Deterministic approximate
counting for degree-2
polynomial threshold functions

Simons Workshop on
Real Analysis in Testing, Learning and Inapproximability

Rocco A. Servedio
Columbia University

Joint work with

Anindya De llias Diakonikolas
UC Berkeley U Edinburgh




Approximate Counting

Much work on approximately counting combinatorial
structures:

« Given an n-by-n bipartite graph G, how many perfect matchings?
« Given an n-node bounded-degree graph G, how many k-colorings?
« efc.

Also much work (including this work) on approximately
counting satisfying assignments of Boolean functions:

« Given a poly(n)-term DNF, how many satisfying assignments?
« Given an LTF, how many satisfying assignments?
* efc.



PTFs and LTFs

Degree-d polynomial threshold function (PTF): sign of a
degree-d polynomial

fi4-1,1}" —{-1,1} A+ T

_ T+
f(z) =sign(p(e1,....20)) /|7,
p a degree-d polynomial. Can assume it’ s multilinear. - : +

Linear threshold function (LTF): degree d is 1.




Randomness

Very useful for approximately counting satisfying assignments!

Example: LTFs

Input: an LTF f(z) = sign()_ w;x; — 0)
i=1

Output: avalue p suchthat p € [(1 — &)p, (1 4 €)p] where
p=__Pr [f(z)=1]

re{—1,1}"
« [MorrisSinclair99]: sophisticated MCMC analysis

algorithm & analysis using
“dart throwing” & dynamic programming

 [Dyer03]: elementary randomized '

Both approaches give poly(n, 1/5)-time algorithms.



A glorious success story:
deterministic approximate counting for LTFs

More recently, poly(n, 1/¢)-time deterministic (!)
algorithms have been obtained for LTFs.

« [GopalanKlivansMeka10] : clever approximation of
LTFs by read-once branching programs

« [StefankovicVempalaVigoda10]: clever use of dynamic
programming



This work:
Approximately counting satisfying
assignments for degree-2 PTFs

Input: a degree-2 PTF f(x) = sign(q(x))

Output: a good approximation of p = {Pr } flx)=1]
re{—1,1}"

Note: efficient multiplicative (1 == £ )-approximation of p is probably
impossible, even using randomness...

...if you can distinguish p = 0 from p > 0, you can solve MAX-CUT:
given (G = (V7 E), the degree-2 polynomial

q(x) = (|E] — Z{«z,j}gE ﬂfiZL’j)/Q — k

is nonnegative iff © € {—1,1}" specifies a cut of size at least k.



Additive approximation

( )
Input: a degree-2 PTF f(x) = sign(q(x))
Output: a good approximationof p = Pr [f(x) = 1]

. re{—1,1}7 )

So, let’ s lower our standards: only seek an additive approximationﬁ
such that |p — p| < ¢

Good news: trivial randomized algorithm (sample assignments uniformly)
works in poly(n. 1/5) time!

Not so good news: this algorithm really, really uses randomness — and
has nothing to do with degree-2 PTFs.

7



Motivation

Feels like the “right” problem for degree-2 PTF satisfying assignments
(multiplicative approximation too hard; randomized additive approximation

too easy)

Solving this problem for degree-2 PTFs forces us to understand them
somehow

We like derandomizing things (and we like understanding degree-2 PTFs)



Main results of this work

Theorem: There is a poly(n, 2°°¥(1/¢))-time deterministic algorithm
which, on input any degree-2 PTF f(x) — sign(q(x)) over{—1,1}",
outputs a value ) such that |p — p| < &, where p = Pr[f(z) = 1].
.

J

For “regular” degree-2 PTFs (each individual variable’ s influence org is a
small fraction of the total), the algorithm is an FPTAS:

4 D
Theorem: If ¢ is an ¢?-regular polynomial, the algorithm runs in time

poly(n, 1/¢).

\. J




Previous work on these types of questions

d = 1 case (LTFs): discussed already.

Can also do deterministic approximate counting using
unconditional PRGs for degree-2 (or degree-d) PTFs.

(PRG of size S for class C of functions f : {—1,1}" — {—1, 1?
explicit set of points X C {—1,1}", |X| =S such that

xfe)IX[f(x) = 1] — :pe{?{,l}n[ﬂx) =1]| < ¢ forall f in C. ,

\_

Given such a PRG, can deterministically approximately
count satisfying assignments of functions in C
in time poly(n, S).




Unconditional PRGs for LTFs, PTFs

Much recent work on these:

« [DiakonikolasGopalanJaiswalSViola09]: size n()(l/€2) for LTFs
(bounded independence)

« [DiakonikolasKaneNelson10]: size nPoly(1/¢) for degree-2 PTFs
(bounded independence)

« [MekaZuckerman10]: size poly(n) - quasipoly(1/e) for LTFs,
L0
sizn /¢ @ for degred. PTFs
. [Kane12]: size n?°Y(/9) for degree-d PTFs

For degree-2 PTFs, none of these PRGs give fixed poly(n)-time
approximate counting algorithms. (Equivalently, none work for ¢ = o, (1)
in poly(n) time.)

