Learning the best algorithm for max-cut,
clustering and other partitioning problems

Vaishnavh Nagarajan
Joint work with
Maria-Florina Balcan, Ellen Vitercik and Colin White

Learning the “best” algorithm

Real-world Algorithms, Heuristics Select “best” alg
applications: according to

——> (alg, alg, alg. al -
NP hard problems {alg,, alg, alg; alg, |} —» approximation

such as factor,
clustering, max-cut running time etc.,
Worst-case Average case

A worst case problem in the A uniform distribution An unknown application-
universe of problem instances gyer all problem instances specific distribution over
problem instances

Efficient approaches with theoretical guarantees to learn the
“best” algorithm from a rich family of algorithms.

Example: Clustering

Clustering webpages by topic Clustering images by subject

ON f

A problem instance A problem instance

« A problem faced in many different domains.
« Many approximation and heuristic algorithms
* No technique is best across all applications.

Our goal: choose the best algorithm for a given
application domain.

Example: Integer Quadratic Programming

« Abstract problem with diverse applications:
 finding the max-cut in a graph
o SAT
 correlation clustering

« Relax to a semidefinite program: many ways to “round”

Our goal: choose the best algorithm for a given
application domain.

Background Work

Long history of application-specific algorithm selection in
artificial intelligence research.

automated algorithm configuration
algorithm portfolio selection

2016: New learning-theoretic model by Gupta and
Roughgarden

Very little theoretical analysis of application-specific
algorithm selection.

Outline

- Introduction

- Goal and approach
- Clustering

- Max-cut

Algorithm Selection Model

1. Fix a family of algorithms 2. Fix a performance metric
A={alg,, alg, alg; alg, } COST(alg, I) =

|deal goal: Pick alg from A
with best expected

>
{ -@ % } performance.
) = = o=

another E[CO ST(a’lg’ I)]

problem instance

problem instance

3. Unknown application-specific
distribution over set of all problem But we don’t know the

instances distribution over
problem instances!

Algorithm Selection Model

1. Fix a family of algorithms 2. Fix a performance metric
A={alg,, alg, alg; alg,] COST(alg, I)=

Sample some training
problem instances

A s

Pick empirically best

W, S .
problem instance ano’Fher ‘
problem instance W h 1 .
3. Unknown application-specific .e ope alg 1S :
distribution over set of all problem near-optimal in expectation
instances over unknown distribution

Question 1: How do we ensure near-optimality of empirically best algorithm?
That is, how many samples S are needed?

Question 2: How do we find the empirically best algorithm from A in
polytime?

Algorithm Selection Model

1. Fix a family of algorithms 2. Fix a performance metric
A={alg,, alg, alg; alg,] COST(alg, I) =
g B

COST(alg,, *), COST(alg,, *), COST(algs, *), COST(alg,, °)

COST,=9 1= [AV
T @

T @‘ , Y K ; &

x-axis: Problem instance space
y-axis: COST of an algorithm

Sample complexity proportional to “intrinsic complexity” of COST ,

Question 1: How do we ensure near-optimality of empirically best algorithm?
That is, how many samples S are needed?

Pdlm(COSTA))
2

Answer: S| = (

€

Pseudodimension of COST 4

COST , = {COST(alg, *) | algin A}

COST(alg,, *) COST(alg., *) COST(alg.,) COST(alg,, *)

@ =

I11 IZ
Labeling: o , o0 0o, 1 1

Samples: I,, I,

Size of the largest set of problem instance samples
such that there are 2/°l algorithms in ‘A each inducing a
different COST “labeling” of samples S w.r.t some
thresholds r;.

Outline

- Introduction

- Our goal and approach
- Clustering

- Max-cut

Clustering

A problem instance

« aset X ofn
points

e pairwise distances
between them

any
k-clustering
algorithm

> A partition of

X into k sets

v

minimize
COST

e.g., maximum radius of clusters,
average radius of clusters.

We consider an arbitrary cost.

A rich class of clustering algorithms

A problem instance: Build a cluster
set of n points tree bottom-up:
and —> iteratively merge
pairwise distances two “closest”
between them clusters
ABCDEF
ABC DER
AB DE

A rich class of clustering algorithms

A problem instance: Build a cluster Perform dynamic

set of n points tree bottom-up: programming on

and —> iteratively merge —> the tree to identify _>C-Iustering
pairwise distances two “closest” best of all

between them clusters prunings.

ABCDEF

A rich class of clustering algorithms

A problem instance: Single linkage Perform dynamic

set of n points : programming on .

an_d | | a-lln!(age the tree to identify _>Clustering
pairwise distances : best of all

between them Complete linkage prunings.

Gy
o min d(p,q)+(1—a)- max d(p,q)

PEN;,qEN; PEN;,qEN,

Linear interpolation between single- and complete-linkage both of
which enjoy strong worst-case guarantees in various settings

Each a is a different path/algorithm:
which is the best for an application?

Key Challenge

Nearby values of a could result in very different cluster trees
and costs.

. | | .
a=0.8 a=0.80001
COST (o, [)= 2

COST (a, I)= 20

ABCDEF

Key Challenge

Function:

Parameter : <—| >

Changing parameters of a function in machine learning:
smooth change in behavior.

