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Learning the “best” algorithm 
Real-world  

applications: 
NP hard problems 

such as 
clustering, max-cut 

Algorithms, Heuristics Select “best” alg 
according to 

approximation 
factor, 

running time etc., 
 

  

Combinatorial Auctions Facility location Circuit design Computational biology 

Efficient approaches with theoretical guarantees to learn the 
“best” algorithm from a rich family of algorithms. 
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An unknown application-
specific distribution over 

problem instances 

A uniform distribution 
over all problem instances 

Average case 

A worst case problem in the  
universe of problem instances 

Worst-case 

{alg1, alg2, alg3, alg4 ….}




Example: Clustering 

•  A problem faced in many different domains. 
•  Many approximation and heuristic algorithms  
•  No technique is best across all applications. 
 
 Our goal: choose the best algorithm for a given 

application domain. 
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Clustering webpages by topic  Clustering images by subject 

A problem instance A problem instance 



Example: Integer Quadratic Programming 

Our goal: choose the best algorithm for a given 
application domain. 

•  Abstract problem with diverse applications: 
•  finding the max-cut in a graph 
•  SAT 
•  correlation clustering   

•  Relax to a semidefinite program: many ways to “round” 
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Background Work 

•  Long history of application-specific algorithm selection in 
artificial intelligence research. 
•  automated algorithm configuration 
•  algorithm portfolio selection 

•  2016: New learning-theoretic model by Gupta and 
Roughgarden 

Very little theoretical analysis of application-specific 
algorithm selection. 
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Outline 
•  Introduction 
• Goal and approach 
• Clustering 
• Max-cut 
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Algorithm Selection Model 

But we don’t know the 
distribution over 

problem instances! 

2. Fix a performance metric 
COST(alg , I ) =    

Ideal goal: Pick alg from A 
with best expected 
performance. 
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. . . ,

3. Unknown application-specific 
distribution over set of all problem 

instances 

problem instance another  
problem instance 

1. Fix a family of algorithms 
A={alg1, alg2, alg3, alg4 ….}

 

E[COST(alg,I)] 



Algorithm Selection Model 

!
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Sample some training 
problem instances 
S = {I 1, I 2 , I 3}   

Pick empirically best 
alg from A 

       

1. Fix a family of algorithms 2. Fix a performance metric 

. . . ,

3. Unknown application-specific 
distribution over set of all problem 

instances 

problem instance another  
problem instance 

 We hope alg  is 
near-optimal in expectation 
over unknown distribution 

Question 2:  How do we find the empirically best algorithm from A in 
polytime? 

Question 1:  How do we ensure near-optimality of empirically best algorithm? 
That is, how many samples S are needed? 

A={alg1, alg2, alg3, alg4 ….}

 

COST(alg , I ) =    



Algorithm Selection Model 
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1. Fix a family of algorithms 2. Fix a performance metric 

Answer: |S| = Õ
✓
Pdim(COSTA)

✏2

◆

x-axis: Problem instance space  
y-axis: COST of an algorithm 

COSTA = 
COST(alg2, �) , COST(alg1, �) , 

, 

   COST(alg3, �) , 

, 

    COST(alg4, �) 

, … 

COST(alg , I ) =    A={alg1, alg2, alg3, alg4 ….}

 

Sample complexity proportional to “intrinsic complexity” of COSTA   
Question 1:  How do we ensure near-optimality of empirically best algorithm? 
That is, how many samples S are needed? 



Pseudodimension of COSTA 
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Size of the largest set of problem instance samples 
such that there are 2|S|

 algorithms in A each inducing a 
different COST  “labeling” of samples S w.r.t some 
thresholds ri. 

COST(alg1, �) 

High level idea: given a set of problem instances S, how many different  
behaviors do the algorithms in A (with respect to COST) exhibit on the 
samples? 

0  ,    0 

, 

COST(alg2, �) 

I 1     I 2  
0  ,    1 

, 

COST(alg3, �) 

I 1     I 2  
1  ,    0 

, 

COST(alg4, �) 

I 1     I 2  
1  ,    1 

, I 1     I 2  Samples: 
Labeling: 

COSTA = {COST(alg, �)  | alg in A }




Outline 
•  Introduction 
• Our goal and approach 
• Clustering 
• Max-cut 
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Clustering 

A problem instance 
•  a set  X  of n 

points 
•  pairwise distances 

between them 

any 
k-clustering 
algorithm 

A partition of 
 X into k sets   

minimize 
COST

e.g., maximum radius of clusters, 
average radius of clusters. 

