
Learning the best algorithm for max-cut,
clustering and other partitioning problems
Vaishnavh Nagarajan
Joint work with
Maria-Florina Balcan, Ellen Vitercik and Colin White

1

Learning the “best” algorithm
Real-world

applications:
NP hard problems

such as
clustering, max-cut

Algorithms, Heuristics Select “best” alg
according to

approximation
factor,

running time etc.,

Combinatorial Auctions Facility location Circuit design Computational biology

Efficient approaches with theoretical guarantees to learn the
“best” algorithm from a rich family of algorithms.

2

An unknown application-
specific distribution over

problem instances

A uniform distribution
over all problem instances

Average case

A worst case problem in the
universe of problem instances

Worst-case

{alg1, alg2, alg3, alg4 ….}

Example: Clustering

•  A problem faced in many different domains.
•  Many approximation and heuristic algorithms
•  No technique is best across all applications.

 Our goal: choose the best algorithm for a given

application domain.

3

Clustering webpages by topic Clustering images by subject

A problem instance A problem instance

Example: Integer Quadratic Programming

Our goal: choose the best algorithm for a given
application domain.

•  Abstract problem with diverse applications:
•  finding the max-cut in a graph
•  SAT
•  correlation clustering

•  Relax to a semidefinite program: many ways to “round”

4

Background Work

•  Long history of application-specific algorithm selection in
artificial intelligence research.
•  automated algorithm configuration
•  algorithm portfolio selection

•  2016: New learning-theoretic model by Gupta and
Roughgarden

Very little theoretical analysis of application-specific
algorithm selection.

5

Outline
•  Introduction
• Goal and approach
• Clustering
• Max-cut

6

Algorithm Selection Model

But we don’t know the
distribution over

problem instances!

2. Fix a performance metric
COST(alg , I) =

Ideal goal: Pick alg from A
with best expected
performance.

7

. . . ,

3. Unknown application-specific
distribution over set of all problem

instances

problem instance another
problem instance

1. Fix a family of algorithms
A={alg1, alg2, alg3, alg4 ….}

E[COST(alg,I)]

Algorithm Selection Model

!

8

Sample some training
problem instances
S = {I 1, I 2 , I 3}

Pick empirically best
alg from A

1. Fix a family of algorithms 2. Fix a performance metric

. . . ,

3. Unknown application-specific
distribution over set of all problem

instances

problem instance another
problem instance

 We hope alg is
near-optimal in expectation
over unknown distribution

Question 2: How do we find the empirically best algorithm from A in
polytime?

Question 1: How do we ensure near-optimality of empirically best algorithm?
That is, how many samples S are needed?

A={alg1, alg2, alg3, alg4 ….}

COST(alg , I) =

Algorithm Selection Model

9

1. Fix a family of algorithms 2. Fix a performance metric

Answer: |S| = Õ
✓
Pdim(COSTA)

✏2

◆

x-axis: Problem instance space
y-axis: COST of an algorithm

COSTA =
COST(alg2, �) , COST(alg1, �) ,

,

 COST(alg3, �) ,

,

 COST(alg4, �)

, …

COST(alg , I) = A={alg1, alg2, alg3, alg4 ….}

Sample complexity proportional to “intrinsic complexity” of COSTA
Question 1: How do we ensure near-optimality of empirically best algorithm?
That is, how many samples S are needed?

Pseudodimension of COSTA

10

Size of the largest set of problem instance samples
such that there are 2|S|

 algorithms in A each inducing a
different COST “labeling” of samples S w.r.t some
thresholds ri.

COST(alg1, �)

High level idea: given a set of problem instances S, how many different
behaviors do the algorithms in A (with respect to COST) exhibit on the
samples?

0 , 0

,

COST(alg2, �)

I 1 I 2
0 , 1

,

COST(alg3, �)

I 1 I 2
1 , 0

,

COST(alg4, �)

I 1 I 2
1 , 1

, I 1 I 2 Samples:
Labeling:

COSTA = {COST(alg, �) | alg in A }

Outline
•  Introduction
• Our goal and approach
• Clustering
• Max-cut

11

Clustering

A problem instance
•  a set X of n

points
•  pairwise distances

between them

any
k-clustering
algorithm

A partition of
 X into k sets

minimize
COST

e.g., maximum radius of clusters,
average radius of clusters.

We consider an arbitrary cost.

12

A rich class of clustering algorithms

A B C D E F

AB

ABC

DE

DEF

ABCDEF

A problem instance:
set of n points
and
pairwise distances
between them

Build a cluster
tree bottom-up:
iteratively merge
two “closest”
clusters

13

A rich class of clustering algorithms

F

ABC

DE

DEF

ABCDEF

A B C D E

AB

A problem instance:
set of n points
and
pairwise distances
between them

Build a cluster
tree bottom-up:
iteratively merge
two “closest”
clusters

Perform dynamic
programming on
the tree to identify
best of all
prunings.

