Non-negative Matrix Factorization via Alternating Updates

Yingyu Liang, Princeton University

Joint work with Yuanzhi Li Andrej Risteski

Simons workshop, Berkeley, Nov 2016

X n x m		Machine Learning Paradigms		park		
	4	3		?	5	
	5		4		4	
8	4		5	3	4	
-		3				5
ß		4				4
-			2	4		5

Matrix completion

Deep learning

- In practice, often solved by "local improvement"
 - Gradient descent and variants

- In practice, often solved by "local improvement"
 - Gradient descent and variants
 - Alternating update

Matrix factorization: Given Y, find A, X s.t. Y = AXfor t = 1, 2, ... do Fix A, update XFix X, update A

- In practice, often solved by "local improvement"
 - Gradient descent and variants
 - Alternating update

When and why do such simple algos work for the hard problems? Goal: provable guarantees of simple algos under natural assumptions

- In practice, often solved by "local improvement"
 - Gradient descent and variants
 - Alternating update

When and why do such simple algos work for the hard problems? Goal: provable guarantees of simple algos under natural assumptions

This work: alternating update for Non-negative Matrix Factorization

Non-negative Matrix Factorization (NMF)

- Given: matrix $Y \in \mathbf{R}^{d \times m}$
- Find: non-negative matrices $A \in \mathbb{R}^{d \times k}, X \in \mathbb{R}^{k \times m}$ s.t. Y = AX

NMF in ML Applications

Basic tool in machine learning

• Topic modeling [Blei-Ng-Jordan03, Arora-Ge-Kannan-Moitra12, Arora-Ge-Moitra12,...]

NMF in ML Applications

Basic tool in machine learning

- Topic modeling [Blei-Ng-Jordan03, Arora-Ge-Kannan-Moitra12, Arora-Ge-Moitra12,...]
- Computer vision [Lee-Seung97, Lee-Seung99, Buchsbaum-Bloch02,...]

NMF in ML Applications

Basic tool in machine learning

• Topic modeling [Blei-Ng-Jordan03, Arora-Ge-Kannan-Moitra12, Arora-Ge-Moitra12,...]

or fully automatic.

- Computer vision [Lee-Seung97, Lee-Seung99, Buchsbaum-Bloch02,...]
- Many others: network analysis, information retrieval,

as well as enterprise back-end systems and third party applications.

Worst Case v.s. Practical Heuristic

Worst case analysis [Arora-Ge-Kannan-Moitra12]

- Upper bound: $O\left((dm)^{k^2 2^k}\right)$
- Lower bound: no $(dm)^{o(k)}$ algo, assuming ETH

Alternating updates: typical heuristic, suggested by Lee-Seung

Set a good initialization for A (often by experts) for t = 1, 2, ... do Decode: compute X from the current AUpdate: modify A based on X

Analyzing Non-convex Problems

- Generative model: the input data is generated from (a distribution defined by) a ground-truth solution
- Warm start: good initialization not far away from the ground-truth

Beyond Worst Case for NMF

- Separability-based assumptions [Arora-Ge-Kannan-Moitra12]
 - Motivated by topic modeling: each column of A (topic) has an anchor word
 - Lots of subsequent work [Arora-Ge-Moitra12, Arora-Ge-Halpern-Mimno-Moitra-Sontag-Wu-Zhu12, Gillis-Vavasis14, Ge-Zhou15, Bhattacharyya-Goyal-Kannan-Pani16, ...]

Beyond Worst Case for NMF

- Separability-based assumptions [Arora-Ge-Kannan-Moitra12]
 - Motivated by topic modeling: each column of A (topic) has an anchor word
 - Lots of subsequent work [Arora-Ge-Moitra12, Arora-Ge-Halpern-Mimno-Moitra-Sontag-Wu-Zhu12, Ge-Zhou15, Bhattacharyya-Goyal-Kannan-Pani16,...]
- Variational inference [Awasthi-Risteski15]
 - Alternating update method on objective KL-divergence(Y, AX)
 - Requires relatively strong assumptions on A, and/or a warm start depending on its dynamic range (not realistic)

Outline

- Introduction
- Our model, algorithm and main results
- Analysis of the algorithm

Generative Model

Each column of Y is i.i.d. example from $y = A^* x^*$

Generative Model

Each column of Y is i.i.d. example from $y = A^* x^*$

• (A1): columns of A^* are linearly independent

Generative Model

Each column of Y is i.i.d. example from

 $y = A^* x^*$

- (A1): columns of A^* are linearly independent
- (A2): x_i^* 's are independent random variables

$$x_i^* = \begin{cases} 1 & \text{with probability } s/k \\ 0 & \text{otherwise} \end{cases}$$

where *s* is a parameter

Parameters: α , η_1 , η_2

Initialize Afor t = 1, 2, ... do Decode: $x \leftarrow \phi_{\alpha}(A^{\dagger}y)$ for each example y

Known as Rectified Linear Units (ReLU) in Deep Learning

Parameters: α , η_1 , η_2

Initialize Afor t = 1, 2, ... do Decode: $x \leftarrow \phi_{\alpha}(A^{\dagger}y)$ for each example yUpdate: $A \leftarrow (1 - \eta_1)A + \eta_2 \mathbb{E}[(y - y')(x - x')^{\top}]$

y, y' are two independent examples, and x, x' are their decodings

Parameters: α , η_1 , η_2

Initialize Afor t = 1, 2, ... do Decode: $x \leftarrow \phi_{\alpha}(A^{\dagger}y)$ for each example yUpdate: $A \leftarrow (1 - \eta_1)A + \eta_2 \mathbb{E}[(y - y')(x - x')^{\top}]$

