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e
Intractability

Problems are intractable when they “can be solved,

but not fast enough for the solution to be usable”

e NP-complete problems are commonly said to be
intractable, but the reality is more complex

 The best available methods tend to
— offer no interesting theoretical guarantees
— work astoundingly well in practice

— exhibit exponentially varying performance
(e.g., milliseconds to days) even on fixed-size problems



e
Motivating Question

“How hard is it to solve a given problem in practice,
using the best available methods?”

Even in settings where formal analysis seems hopeless:
— algorithms are complex black boxes
— instance distributions are heterogeneous or richly structured

...it is possible to apply rigorous statistical methods to
answer such questions with high levels of confidence.
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EMPIRICAL HARDNESS MODELS:

Learning the Performance of
Algorithms for NP-Complete Problems
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Empirical Hardness Models

* Predict how long an algorithm will take to run, given:

— A set of instances D
— For each instance i € D, a vector x of feature values
— For each instance i € D, a runtime observation y,

* We want a mapping f(x) = y that
accurately predicts y, given x

 This is a regression problem
— We've tried about a dozen different methods over the years
— This choice can matter, but features are more important
— Overall, we recommend random forests of regression trees
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Overall View

We've found that EHMs work consistently, across:

e 4 problem domains (with new features in each domain)
— Satisfiability (SAT)
— Mixed Integer Programming (MIP)
— Travelling Salesman Problem (TSP)
— Combinatorial Auctions

e dozens of solvers, including:
— state of the art solvers in each domain
— black-box, commercial solvers
* dozens of instance distributions, including:

— major benchmarks (SAT competitions; MIPLIB; ...)

— real-world data (hardware verification, computational sustainability, ...)
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Examples: EHMs for SAT, MIP

SAT Competition (Random + Handmade + Industrial) data, MINISAT solver SAT: IBM hardware verification data, SPEAR solver
Random Forest (RMSE=0.47) Random Forest (RMSE=0.38)
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Modeling Algorithm Families

SAT: IBM hw verification data, SPEAR
Random Forest (RMSE=0.43)
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ALGORITHM DESIGN:
CONFIGURATION
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Beyond Worst Case Analysis

Recent, enormous increases in compute power

Approaches that might have seemed crazy in 2000 can make a lot of sense in 2016...

] Chip introduction
@ Transistors per chip, ‘000 ® Clock speed (max), MHz ® Thermal design power®, w dates, selected
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Alg Design: Portfolios

Spectrum Repacking

Deep Optimization

Machine learning
e Classical approach

— Features based on expert insight
— Model family selected by hand
— Manual tuning of hyperparameters

e Deep learning

— Very highly parameterized models,
using expert knowledge to identify
appropriate invariances and model
biases (e.g., convolutional structure)

* ‘“deep”: many layers of nodes,
each depending on the last

— Use lots of data (plus “dropout”
regularization) to avoid overfitting

— Computationally intensive search
replaces human design

Discrete Optimization
e Classical approach

— Expert designs a heuristic algorithm

— lteratively conducts small
experiments to improve the design

* Deep optimization

— Very highly parameterized algorithms
express a combinatorial space of
heuristic design choices that make
sense to an expert

* “deep”: many layers of parameters,
each depending on the last

— Use lots of data to characterize
the distribution of interest

— Computationally intensive search
replaces human design

Beyond Worst Case Analysis
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Algorithm Configuration

e QOur input: parameters encoding each
design choice considered by the
author of our heuristic algorithm

e Qur task: the stochastic optimization
problem of finding a parameter
configuration with good performance.

* An interesting black-box function
optimization problem
— design dimensions can be continuous; ordinal; categorical
— extra design dimension: which instance do | test?

— objective function to be minimized is the same as the cost of
evaluating a given point

— censored sampling: long runs can be terminated

* Best current methods for solving this problem are
based on EHMs
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Empirical Hardness Models

Visualizing Sequential Model-Based Optimization

Acquisition function
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Visualizing Sequential Model-Based Optimization

Acquisition function
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Sequential Model-based Algorithm Configuration (SMAC)

----- RF mean prediction
RF mean +/- 2*stddev
4k = True function
O Function evaluations
% Right-censored fun. evals.
3t == == Exp. improvement (scaled)H

response y

0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 09 1

parameter x

Initialize with a single run for the default configuration

repeat

Learn a random forest model m : © x Il — R from data so far
Marginalize out instance features: f(6) = E.|m/(f, 7)]

Find # that maximizes expected improvement in f(f) over incumbent
Compare # to the incumbent, updating if it’s better.

until time budget exhausted
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Applications of Algorithm Configuration

