligned}
& \exists x(a(x) \wedge \exists y(y<x \wedge a(y)) \\
& \wedge \forall y((y<x \wedge b(y) \rightarrow \forall x(x<y \rightarrow b(x))))
\end{aligned}
$$

- As we will see, you cannot define the language $(a+b)^{*} a a(a+b)^{*}$.

Some facts about $F O^{2}[<]$

(mostly Etessami, Vardi, Wilke, Thérien)

- (Alternative characterization in temporal logic) $L \subseteq A^{*}$ is in $F O^{2}[<]$ if and only if L is definable in the fragment of $L T L$ with only past and future modalities.

$$
\mathrm{F}(a \wedge \mathrm{~Pa} \wedge \neg \mathrm{P}(b \wedge \mathrm{~Pa})) .
$$

- Similar characterizations in terms of one-pebble EF games, two-pebble EF games, 'rankers', 'turtle languages',....
- (Position in the quantifier alternation hierarchy) $\mathrm{FO}^{2}[<] \subseteq \Sigma_{2}[<]$ (in fact $\left.F O^{2}[<]=\Sigma_{2}[<] \cap \Pi_{2}[<]\right)$.
- (Deciding expressibility) Algebraic decision procedure for definability: A regular language L is definable in $F O^{2}[<]$ if and only if $M(L) \in \mathbf{D A}$. (What's that?)

The monoid variety DA (Schützenberger)

- (Equational characterization) $M \in \mathbf{D A}$ if and only if M satsifies the identity

$$
(x y)^{\omega} x(x y)^{\omega}=(x y)^{\omega} .
$$

(Many other characterizations in terms of equations, ideal structure, semidirect product decompositions...)

- Example: $L=(a+b)^{*} a a(a+b)^{*}$. In $M(L),(a b)^{\omega}=a b$, $(a b)^{\omega} a(a b)^{\omega}=0 \neq a b$, so $M(L) \notin \mathbf{D A}$. Thus L not definable in $\mathrm{FO}^{2}[<]$.

Quantifier Alternation Depth in $F O^{2}[<]$.

- The formula

$$
\begin{aligned}
& \exists x(a(x) \wedge \exists y(y<x \wedge a(y)) \\
& \wedge \forall y((y<x \wedge b(y) \rightarrow \forall x(x<y \rightarrow b(x))))
\end{aligned}
$$

has alternation depth 2.

- Is the quantifier alternation depth hierarchy infinite?
- Can one effectively determine the exact quantifier alternation depth of a language in $F O^{2}[<]$?

Is the quantifier alternation depth hierarchy infinite?

- Yes and No!
- (Weis and Immerman) There are languages in $\mathrm{FO}^{2}[<]$ of arbitrarily large alternation depth...
- ..but for each fixed alphabet A, the alternation depth is bounded by $|A|+1$.

Can one effectively determine the exact quantifier alternation depth of a language in $F O^{2}[<]$?

- Yes!
- (Krebs and Straubing, Kufleitner and Weil)Two different algebraic decision procedures, discovered independently.

System of equations for alternation depth

Set

$$
u_{1}=\left(x_{1} x_{2}\right)^{\omega}, v_{1}=\left(x_{2} x_{1}\right)^{\omega}
$$

and for $n \geq 1$,

$$
\begin{aligned}
& u_{n+1}=\left(x_{1} \cdots x_{2 n} x_{2 n+1}\right)^{\omega} u_{n}\left(x_{2 n+2} x_{1} \cdots x_{2 n}\right)^{\omega} \\
& v_{n+1}=\left(x_{1} \cdots x_{2 n} x_{2 n+1}\right)^{\omega} v_{n}\left(x_{2 n+2} x_{1} \cdots x_{2 n}\right)^{\omega}
\end{aligned}
$$

Theorem
$L \subseteq A^{*}$ is definable in $F O^{2}[<]$ with quantifier alternation depth
$\leq n$ if and only if $M(L)$ is aperiodic and

$$
M(L) \models u_{n}=v_{n} .
$$

‘Dot-depth’

In contrast, computing quantifier alternation depth wrt $F O[<]$ is a long-open problem! A recent breakthrough (Place, Zeitoun) decides membership in $\Sigma_{3}[<]$, maybe $\Sigma_{4}[<]$, and the boolean closure of $\Sigma_{2}[<]$.

Strictness of the hierarchy follows from these equations

Recursive definition of congruence \cong on A^{*} :

- For $w \in A^{*}, \alpha(w) \subseteq A^{*}$ denotes set of letters in w.
- $w \mapsto\left(u, a_{1}, a_{2}, v\right)$, where $\alpha(u) \subsetneq \alpha\left(u a_{1}\right)=\alpha(w)$, $\alpha(v) \subsetneq \alpha\left(a_{2} v\right)=\alpha(w)$. For example, baabcac $\mapsto(b a a b, c, b, c a c)$.
- Let $w \mapsto\left(u, a_{1}, a_{2}, v\right), w^{\prime} \mapsto\left(u^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}, v^{\prime}\right)$. $w \cong w^{\prime}$ if and only if $a_{1}=a_{1}^{\prime}, a_{2}=a_{2}^{\prime}, u \cong u^{\prime}, v \cong v^{\prime}$.
- Let $M_{A}=A^{*} / \cong$, where $|A|=n$. This is the free idempotent monoid on A, and satisfies the identity $x^{\omega}=x$.

Strictness of the hierarchy follows from these equations

- Easy to define each congruence class by a 2-variable formula with alternation depth $|A|$.
- We have

$$
u_{1} \cong x_{1} x_{2} \not \approx x_{2} x_{1} \cong v_{1},
$$

if $A=\left\{x_{1}, x_{2}\right\}$,

$$
u_{2} \cong x_{1} x_{2} x_{3} u_{1} x_{4} x_{1} x_{2} \not \approx x_{1} x_{2} x_{3} v_{1} x_{4} x_{1} x_{2} \cong v_{2}
$$

if $A=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ etc.