We consider an arbitrary cost. 
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A rich class of clustering algorithms 

A B C D E F 

AB 

ABC 

DE 

DEF 

ABCDEF 

A problem instance: 
set of n points 
and 
pairwise distances 
between them 

Build a cluster 
tree bottom-up: 
iteratively merge 
two “closest” 
clusters 
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A rich class of clustering algorithms 

F 

ABC 

DE 

DEF 

ABCDEF 

A B C D E 

AB 

A problem instance: 
set of n points 
and 
pairwise distances 
between them 

Build a cluster 
tree bottom-up: 
iteratively merge 
two “closest” 
clusters 

Perform dynamic 
programming on 
the tree to identify 
best of all 
prunings. 

F 

ABC 

DE 
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k- 
Clustering 



A rich class of clustering algorithms 
A problem instance: 
set of n points 
and 
pairwise distances 
between them 

α-linkage 

Perform dynamic 
programming on 
the tree to identify 
best of all 
prunings. 

k- 
Clustering 

Single linkage 

Complete linkage 

. .   . . 
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Each α	is a different path/algorithm:  
which is the best for an application? 

Linear interpolation between single- and complete-linkage both of 
which enjoy strong worst-case guarantees in various settings 

↵ · min

p2Ni,q2Nj

d(p, q) + (1� ↵) · max

p2Ni,q2Nj

d(p, q)



Key Challenge 
Nearby values of α	could result in very different cluster trees 

and costs.  

A B C D E F 

AB 

ABC 

DE 

DEF 

ABCDEF 

A B C D E F 

AB 

ABC 

ABCDE 

ABCD 

ABCDEF 

α	=	0.8 
COST(α, I)=  2 

α	=	0.80001 
COST(α,	I)= 20 
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Key Challenge 

Changing parameters of a function in machine learning:  
smooth change in behavior. 

Parameter : 

Function: 
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Key Idea 

↵ 2 R

For a given set S of problem instances (each of at most n 
points), we can break the line into O(|S|n8) of intervals: 
è	α	values from the same interval result in a fixed set of trees 

I1 

I2  

α	 

α	 
I1 

I2  

α	 

α	 

α	 α	 

18 



Key Idea 
For a given set S of problem instances (each of at most n 
points), we can break the line into O(|S|n8) of intervals: 
è	α	values from the same interval result in a fixed set of trees 
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           Proof Idea 
Decision to merge cluster nodes  before P,Q flips at only one α	
when: 
 
 
 
 
 
 
 
 
For an I, only O(n8) such comparisons à partitions α	line into O(n8)  
intervals 

↵ 2 R

 d(A,B)  =  d(P,Q)   
α d(amin,bmin)  + (1-α) d(amax,bmax)   =  α d(pmin,qmin)  + (1-α) d(pmax,qmax) 



Key Idea 

↵ 2 R

For a given set S of problem instances (each of at most n 
points), we can break the line into O(|S|n8) of intervals: 
è	α	values from the same interval result in a fixed set of trees 
è fixed set of pruned solutions 
è fixed set of costs 

I1 

I2  

α	 

α	 
I1 

I2  

α	 

α	 

α	 α	 
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Pseudodimension bounds 

↵ 2 R

I1 

I2  

α	 

α	 

α	 α	 
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25	x 

22	x 

100	x 

75	x 

I1 

I2  

α	 

α	 

Theorem: For any abstract COST, for the class of α-linkage rule 
based clustering algorithms: Pdim(COSTA) = Θ(log	n)  

Upper bound: If |S| = Pdim(COSTA), then: 
 

2|S|    <    O(|S|n8) 
2|S| different α	such that 
each COST(α, �) induces 
2|S| different labelings of S   

Only so many distinct labelings 
of S are possible as 
we range over values of α!  

Lower bound: Carefully construct Ω(log n) clustering 
instances 



Computationally Efficient Algorithm Selection 

↵ 2 Rα	 α	 

Empirical  
average  

cost 
over S 
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•  Draw O(log	n) samples S 
•  Solve for the O(|S|n8)  intervals. 
•  Run the algorithm for only one α	per 

interval. 
•  Find the empirically best interval. 



More general results 

A problem 
instance 
a set of n points 
and pairwise 
distances 
between them 

Perform 
dynamic 
programming 
on the tree to 
identify pruning 
with the best 
clustering. 

k- 
Clustering 

Average  
linkage 

Single  
linkage 

Complete  
linkage 

. 