% Mixed integer
m programming

[ Auction|omics Wins in Competitions
Spectrum SAT: since 2009
repacking IPC: since 2011

ASP: since 2011

(LR
e o actenum

Scheduling and
Resource Allocation

Timetabling: 2007

Game SMT: 2007

Optimization

@ QUINTIO

Supply Chain
Planning & Optimization

Exam
Timetabling

Academic Applications by Others

Protein Folding
Game Theory: Kidney Exchange
Computer GO
Linear algebra subroutines
Evolutionary Algorithms
Machine Learning: Classification
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ALGORITHM DESIGN:
PORTFOLIOS
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Is Algorithm Configuration Enough?

e There’s not (yet) a “best” SAT solver

— different solvers perform well on
different instances

— performance differences between
them are typically very large
 The effectiveness of EHMs suggests
a straightforward solution

— given a new problem instance, predict
the runtime of each SAT solvers from
an algorithm portfolio

— run the one predicted to be fastest

e SATzilla: a portfolio-based algorithm
selector for SAT (2003-present)
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Algorithm Selection

e Since proposing it, we've improved the approach to:
— allow randomized and incomplete algorithms as component solvers
— include presolvers that run for a short, fixed time
— optimize for complex scoring functions beyond runtime
— automate the construction of the selector given data
* e.g., pre-solver selection; component solver selection
e again, “deep optimization”
 We can also improve by moving to a different ML framework
— cost-sensitive classification directly selects best-performing solver
— doesn’t need to predict runtime

e Or, just run all algorithms in the portfolio together in parallel
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Success of SATzilla

e 2003 SAT Competition

— placed second and third in several categories

e 2007 and 2009 SAT Competitions

— winning five medals each time

e 2012 SAT Challenge

— eligible to enter four categories
— placed first, first, first, second

* Then, portfolios banned from competitions ©

e SATzilla’s success demonstrates the effectiveness of
automated, statistical methods for combining solvers

— including “uncompetitive” solvers with poor average performance

e Our approach is entirely general
— likely to work well for other problems with high runtime variation
— caveat: each domain needs instance features
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Hydra: Automatic Portfolio Synthesis

e So far we’ve assumed that we start out with a
manageable set of relatively uncorrelated solvers

— what if all we start out with is a huge, deep parameter space?
e top level parameter may encode for which of many different solvers to use

— want a “deep optimization” approach that works entirely automatically

 Hydra: augment an additional
portfolio P by targeting instances
on which P performs poorly

e Give SMAC a dynamic performance metric:

— performance of alg s when s outperforms P;
performance of P otherwise

— Intuitively: s scored for marginal contribution to P
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ALGORITHM DESIGN:
A Case Study on Spectrum Repacking
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FCC’s “Incentive Auction”
«+ USATODAY seecn Q]
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FCC's complex incentive auction could net more than $30
billion

@ ke Snider, USA TODAY
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auction ever conducied by the Federal >
Offer onchs Moy &
Communications Commission is oMcially undenway Conditions sophy

The most sophisticaled and complex spectrum

When the entire process comes 10 an end more than
three years from now, big wireless camiers that
provide most of our smarphone access should have
more bandwidth 1o delivery services 10 mobile-
hungry consumer

TV broadcasters by Tuesday night must have made
official their intentions 10 accept the FCC's opening
price for the righits 1o the spactrum they curenily use for digital TV broadcasts. Once

the agency knows how much spectrum can be made availabie in this “reverse
auction.” then, in a few months, the FCC will open up the bidding in the “orward
auction™ in which companies such as ATAT and Verizon can bid onthe reallocated

spectrum in each of 400-plus localities.
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Building (& Evaluating) a Feasibility Tester

 Data generated Nov 2015 — Feb 2016 using

— the FCC’s Nov 2015 interference constraints
— the FCC’s “smoothed ladder” simulator

— varying simulation assumptions:
 how much spectrum is cleared: 126 MHz; 108 MHz; 84 MHz
e which stations opt to participate
e these stations’ valuations
e the timeout given to SATFC in the simulation (1; 5; 10; 60 min)

e 128 auctions = 1.4 M instances

— 6,128 — 17,764 instances per auction
e all not solvable by directly augmenting the previous solution
e about 20% of the problems encountered in full simulations

— split auctions 102/26 into training/test sets
e QOur goal: solve problems within a one-minute cutoff
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Feasibility Testing via MIP Encoding
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Feasibility Testing via SAT Encoding
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Best Configured Solver
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Performance of the Algorithm Portfolio

Fraction of Instances

Alg Design: Configuration Alg Design: Portfolios Spectrum Repacking Beyond Worst Case Analysis
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BEYOND WORST-CASE COMPLEXITY:

