Learning as a Tool for Algorithm Design and Beyond-Worst-Case Analysis

Kevin Leyton-Brown
Computer Science Department
University of British Columbia
This talk surveys 15 years of work with/by many collaborators, notably:

Holger Hoos
UBC

Frank Hutter
UBC

Eugene Nudelman
Stanford/Google

Yoav Shoham
Stanford

Lin Xu
UBC

[L-B, Nudelman, Shoham: CP 2002; JACM 2009]
[Nudelman, L-B, Hoos, Devkar, Shoham: CP 2004]
[Xu, Hoos, L-B: CP 2007; AAAI 2012]
[Hutter, Xu, Hoos, L-B: CACM 2014; AIJ 2015]
Intractability

Problems are intractable when they “can be solved, but not fast enough for the solution to be usable”

[Hopcroft, Motwani & Ullman, 2007]

• NP-complete problems are commonly said to be intractable, but the reality is more complex

• The best available methods tend to
 – offer no interesting theoretical guarantees
 – work astoundingly well in practice
 – exhibit exponentially varying performance (e.g., milliseconds to days) even on fixed-size problems
Motivating Question

“How hard is it to solve a given problem in practice, using the best available methods?”

Even in settings where formal analysis seems hopeless:
- algorithms are complex black boxes
- instance distributions are heterogeneous or richly structured

...it is possible to apply rigorous statistical methods to answer such questions with high levels of confidence.
EMPIRICAL HARDNESS MODELS:

Learning the Performance of Algorithms for NP-Complete Problems

[L-B, Nudelman, Shoham: CP 2002; JACM 2009]
[Hutter, Xu, Hoos, L-B, INFORMS 2006; CACM 2014; AIJ 2015]
[Hutter, Xu, Hoos, L-B: CACM 2014]
Empirical Hardness Models

• Predict how long an algorithm will take to run, given:
 – A set of instances D
 – For each instance $i \in D$, a vector \mathbf{x}_i of feature values
 – For each instance $i \in D$, a runtime observation y_i

• We want a mapping $f(x) \rightarrow y$ that accurately predicts y_i given \mathbf{x}_i

• This is a regression problem
 – We’ve tried about a dozen different methods over the years
 – This choice can matter, but features are more important
 – Overall, we recommend random forests of regression trees
We’ve found that **EHMs work consistently**, across:

- **4 problem domains** (with new features in each domain)
 - Satisfiability (SAT)
 - Mixed Integer Programming (MIP)
 - Travelling Salesman Problem (TSP)
 - Combinatorial Auctions

- dozens of **solvers**, including:
 - state of the art solvers in each domain
 - black-box, commercial solvers

- dozens of **instance distributions**, including:
 - major benchmarks (SAT competitions; MIPLIB; ...)
 - real-world data (hardware verification, computational sustainability, ...)

Empirical Hardness Models

Alg Design: Configuration

Alg Design: Portfolios

Spectrum Repacking

Beyond Worst Case Analysis

Overall View
Examples: EHM for SAT, MIP

- SAT Competition (Random + Handmade + Industrial) data, MINISAT solver
 - Random Forest (RMSE=0.47)

- SAT: IBM hardware verification data, SPEAR solver
 - Random Forest (RMSE=0.38)

- MIPLIB data, CPLEX 12.1 solver
 - Random Forest (RMSE=0.63)

- Red Crested Woodpecker habitat data, CPLEX 12.1 solver
 - Random Forest (RMSE=0.02)
Modeling Algorithm Families

• So far we’ve considered single, black box algorithms
• What about parameterized algorithm families?