. 

. 
 
 
 
. 
. 
. 
 

α-linkage corresponding to a non-linear interpolation: 
Pdim(COSTA) = Θ(n) 
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COST




DP objective ? 

More general results 

A problem 
instance 
a set of n points 
and pairwise 
distances 
between them 

k- 
Clustering 

Average  
linkage 

Single  
linkage 

Complete  
linkage 

. 

. 

. 
 
 
 
. 
. 
. 
 

DP objective 2 

DP objective 3 

DP objective 1 
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. 

. 

. 
 
 
 
. 
. 
. 
 

COST


Another layer of richness in the dynamic programming 
step. 

distance to 
ground truth 

clustering  



Outline 
•  Introduction 
• Our goal and approach 
• Clustering 
• Max-cut 
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Maximum Cut 

A problem instance 
A graph G of n vertices V	
with edge weights	wij 

any  
max-cut 

algorithm 

A partition of 
V  into two sets: 
 

maximize a  
quadratic OBJ


total edge weight connecting 
the two sets 
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vi 2 {�1,+1}

X
wij

✓
1� vivj

2

◆
OBJ =


Our results apply to more general integer quadratic programs 
besides max-cut. 



3. Round 
SDP 
embedding 

3. Round 
SDP 
embedding 

Standard approximation approach 
Max cut OBJ:  
Integer-quadratic 
programming 
formulation 
 

2. Semidefinite programming 
(SDP) relaxation 
 
 
 

3. Round 
SDP 
embedding 

A graph cut solution 
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Each rounding à different algorithm.  
Best algorithm for an application?  

vi 2 {�1,+1}
xi 2 Rn

vi 2 {�1,+1}

` 
xi



Find the 
SDP 
embedding 

A family of SDP rounding techniques 

 [FL06] 

Choose a 
random 
hyperplane h 

Output: For each 
vertex, assign 
+1/-1 according to 
some probability 

Each value of s à expected OBJ 
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Randomized  
Rounding 

x = Distance from hyperplane. 
Rounding function 

y = Probability of +1 
assignment 

A family of s-linear rounding functions 

Φs(x) =  

-1    if y < -s 
 
y/s  if –s <= y <= s 
 
+1   if y > s 



Key Idea 
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•  Want to bound Pdim(OBJA): 

OBJA  = {OBJ(s, �) : problem instance space à  [0, 1]  | s  > 0 }   

where:  OBJ(s,	I) = Ehyperplane[OBJ*(s,	I, hyperplane)]  
  

OBJ*A  = {OBJ*(s, �, �) :  problem instance space x Rn à  [0, 1]  | s  > 0 }   

has a closed form expression 
•  Consider:  

•  Pdim(OBJA) <= Pdim(OBJ*A) à bound Pdim(OBJ*A) for sample 
complexity. 



Pseudodimension bounds 
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Theorem: For the class of s-linear based randomized 
rounding approaches A:  

Pdim(OBJ*A) = Θ(log	n) 

OBJ*(s, I, h) =  

•  OBJ*(s, I, h)at most n+1 
quadratic/linear pieces  

•  A threshold à O(n) intervals  
•  2|S|  < O(|S|n) 

s	

Upper bound follows from: X

i,j

Φs(xi�h) Φs(xj�h)  

Lower bound: Carefully construct Ω(log n) (max-cut problem 
instance, hyperplane) pairs. 



Computationally Efficient Algorithm Selection 
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•  Draw O (log	n) problem instance samples S. 
•  For each, draw a random hyperplane. 
•  Empirical average of OBJ*(s, Ii, hi)à O(|S|n) pieces. 

s	

•  Find best s efficiently. 



More general result 

x = Distance from hyperplane. 

y = Probability 
of +1 

Sigmoid-like rounding function  
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Theorem: For any class A based on sigmoid-like 
parametrized rounding functions:  

Pdim(OBJA) = Θ(log	n) 



Summary 

•  Design and analysis of algorithms and learning theory. 
•  Multi-stage, randomized procedures. 
•  Tight bounds on the intrinsic complexity 
•  Surprisingly, superconstant bounds despite only O(1)  

parameters. 
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Future directions: 
•  Generalize analysis to other rounding functions and other 

problems that can be relaxed to SDP? 
•  Algorithm families with too slow algorithms? 