- So if $|A|=2 n$, a congruence class is not definable in $F O^{2}[<]$ with n alternations.
- Collapse of the hierarchy for fixed A can also be deduced from these equations-if M is generated by n elements then $u_{k}=v_{k}$ implies $u_{n}=v_{n}$ for $k>n$.

Adding a Successor Relation

- $F O^{2}[<,+1]$ allows $y=x+1$ as an atomic formula.
- For example $(a+b)^{*} a a(a+b)^{*}$ is now definable by

$$
\exists x \exists y(a(x) \wedge a(y) \wedge y=x+1)
$$

- Almost everything works more or less the same way: counterpart in temporal logic, bounded alternation depth wrt $F O[<]$, algebraic decision procedure for definability and for alternation depth, strictness of hierarchy....

Adding a Between Relation (Krebs, Lodaya, Pandya, Straubing)

- Roughly speaking, $F O^{2}[<] \subsetneq F O[<]$ because you cannot say that a position is strictly between two other positions.
- What happens if we add to two-variable logic a relation that says 'there is an a between positions x and y^{\prime} ?

$$
a(x, y) \equiv \exists z(x<z \wedge z<y \wedge a(z)) .
$$

- Example: $(a+b)^{*} a a(a+b)^{*}$ defined by

$$
\exists x \exists y(x<y \wedge a(x) \wedge a(y) \wedge \neg b(x, y)) .
$$

- Example: Successor function $y=x+1$ defined by

$$
x<y \wedge \bigwedge_{a \in A} \neg a(x, y)
$$

- Notation: $F O^{2}[<$, bet $]$.

Is $F O^{2}[<$, bet $]$ strictly contained in $F O[<]$?

Yes. They are separated by $L=\left(a(a b)^{*} b\right)^{*}$.

Is the quantifier alternation depth (wrt $F O[<]$) of languages in $F O^{2}[<$, bet $]$ bounded?

No, but the 'No' is qualified.
Let $A_{n}=\left\{0,1, \wedge_{1}, \vee_{2}, \wedge_{3}, \ldots, \vee_{n}\right\}$ (if n even, use \wedge_{n} if n odd).
$L_{n} \subseteq A_{n}^{*}$ is set of prefix encodings of depth n boolean circuits, together with input bits, evaluating to 1.
For each $n, L_{n} \subseteq F O^{2}[<$, bet $] \backslash \Sigma_{n}[<]$.
This requires an alphabet of $n+2$ letters. If $|A|=2$ then $F O^{2}[<$, bet $] \subseteq \Sigma_{3}[<]$, and we conjecture that for each fixed alphabet it is bounded as well.

Is there an algebraic decision procedure for definability in $\mathrm{FO}^{2}[<$, bet $]$?

Maybe. We have a necessary condition:

- M finite monoid, $m_{1}, m_{2} \in M . m_{1} \leq \mathcal{J} m_{2}$ iff $m_{1} \in M m_{2} M$.
- If $e \in M$ idempotent $\left(e^{2}=e\right), M_{e}$ denotes submonoid generated by $\{m: e \leq \mathcal{J} m$.
- If L is definable, then $e M_{e} e \in \mathbf{D A}$ for all idempotents e of M.
- This condition is also sufficient for two-letter alphabets-we conjecture that it holds for larger alphabets.

Separation of $F O^{2}[<$, bet $]$ from $F O[<]$

Minimal DFA of $L=\left(a(a b)^{*} b\right)^{*}$

$e=b a=(b a)^{\omega}$,
$x=e b e, y=e a e \in e \cdot M(L)_{e} \cdot e$.
$(x y)^{\omega}$ fixes middle state, $(x y)^{\omega} x(x y)^{\omega}$ does not, so $e \cdot M(L)_{e} \cdot e \notin$ DA.

Are there other equivalent formulations in predicate or temporal logic?

Of course!
For example, we can generalize the new relation to $(a, k)(x, y)$ to mean $x<y$ and there are at least k occurrences of a between x and y.

We call the resulting logic $F O^{2}[<$, Thr]. We have (for languages)

$$
F O^{2}[<, \text { Thr }]=F O^{2}[<, \text { bet }] .
$$

- However, note that $a(x, y)$ is not equivalent to a formula of $F O^{2}[<$, bet $]$ with two free variables!

Are there other equivalent formulations in predicate or temporal logic?

Let $B \subseteq A$. A simple threshold constraint is a condition on words of the form $\# B \geq k$, meaning that the word contains at least k occurrences of letters in B.
A threshold constraint is a boolean combination of simple threshold constraints.
We can augment the $\{\mathrm{F}, \mathrm{P}\}$ with threshold constraints-if c is such a constraint, we interpret $(w, i) \models \mathrm{F}_{c} \phi$ to mean that for some $j>i$, (w, j) $\models \phi$ and $w[i+1, j-1]$ satisfies the constraint c.
..and others. For each formulation we find the computational complexity of formula satisfiability. (This version is EXPSPACE-complete.)

A Note on the Proofs

- Showing necessity of an equational condition is 'easy': Usually this can be done with an EF-game argument.
- Showing sufficiency of an equation is hard: Usually this entails showing that satisfaction of the equations implies a semidirect product decomposition of the monoid, and from this it is often possible to extract logical formulas.

Limitations of this approach

This algebraic method is a powerful tool for characterizing the expressive power of logics on words that define only regular languages.
Extending these methods to regular languages of trees, and to logics that can define non-regular languages, remains a major challenge!