• Models can be extended to the sets of algorithms described by solvers with parameters that are:
 – continuous or discrete
 – ordinal or categorical
 – potentially conditional on the values of other parameters

• We call full parameter instantiations (i.e., runnable algorithms) configurations
ALGORITHM DESIGN: CONFIGURATION

[Hutter, Hoos, L-B, LION 2011]
[Hutter, Hamadi, Hoos, L-B, CP 2006]
[Hutter, Hoos, L-B, Murphy, GECCO 2009]
[Hutter, Bartz-Beielstein, Hoos, L-B, Murphy, LION 2010]
[Hutter, Hoos, L-B, CPAIOR 2010; AMAI 2010]
Recent, enormous increases in compute power

Approaches that might have seemed crazy in 2000 can make a lot of sense in 2016...

Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist

*Maximum safe power consumption
Deep Optimization

Machine learning

- **Classical approach**
 - Features based on expert insight
 - Model family selected by hand
 - Manual tuning of hyperparameters

- **Deep learning**
 - Very highly parameterized models, using expert knowledge to identify appropriate invariances and model biases (e.g., convolutional structure)
 - “deep”: many layers of nodes, each depending on the last
 - Use lots of data (plus “dropout” regularization) to avoid overfitting
 - Computationally intensive search replaces human design

Discrete Optimization

- **Classical approach**
 - Expert designs a heuristic algorithm
 - Iteratively conducts small experiments to improve the design

- **Deep optimization**
 - Very highly parameterized algorithms express a combinatorial space of heuristic design choices that make sense to an expert
 - “deep”: many layers of parameters, each depending on the last
 - Use lots of data to characterize the distribution of interest
 - Computationally intensive search replaces human design
Algorithm Configuration

• Our input: parameters encoding each design choice considered by the author of our heuristic algorithm

• Our task: the stochastic optimization problem of finding a parameter configuration with good performance.

• An interesting black-box function optimization problem
 – design dimensions can be continuous; ordinal; categorical
 – extra design dimension: which instance do I test?
 – objective function to be minimized is the same as the cost of evaluating a given point
 – censored sampling: long runs can be terminated

• Best current methods for solving this problem are based on EHMs
Visualizing Sequential Model-Based Optimization
Initialize with a single run for the default configuration

repeat

Learn a random forest model \(m : \Theta \times \Pi \rightarrow \mathbb{R} \) from data so far
Marginalize out instance features: \(f(\theta) = E_{\pi}[m(\theta, \pi)] \)
Find \(\theta \) that maximizes expected improvement in \(f(\theta) \) over incumbent
Compare \(\theta \) to the incumbent, updating if it’s better.

until time budget exhausted
Applications of Algorithm Configuration

Wins in Competitions

<table>
<thead>
<tr>
<th>SAT: since 2009</th>
<th>IPC: since 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASP: since 2011</td>
<td>Timetabling: 2007</td>
</tr>
<tr>
<td>SMT: 2007</td>
<td></td>
</tr>
</tbody>
</table>

Academic Applications by Others

- Protein Folding
- Game Theory: Kidney Exchange
- Computer GO
- Linear algebra subroutines
- Evolutionary Algorithms
- Machine Learning: Classification

Empirical Hardness Models

<table>
<thead>
<tr>
<th>IBM</th>
<th>Mixed integer programming</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>actenum</th>
<th>Scheduling and Resource Allocation</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>QUINTIQ</th>
<th>Supply Chain Planning & Optimization</th>
</tr>
</thead>
</table>

| UBC | Exam Timetabling |

<table>
<thead>
<tr>
<th>[Auction]omics</th>
<th>Spectrum repacking</th>
</tr>
</thead>
</table>

| zynga | Game Optimization |

| | Beyond Worst Case Analysis |
ALGORITHM DESIGN: PORTFOLIOS

[Nudelman, L-B, Andrew, Gomes, McFadden, Selman, Shoham, 2003]
[Nudelman, L-B, Hoos, Devkar, Shoham, CP 2004]
[Xu, Hutter, Hoos, L-B, JAIR 2008]
[L-B, Nudelman, Andrew, McFadden, Shoham, IJCAI 2003; CP 2003]
[L-B, Nudelman, Shoham; JACM 2009]
[Xu, Hoos, L-B, AAAI 2010; Xu, Hutter, Hoos, L-B, workshop 2011]
[Lindauer, Hoos, L-B, Schaub, AIJ 2016]
Is Algorithm Configuration Enough?