PRGs are a “one hand tied behind the back” approach to deterministic
approximate counting — they don’ t even look at the input!

11



Talk overview

\/ Introduction, motivation, statement of result
Rest of talk: proof of main result.
 From Gaussian to Boolean: suffices to solve Gaussian problem
« Solving the Gaussian problem:
 transforming input polynomial to a “nice” form

« counting Gaussian satisfying assignments for “nice” polynomials

12



The Gaussian problem

Recall main result -- counting Boolean satisfying assignments:

Theorem: There is a poly(n, 2°°¥(1/%))-time deterministic algorithm
which, on input any degree-2 PTF f(x) = sign(q(x)) over{—1,1}",

outputs a value P such that [p —D| < e,wherep= Pr [f(x)=1]
9 re{-1,1}" D

Key intermediate result -- counting Gaussian sat assignments:

Theorem: There is a poly(7, 1/¢)-time deterministic algorithm
which, on input any degree-2 PTF f(x) = sign(q(x)) over R",

outputs a value D such that |p — p| < €, where p = P1 f(x) =1]
x~N(0,1)"

G J




From Gaussian to Boolean
Once we have the Gaussian counting result,

« can use “invariance principle” [MosselO’” DonnellOleszkiewicz05]
to get poly(n, 1/¢)-time algorithm for “regular” degree-2
polynomials over Boolean cube;

« can use “PTF regularity lemma” [DiakonikolasSTan\Wan10,
HarshaKlivansMeka09] to decompose any degree-2 PTF over the

cube into exp(poly(1/e))many degree-2 PTFs almost all of
which are poly(g)-regular or close to constant.

Follows (what is getting to be a) well-worn path for LTF, PTF problems.

14



Road map

\/ Introduction, motivation, statement of result, application to
deterministically approximating moments

‘/ From Gaussian to Boolean: suffices to solve Gaussian problem
* Solving the Gaussian problem:

« transforming input polynomial to an equivalent polynomial which
has a “nice” (decoupled junta) form

« counting Gaussian satisfying assignments for “nice” polynomials

15



Constructing a equivalent
“decoupled junta” degree-2 PTF

éeorem: There is a poly(n, 1/¢)-time deterministic algorithm \
Construct-Gaussian-Junta which, given any degree-2 polynomial ¢(x),
outputs a degree-2 polynomial

d(x) = o8 (a? + paxi) + C,

where K — 0(1/54)7 such that

\_

High-level proof strategy: “critical index”-type analysis (reminiscent of
“regularity lemma for LTFs” that’ s implicit in [S07]) with a few twists.

x~N(0,1)" yeN(0,1)K

Pr [gla)>0— P [q<y>zm|s€. y




ligh-level sketch of
“critical index analysis for LTFs”

Consider a halfspace over {—1,1}",

sign(w-x —0), w; >--->w, >0.

1. If w is regular (w; small compared to ||w||2) then for & ~ {—1,1}".
w - x is distributed like a Gaussian ©

2. If w not regular (1w, large compared to||w||2), “set w, aside” and
consider <w2 wn): the 2-norm decreased by a lot. Repeat.

ooooo
/

If have /{ = “many” iterations of step 2, remaining 2-norm of (wy, . . ., w,,)
is negligible ©

We do something similar in our N(0, 1)", degree-2 PTF setting.

17



Useful tool: Chatterjee’ s CLT

For g(x) = v’ Ax + b2 + ¢ adegree-2 polynomial, write
Amax(q) to denote the largest-magnitude eigenvalue of A.

~

Theorem: Let ¢(x) be a degree-2 PTF over x ~ N(0,1)" . If

[Amax(q)| < e/ Var[q] , then distribution of ¢(x) is O(e)-close to the
Gaussmn dlstrlbutlon N(E[ |, Var[q]) in total variation distance, hence

\ ;I:NN(%),I)"[Q<$> - ] JNN 01 H y i O( )j

Follows from recent CLT of [Chatterjee09] (proved via Stein’s method)

13

Amax(q)| < g4/ Var|q] ” condition: analogue of having vectorw be
e-regularinthe{—1,1}" LTF
setting.

18



Proof sketch

Want to prove: Theorem: There is a poly(n, 1 /<) -time deterministic algorithm \
Construct-Gaussian-Junta which, given any degree-2 polynomial q(x) ,
outputs a deqree-Z polynomial (z) = ZZI‘ZI(/\I;UIZ + i) + C,

where [ — 0(1/54)7 such that

Pr [g(z) 20— Pr [q(y) > 0] <e.