Sanity check: if
$$A = A^*$$
, then
 $\phi_{\alpha}(A^{\dagger}y) = \phi_{\alpha}(A^{\dagger}A^*x^*) = \phi_{\alpha}(x^*) = x^*$

Parameters: α , η_1 , η_2

Initialize Afor t = 1, 2, ... do Decode: $x \leftarrow \phi_{\alpha}(A^{\dagger}y)$ for each example yUpdate: $A \leftarrow (1 - \eta_1)A + \eta_2 \mathbb{E}[(y - y')(x - x')^{\top}]$

Sanity check: if
$$A = A^*$$
, then

$$\mathbb{E}[(y - y')(x - x')^\top]$$

$$= A^* \mathbb{E}[(x^* - (x')^*)(x^* - (x')^*)^\top]$$

$$\propto A^*$$

Warm Start

• (A3): warm start A with error $\ell \leq 1/10$

 $\begin{aligned} A &= A^* (\Sigma + E) \text{ where} \\ \Sigma \text{ is diagonal with } \Sigma_{i,i} \geq 1 - \ell, \\ E \text{ is off-diagonal with } \|E\|_1, \|E\|_{\infty} \leq \ell \end{aligned}$

Warm Start

• (A3): warm start A with error $\ell \leq 1/10$

 $\begin{aligned} A &= A^* (\Sigma + E) \text{ where} \\ \Sigma \text{ is diagonal with } \Sigma_{i,i} \geq 1 - \ell, \\ E \text{ is off-diagonal with } \|E\|_1, \|E\|_{\infty} \leq \ell \end{aligned}$

$$A_{i} = \sum_{i,i} A_{i}^{*} + \sum_{j \neq i} E_{j,i} A_{j}^{*}$$

Aligned with truth Not too much

Main Result

Theorem Assume (A1)(A2)(A3). After $O(\log(1/\epsilon))$ iterations, $\Sigma_{i,i} \ge 1 - \ell$ and $||E||_1, ||E||_{\infty} \le \epsilon$.

Analysis: Overview

 $A = A^*(\Sigma + E)$

Show the algo will

- 1. Maintain $\sum_{i,i} \geq 1 \ell$ and
- 2. Decrease the potential function

 $||E_+|| + \beta ||E_-||$

where $\beta > 1$ is a constant, $E_{+}(E_{-})$ is the positive (negative) part of E

Analysis: Effect of ReLU

Decode: $x \leftarrow \phi_{\alpha}(A^{\dagger}y)$ Update: $A \leftarrow (1 - \eta_1)A + \eta_2 \Delta, \Delta = \mathbb{E}[(y - y')(x - x')^{\top}]$

• When $A = A^*(I + E)$, how is E changed by the update? $x = \phi_{\alpha}(A^{\dagger}A^*x^*) = \phi_{\alpha}((I + E)^{-1}x^*) \approx \phi_{\alpha}(x^* - Ex^*)$

Analysis: Effect of ReLU

Decode: $x \leftarrow \phi_{\alpha}(A^{\dagger}y)$ Update: $A \leftarrow (1 - \eta_1)A + \eta_2 \Delta, \Delta = \mathbb{E}[(y - y')(x - x')^{\top}]$

• When $A = A^*(I + E)$, how is *E* changed by the update?

$$x = \phi_{\alpha}(A^{\dagger}A^{*}x^{*}) \approx \phi_{\alpha}(x^{*} - Ex^{*})$$

Analysis: Effect of ReLU

Decode: $x \leftarrow \phi_{\alpha}(A^{\dagger}y)$ Update: $A \leftarrow (1 - \eta_1)A + \eta_2 \Delta, \Delta = \mathbb{E}[(y - y')(x - x')^{\top}]$

• When $A = A^*(I + E)$, how is E changed by the update?

Analysis: Change of Error Matrix

Decode: $x \leftarrow \phi_{\alpha}(A^{\dagger}y)$ Update: $A \leftarrow (1 - \eta_1)A + \eta_2 \Delta, \Delta = \mathbb{E}[(y - y')(x - x')^{\top}]$

 $\bullet\, {\rm For}$ a small constant ν

• Therefore, $||E_+|| + \beta ||E_-||$ decreases

More General Results

1. Each column of Y is generated i.i.d. by

 $y = A^* x^* + \xi$

• The decoding is

$$x = \phi_{\alpha}(A^{\dagger}y) \approx \phi_{\alpha}(x^* - Ex^* + A^{\dagger}\xi)$$

- So can* tolerate large adversarial noise,
- and tolerate zero-mean noise much larger than signal x_i^* 's

2. Distribution of x_i^* 's only needs to satisfy some moment conditions

Conclusion

- Beyond worse case analysis of NMF
 - generative model with mild condition on the feature matrix A
- Provable guarantee of alternating update algorithm
- Strong denoising effect by ReLU + non-negativity

Conclusion

- Beyond worse case analysis of NMF
 - generative model with mild condition on the feature matrix A
- Provable guarantee of alternating update algorithm
- Strong denoising effect by ReLU + non-negativity