• There’s not (yet) a “best” SAT solver
 – different solvers perform well on different instances
 – performance differences between them are typically very large

• The effectiveness of EHMs suggests a straightforward solution
 – given a new problem instance, predict the runtime of each SAT solvers from an algorithm portfolio
 – run the one predicted to be fastest

• SATzilla: a portfolio-based algorithm selector for SAT (2003-present)
Algorithm Selection

• Since proposing it, we’ve improved the approach to:
 – allow *randomized and incomplete* algorithms as component solvers
 – include *presolvers* that run for a short, fixed time
 – optimize for complex *scoring functions* beyond runtime
 – automate the *construction of the selector* given data
 • e.g., pre-solver selection; component solver selection
 • again, “deep optimization”

• We can also improve by moving to a different ML framework
 – *cost-sensitive classification* directly selects best-performing solver
 – doesn’t need to predict runtime

• Or, just run all algorithms in the portfolio together *in parallel*
Success of SATzilla

• 2003 **SAT Competition**
 – placed second and third in several categories
• 2007 and 2009 **SAT Competitions**
 – winning five medals each time
• 2012 **SAT Challenge**
 – eligible to enter four categories
 – placed first, first, first, second
• Then, portfolios **banned** from competitions 😊

• SATzilla’s success demonstrates the effectiveness of **automated, statistical methods** for combining solvers
 – including “uncompetitive” solvers with poor average performance
• Our approach is **entirely general**
 – likely to work well for other problems with high runtime variation
 – caveat: each domain needs instance features
So far we’ve assumed that we start out with a manageable set of relatively uncorrelated solvers — what if all we start out with is a huge, deep parameter space?
 - top level parameter may encode for which of many different solvers to use
 - want a “deep optimization” approach that works entirely automatically

Hydra: augment an additional portfolio P by targeting instances on which P performs poorly

Give SMAC a dynamic performance metric:
 - performance of alg s when s outperforms P;
 performance of P otherwise
 - Intuitively: s scored for marginal contribution to P
ALGORITHM DESIGN:

A Case Study on Spectrum Repacking

[Frechette, Newman, L-B, AAAI 2016; ongoing work]
FCC’s “Incentive Auction”

FCC's complex incentive auction could net more than $30 billion

The most sophisticated and complex spectrum auction ever conducted by the Federal Communications Commission is officially underway.

When the entire process comes to an end more than three years from now, big wireless carriers that provide most of our smartphone access should have more bandwidth to delivery services to mobile-hungry consumers.

TV broadcasters by Tuesday night must have made official their intentions to accept the FCC's opening price for the rights to the spectrum they currently use for digital TV broadcasts. Once the agency knows how much spectrum can be made available in this "reverse auction," then, in a few months, the FCC will open up the bidding in the "forward auction" in which companies such as AT&T and Verizon can bid on the reallocated spectrum in each of 400-plus localities.
Thanks to all those who helped make this work possible!

Student leads on the project:

Neil Newman, Alexandre Fréchette

Further students who made contributions to software:

Nick Arnosti; Emily Chen; Ricky Chen; Paul Cernek; Guillaume Saulnier Comte; Alim Virani

Others (then) at UBC:

• Chris Cameron
• Holger Hoos
• Frank Hutter
• Ashiqur Khudabukhsh
• Steve Ramage
• James Wright
• Lin Xu

Auctionomics:

• Ulrich Gall
• Jon Levin
• Paul Milgrom
• Ilya Segal
• Karen Wrege

FCC & associates:

• Melissa Dunford
• Gary Epstein
• Karla Hoffman
• Sasha Javid
• Evan Kwerel
• Rory Molinari
• Brett Tarnutzer
• Venkat Veeramneni