S
Key ldea

For a given set S of problem instances (each of at most n
points), we can break the line into O(]| S|n8) of intervals:
=>» a values from the same interval result in a fixed set of trees

r o 3 r N
I1 —_— O(
I, —
< S S
(04 04
. o . o

Key ldea

For a given set S of problem instances (each of at most n
points), we can break the line into O(]| S|n8) of intervals:
=» o values from the same interval result in a fixed set of trees

Proof Idea
Decision to merge cluster nodes A, B before P,Q flips at only one a

when: d(AB) = d(P,Q)
bmin) + (1'a) d(amax7bmax) x d(pmin’qmin) + (1-(1) d(pmax’qmax)

SN S L

x d(amin’

For an I, only O(n®) such comparisons - partitions a line into O(n?)

intervals

N
Key ldea

For a given set S of problem instances (each of at most n
points), we can break the line into O(]| S|n8) of intervals:

=>» a values from the same interval result in a fixed set of trees
=> fixed set of pruned solutions

=> fixed set of costs

r o N\ r N
I, —> &0 [
‘.Qlll‘: 1 . “0 -
> < S
06 N . 0
IZ —_— e DR, 1'2 —_— A
J ‘._.E
l l
I

<
I

.

a

Pseudodimension bounds

Theorem: For any abstract COST, for the class of a-linkage rule
based clustering algorithms: Pdim(COST ,) = O(log n)

Upper bound: If | S| = Pdim(COST ,), then:

2151

O(|S|n®)

Lower bound: Carefully construct Q)(log n) clustering
iInstances

f

.

o
L — 25x[6]

x
I, % 22x[@]

\

7

IL, —

1.-2q

x[©]

x[0]

x

> a € R

Computationally Efficient Algorithm Selection

* Draw O(log n) samples S

« Solve for the O(|S|n8) intervals.

« Run the algorithm for only one a per
interval.

* Find the empirically best interval.

A

Empirical
average
cost
over S

< i i | > a € R

More general results

a-linkage corresponding to a non-linear interpolation:

Pdim(COST ,) = O(n)

Single
linkage
A problem dPerform
instance piniinie
a set of n points Average programming
and pairwise linkage on th_e tree to —>
distances identify pruning
between them . with the best
clustering.
Complete

linkage

k-
Clustering

—> COST

More general results

Another layer of richness in the dynamic programming
step.

Single

. DP objective 1

linkage
A problem
instance
a set of n points Average k-
and pairwise linkage DP objective 2 — Clustering > COST
distances distance to
between them] ground truth

. clustering
Compleis DP objective 3

linkage

Outline

- Introduction

- Our goal and approach
- Clustering

- Max-cut

Maximum Cut

A problem instance A partition of
A graph G of n vertices V - > V into two sets:
with edge weights w;, max-)z‘,ut v; € {—1,+1}
algorithm o
maximize a
j quadratic OBJ
total connecting

the two sets

1 — v,
OBdJ = Zwij(2vvg>

Our results apply to more general integer quadratic programs
besides max-cut.

Standard approximation approach

Max cut OBJ: 2. Semidefinite programming
Integer-quadratic (SDP) relaxation
programming > ’

formulation x; € R" ,
V; € {—1, —|—1}
3. Round 3. Round 3. Round
SDP SDP SDP

embedding embedding embedding

A graph cut solution
V; € {—1, —|-1}

Each rounding = different algorithm.
Best algorithm for an application?

A family of SDP rounding techniques

Output: For each

Find the Choose a vertex, assign
SDP > random —-> +1/-1 according to
embedding hyperplane h Randomized some probability
Rounding
[FLOG]
y = Probability of +1 _
assignment _
‘ -1 ify<-s
* O (x)=— Y/s if-s<=y<=s
< > :
x = Distance from hyperplane. gL =

—

‘ Rounding function
A family of s-linear rounding functions

Each value of s > expected OBJ

. ®»
Key ldea

« Want to bound Pdim(OBdJ ,):
OBdJ 4 = {OBdJ(s, *) : problem instance space - [0, 1] |s >0}

where: OBJ(s, I)=E [OBJ*(s, I, hyperplane)]

\)
|

hyperplane

has a closed form expression
« Consider:

OBJ* , ={0OBJ*(s, ¢, *): problem instance space x R"-> [0,1] |s >0}

* Pdim(OBdJ 4) <= Pdim(OBJ* ;) = bound Pdim(OBJ* ,) for sample
complexity.

.
Pseudodimension bounds

Theorem: For the class of s-linear based randomized
rounding approaches A:
Pdim(OBJ* 4) = O(log n)

Upper bound follows from:
OBJ*(s, I, h) =Z D (x;oh) Dg(x;h)
1,]

« OBJ*(s, I, h) at most n+1

quadratic/linear pieces
« Athreshold - O(n) intervals

« 251 < O(]S|n)

Lower bound: Carefully construct Q(log n) (max-cut problem
instance, hyperplane) pairs.

Computationally Efficient Algorithm Selection

« Draw O (log n) problem instance samples S.
* For each, draw a random hyperplane.
« Empirical average of OBJ*(s, L, h.) 2 O(|S|n) pieces.

<€

« Find best s efficiently.

More general result

Theorem: For any class ‘A based on sigmoid-like
parametrized rounding functions:
Pdim(OBdJ 4) = O(log n)

y = Probability
of +1

I

x = Distance from hyperplane.

Sigmoid-like rounding function

Summary

« Design and analysis of algorithms and learning theory.

« Multi-stage, randomized procedures.

« Tight bounds on the intrinsic complexity

« Surprisingly, superconstant bounds despite only O(1)
parameters.

Future directions:

« Generalize analysis to other rounding functions and other
problems that can be relaxed to SDP?

 Algorithm families with too slow algorithms?