A Case Study on Characterizing SAT Solver
Performance On Uniform Random 3-SAT:
Beyond the Clauses-to-Variables Ratio
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SAT Instance Features

Alg Design: Portfolios Spectrum Repacking

e Problem Size (clauses, variables, clauses/variables, ...)

e Syntactic properties (e.g., positive/negative clause ratio)

o Statistics of various constraint graphs

— factor graph
— clause—clause graph

Beyond Worst Case Analysis

@@
Qard

@0
Qad

A7

— variable—variable graph

e Knuth’s search space size estimate {}:ﬁ
e Cumulative number of unit propagations at different

depths (sATz heuristic)

e Local search probing |-
e Linear programming relaxation

maximize: Z( Z + Z (1 ))

{0 1}

subject to: Z + Z (l v))>1 VkeC

Vi
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Example: Uniform-Random 3-SAT at Phase Transition
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Fixed Ratio Prediction (Kcnfs)
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Feature Importance — Fixed Ratio

Variable Oi:\):sts?:n
SapsBestSolMean? 100
SapsBestSolMean - MeanDPLLDepth 74
GsatBestSolCV - MeanDPLLDepth 21
VCGClauseMean - GsatFirstLMRatioMean 9
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Feature Importance — Fixed Ratio

Alg Design: Configuration Alg Design: Portfolios Spectrum Repacking

Beyond Worst Case Analysis

BEST # Unsat Clauses
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Feature Importance — Fixed Ratio
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Uniform-Random 3-SAT, Variable Ratio

Log actual runtime [sec]
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Hierarchical Hardness Models

e Conditioning on satisfiability of the instance: clauses/variables
unimportant; single-feature models become sufficient
— Satisfiable: local search probing
— Unsatisfiable: search space size

e Hierarchical hardness model

1. Predict satisfiability status

2. Use this prediction as a feature to combine the
predictions of SAT-only and UNSAT-only models

* Not necessarily easy: SAT-only and UNSAT-only models can make
large errors when given wrong data

Log sctual urime [3ec]
[P R S - R S TR B

SAT-only UNSAT-only
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Beyond Worst Case Analysis

Predicting Satisfiability Status (fixed-ratio 3-saT)
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Can We Really Predict Satisfiability Status?

* Consider phase-transition instances varying from
100 variables (solvable in milliseconds) to 600 variables
(solvable in a day).

— Does prediction accuracy fall to random guessing on larger
problems?

— If not, can we identify an easily comprehensible model that
would offer theoretical insight?
e Restrict models in three ways:
— train only on 100-variable instances
— consider only decision trees with at most two decision nodes
— omit all probing features

e disproportionately effective on small instances
* based on complex, heuristic algorithms
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A Simple Model Beats Random Guessing

LPSLACK_ coeff_variation

>=0.00466585

§ 09 B N
Yes No E
/ 8 08F .
8
SAT [A] POSNEG_ratio_var_mean 'E
>=0.164963 £ 07
n
s
o
Yes No 0d
/ \ N
SAT [B] UNSAT [C] 100 200 300 400 500 600

Instance size

Predictive accuracies for instances falling into the three regions were between
60% and 70% [A]; a bit more than 50% [B]; and between 70% and 80% [C].

This model was trained only on 100-variable problems.
No evidence that accuracy falls with size (pairwise Mann-Whitney U tests)
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A Simple Model Beats Random Guessing

LPSLACK_coeff_variation

LPSLACK_coeff variation e based on SAT’s LP relaxation
= DO0RG09E0  for each i with LP solution value S; € [0,1],
LPSLACK; is defined as min{1 — §;, S;}
Yes No e LPSLACK coeff variation is the coefficient
/ of variation (standard deviation divided by

SAT [A] e p— mean) of the vector LPSLACK

>=0.164963

POSNEG_ratio_var_mean

* For each variable i with P; positive
/ \ occurrences and N; negative occurrences,

POSNEG _ ratio _ var;is |0.5 — il
Pi+N;

e POSNEG_ratio_var_mean is then the
average over elements of the vector

SAT [B] UNSAT [C]

Both features normalized to have mean 0, standard deviation 1 on the training set.

To evaluate on a test set instance of a new size:

e randomly sampled many instances of that size

e estimated new normalization factors

e used these factors to compute the features for the test instance
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Conclusions

e Empirical Hardness Models

— a statistically rigorous approach to characterizing the difficulty
of solving a given family of problems using available methods

— surprisingly effective in practice, across various domains

e EHMs are also useful for algorithm design
— model-based algorithm configuration
— automatic design of algorithm portfolios

 Analysis of learned models can open avenues for
theoretical investigations beyond the worst case
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