Funding from: Auctionomics; Compute Canada; NSERC Discovery; NSERC E.W.R. Steacie
Building (& Evaluating) a Feasibility Tester

• **Data** generated Nov 2015 – Feb 2016 using
 – the FCC’s Nov 2015 interference constraints
 – the FCC’s “smoothed ladder” simulator
 – varying simulation assumptions:
 • how much spectrum is cleared: 126 MHz; 108 MHz; 84 MHz
 • which stations opt to participate
 • these stations’ valuations
 • the timeout given to SATFC in the simulation (1; 5; 10; 60 min)

• **128 auctions** ⇒ **1.4 M instances**
 – 6,128 – 17,764 instances per auction
 • all not solvable by directly augmenting the previous solution
 • about 20% of the problems encountered in full simulations
 – split auctions 102/26 into training/test sets

• **Our goal:** solve problems within a **one-minute cutoff**
Feasibility Testing via MIP Encoding

Fraction of Instances vs. Runtime (s)

- CPLEX
- Gurobi
Feasibility Testing via SAT Encoding
Best Configured Solver

Graph showing performance of Configured Clasp, DCCCA, and Clasp over runtime (s).
Performance of the Algorithm Portfolio

- Empirical Hardness Models
- Alg Design: Configuration
- Alg Design: Portfolios
- Spectrum Repacking
- Beyond Worst Case Analysis

Graph showing the performance of various algorithm portfolios and configurations over runtime.
BEYOND WORST-CASE COMPLEXITY:
A Case Study on Characterizing SAT Solver Performance On Uniform Random 3-SAT:
Beyond the Clauses-to-Variables Ratio

[L-B, Nudelman, Shoham: CP 2002; JACM 2009]
[Nudelman, L-B, Hoos, Devkar, Shoham: CP 2004]
[Xu, Hoos, L-B: CP 2007; AAAI 2012]
[Hutter, Xu, Hoos, L-B: CACM 2014]
SAT Instance Features

- **Problem Size** (clauses, variables, clauses/variables, ...)
- **Syntactic properties** (e.g., positive/negative clause ratio)
- Statistics of various **constraint graphs**
 - factor graph
 - clause–clause graph
 - variable–variable graph
- Knuth’s **search space size** estimate
- Cumulative number of **unit propagations** at different depths (**SATz** heuristic)
- **Local search probing**
- **Linear programming relaxation**
Example: Uniform-Random 3-SAT at Phase Transition
Fixed Ratio Prediction (Kcnfs)
<table>
<thead>
<tr>
<th>Variable</th>
<th>Cost of Omission</th>
</tr>
</thead>
<tbody>
<tr>
<td>SapsBestSolMean2</td>
<td>100</td>
</tr>
<tr>
<td>SapsBestSolMean \cdot MeanDPLLDepth</td>
<td>74</td>
</tr>
<tr>
<td>GsatBestSolCV \cdot MeanDPLLDepth</td>
<td>21</td>
</tr>
<tr>
<td>VCGClauseMean \cdot GsatFirstLMRatioMean</td>
<td>9</td>
</tr>
</tbody>
</table>
Feature Importance – Fixed Ratio

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cost of Omission</th>
</tr>
</thead>
<tbody>
<tr>
<td>SapsBestSolMean^2</td>
<td>100</td>
</tr>
<tr>
<td>SapsBestSolMean \cdot \text{MeanDPLLDepth}</td>
<td>74</td>
</tr>
<tr>
<td>GsatBestSolCV \cdot \text{MeanDPLLDepth}</td>
<td>21</td>
</tr>
<tr>
<td>VCGClauseMean \cdot GsatFirstLMRatioMean</td>
<td>9</td>
</tr>
</tbody>
</table>