\_ N0 JENO.DE J

Algorithm starts by (approximately) computing largest eigenvalue/
eigenvector pair \, v} .

If |\| <ey/Varlg], can achieve K = 1: output poly /Var|q|y; + E[q]

Typical case is that || > £+/Var[q| (corresponds to having |w| > £||w||2
inthe{—1, 1}" LTF setting. )

19



Proof sketch, cont.

(Theorem: There is a poly(n, 1/¢)-time deterministic algorithm Construct-Gaussian-Junta which,

. . Al & K 2
given any degree-2 polynomial ¢(x), outputs a degree-2 polynomial (1) = N+ ) + C
where K — 0(1/54)7 such that

.

z~N(0,1)" yeN(0,1)K

P @20~ Pr )2 0] <e.
_J

If [\| > e/ Var|q| : Define new N (0, 1) variable 1; = o) .1
Rewrite ¢(x)as (n + 1)-variable polynomial
distributed identically to ¢(z) for (y1, Z1, ..., x,) ~ N(0,1)"*!
L
/‘2 T
Ay + Yy + 1Y, T, Tn)
S~———

Corresponds to “setting w; aside” in the{—1, 1}" LTF setting

Can show
* T (essentially) does not depend on 1,
* Var[r;] < (1 — &*)Var[g| (corresponds to 2-norm of (wy, ..., w,) being

“a lot” smaller thar||w]|, inthe{—1,1}" LTF setting)

Remove from 7 all terms that contain ¢, , and repeat on 71y .

20



2nd stage:

* If |Amax(71)| < €4/ Var|ry], stop and output the polynomial

My; + payr + +/ Var[ri|ys + E[rq]

* If [Apax(r1)| > €4/ Var|ry|, continue building the
decoupled polynomial:

)\1’£/f + H1Y1 + )\ng + [oYs + T2(Yo, T1, . .., Tp)

As before, Ty essentially does not depend on 75, and variance again
goes down by (1 — &%) factor. Continue to 3 stage.
Etc.

21



Proof sketch, concluded

If loop exits at some stage K’ < K & O(1/£*) , done.

Otherwise, have
K

1=1

where Var|ri] < e. Canignore Tk and incur error at most €.

Theorem: There is a poly(n, 1/¢) -time deterministic algorithm \
Construct-Gaussian-Junta which, given any degree-2 polynomial q(x) ,

Concludes sketch | outputs a degree-2 polynomial () = ™ | (\ia? + ;) + C.
of theorem: where K = O(1/&*), such that

\_ onthyld@ 20— B laly) 20 < e y

22




Almost done...

\/ Introduction, motivation, statement of result, application to
deterministically approximating moments

‘/ From Gaussian to Boolean: suffices to solve Gaussian problem
* Solving the Gaussian problem:

\/ transforming input polynomial to an equivalent “nice”
(decoupled junta) form

« counting Gaussian satisfying assignments for decoupled junta
polynomials

23



Counting Gaussian junta
satisfying assignments

Given a Gaussian junta, can count efficiently:

-

which, on input any degree-2 junta PTF ¢(y) = )
with K = O(1/<*), outputs a value 7 such that

P br ksienlay) =1
K y~N (0,

Theorem: Thereis a poly(l/e)-time deterministic algorithm

K
i=1

<

\
(/\zyzz + py;) + C,

E.

J

Probably many ways to do this. An elementary approach: discretize
Gaussians, discretize polynomial, use dynamic programming

24



Counting Gaussian junta
satisfying assignments

rTheorem: There is a poly(1/¢) -time deterministic algorithm which, on input any degree-2 h
junta PTF q(y) = X0 (\y? + yi) + C, with K = O(1/<*), outputs a value p such that
p— Pr [sign(q(y)) = 1]| <€
y~N(0,1)K
. J

1. Round coefficients of ¢ to integer multiples of poly(g); call resulting poly ¢

. Using Gaussian concentration and anti-concentration, can show this
changes probability by at most O(¢)

2. Discretize each Gaussian random variable:
y; ~ N(0,1) = g; uniform over {t1,...,ta}, M = poly(1/e)

«  Changes probability by at most O(¢)

3. Using dynamic programming, can exactly compute Pr|g(y) > 0]
in poly(1/¢) time.

25



Summary

Gave a deterministic EPTAS for counting degree-2 PTF satisfying
assignments: poly(n, 2°°¥(1/¢)) time. Fully polynomial for
Gaussian inputs, also for regular PTFs over Boolean inputs.

After lunch Anindya will speak about recent follow-up work:
an efficient deterministic algorithm for counting satisfying assignments of

forany J : {—1, 1}/"7 —{—1,1}. any k= 0O(1).

26



27