Diagram 1

- **Best Solution**
 - Mean, CV

Diagram 2

- **First Plateau**
 - First LM Ratio
 - Mean, CV

Algorithm Design

- **Empirical Hardness Models**
- **Alg Design: Configuration**
- **Alg Design: Portfolios**
- **Spectrum Repacking**
- **Beyond Worst Case Analysis**
Feature Importance – Fixed Ratio

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cost of Omission</th>
</tr>
</thead>
<tbody>
<tr>
<td>SapsBestSolMean^2</td>
<td>100</td>
</tr>
<tr>
<td>$\text{SapsBestSolMean} \cdot \text{MeanDPLLDepth}$</td>
<td>74</td>
</tr>
<tr>
<td>$\text{GsatBestSolCV} \cdot \text{MeanDPLLDepth}$</td>
<td>21</td>
</tr>
<tr>
<td>$\text{VCGClauseMean} \cdot \text{GsatFirstLMRatioMean}$</td>
<td>9</td>
</tr>
</tbody>
</table>
Predicted vs. Actual Log Runtime, SATZ on Uniform Random 3SAT, variable ratio
Hierarchical Hardness Models

- Conditioning on satisfiability of the instance: clauses/variables unimportant; **single-feature models become sufficient**
 - Satisfiable: **local search probing**
 - Unsatisfiable: **search space size**

- **Hierarchical hardness model** [Xu, Hoos, Leyton-Brown, 2007]:
 1. Predict satisfiability status
 2. Use this prediction as a feature to combine the predictions of SAT-only and UNSAT-only models

- Not necessarily easy: SAT-only and UNSAT-only models can make **large errors when given wrong data**
Empirical Performance of HHMs

Predicted vs. Actual Log Runtime, SATZ on Uniform Random 3SAT, variable ratio
Predicting Satisfiability Status (fixed-ratio 3-SAT)

Fraction

Predicted Probability of SAT

Correct (v500)
Wrong (v500)
Can We Really Predict Satisfiability Status?

• Consider phase-transition instances varying from 100 variables (solvable in milliseconds) to 600 variables (solvable in a day).
 – Does prediction accuracy fall to random guessing on larger problems?
 – If not, can we identify an easily comprehensible model that would offer theoretical insight?

• **Restrict models** in three ways:
 – train only on 100-variable instances
 – consider only decision trees with at most two decision nodes
 – omit all probing features
 • disproportionately effective on small instances
 • based on complex, heuristic algorithms
Predictive accuracies for instances falling into the three regions were between 60% and 70% [A]; a bit more than 50% [B]; and between 70% and 80% [C].

This model was trained only on 100-variable problems.
No evidence that accuracy falls with size (pairwise Mann-Whitney U tests)
A Simple Model Beats Random Guessing

LPSLACK_coeff_variation
- based on SAT’s LP relaxation
- for each \(i \) with LP solution value \(S_i \in [0,1] \), LPSLACK\(_i\) is defined as \(\min\{1 - S_i, S_i\} \)
- LPSLACK_coeff_variation is the coefficient of variation (standard deviation divided by mean) of the vector LPSLACK

POSNEG_ratio_var_mean
- For each variable \(i \) with \(P_i \) positive occurrences and \(N_i \) negative occurrences, \(\text{POSNEG_ratio_var_i} = \left| 0.5 - \frac{P_i}{P_i + N_i} \right| \).
- POSNEG_ratio_var_mean is then the average over elements of the vector

Both features normalized to have mean 0, standard deviation 1 on the training set.

To evaluate on a test set instance of a new size:
- randomly sampled many instances of that size
- estimated new normalization factors
- used these factors to compute the features for the test instance
Conclusions

• **Empirical Hardness Models**
 – a statistically rigorous approach to characterizing the difficulty of solving a given family of problems using available methods
 – surprisingly **effective in practice**, across various domains

• EHMls are also useful for algorithm design
 – model-based **algorithm configuration**
 – automatic **design of algorithm portfolios**

• **Analysis of learned models** can open avenues for theoretical investigations beyond the worst case