F

ABC

DE

14

k-
Clustering

A rich class of clustering algorithms
A problem instance:
set of n points
and
pairwise distances
between them

α-linkage

Perform dynamic
programming on
the tree to identify
best of all
prunings.

k-
Clustering

Single linkage

Complete linkage

. . . .

15

Each α	is a different path/algorithm:
which is the best for an application?

Linear interpolation between single- and complete-linkage both of
which enjoy strong worst-case guarantees in various settings

↵ · min

p2Ni,q2Nj

d(p, q) + (1� ↵) · max

p2Ni,q2Nj

d(p, q)

Key Challenge
Nearby values of α	could result in very different cluster trees

and costs.

A B C D E F

AB

ABC

DE

DEF

ABCDEF

A B C D E F

AB

ABC

ABCDE

ABCD

ABCDEF

α	=	0.8
COST(α, I)= 2

α	=	0.80001
COST(α,	I)= 20

16

Key Challenge

Changing parameters of a function in machine learning:
smooth change in behavior.

Parameter :

Function:

17

Key Idea

↵ 2 R

For a given set S of problem instances (each of at most n
points), we can break the line into O(|S|n8) of intervals:
è	α	values from the same interval result in a fixed set of trees

I1

I2

α	

α	
I1

I2

α	

α	

α	 α	

18

Key Idea
For a given set S of problem instances (each of at most n
points), we can break the line into O(|S|n8) of intervals:
è	α	values from the same interval result in a fixed set of trees

19

 Proof Idea
Decision to merge cluster nodes before P,Q flips at only one α	
when:

For an I, only O(n8) such comparisons à partitions α	line into O(n8)
intervals

↵ 2 R

 d(A,B) = d(P,Q)
α d(amin,bmin) + (1-α) d(amax,bmax) = α d(pmin,qmin) + (1-α) d(pmax,qmax)

Key Idea

↵ 2 R

For a given set S of problem instances (each of at most n
points), we can break the line into O(|S|n8) of intervals:
è	α	values from the same interval result in a fixed set of trees
è fixed set of pruned solutions
è fixed set of costs

I1

I2

α	

α	
I1

I2

α	

α	

α	 α	

20

Pseudodimension bounds

↵ 2 R

I1

I2

α	

α	

α	 α	

21

25	x

22	x

100	x

75	x

I1

I2

α	

α	

Theorem: For any abstract COST, for the class of α-linkage rule
based clustering algorithms: Pdim(COSTA) = Θ(log	n)

Upper bound: If |S| = Pdim(COSTA), then:

2|S| < O(|S|n8)
2|S| different α	such that
each COST(α, �) induces
2|S| different labelings of S

Only so many distinct labelings
of S are possible as
we range over values of α!

Lower bound: Carefully construct Ω(log n) clustering
instances

Computationally Efficient Algorithm Selection

↵ 2 Rα	 α	

Empirical
average

cost
over S

22

•  Draw O(log	n) samples S
•  Solve for the O(|S|n8) intervals.
•  Run the algorithm for only one α	per

interval.
•  Find the empirically best interval.

More general results

A problem
instance
a set of n points
and pairwise
distances
between them

Perform
dynamic
programming
on the tree to
identify pruning
with the best
clustering.

k-
Clustering

Average
linkage

Single
linkage

Complete
linkage

.

.

.

.
.
.

α-linkage corresponding to a non-linear interpolation:
Pdim(COSTA) = Θ(n)

23

COST

DP objective ?

More general results

A problem
instance
a set of n points
and pairwise
distances
between them

k-
Clustering

Average
linkage

Single
linkage

Complete
linkage

.

.

.

.
.
.

DP objective 2

DP objective 3

DP objective 1

24

.

.

.

.
.
.

COST

Another layer of richness in the dynamic programming
step.

distance to
ground truth

clustering

Outline
•  Introduction
• Our goal and approach
• Clustering
• Max-cut

25

Maximum Cut

A problem instance
A graph G of n vertices V	
with edge weights	wij

any
max-cut

algorithm

A partition of
V into two sets:

maximize a
quadratic OBJ

total edge weight connecting
the two sets

26

vi 2 {�1,+1}

X
wij

✓
1� vivj

2

◆
OBJ =

Our results apply to more general integer quadratic programs
besides max-cut.

3. Round
SDP
embedding

3. Round
SDP
embedding

Standard approximation approach
Max cut OBJ:
Integer-quadratic
programming
formulation

2. Semidefinite programming
(SDP) relaxation

3. Round
SDP
embedding

A graph cut solution

27

Each rounding à different algorithm.
Best algorithm for an application?

vi 2 {�1,+1}
xi 2 Rn

vi 2 {�1,+1}

`
xi

Find the
SDP
embedding

A family of SDP rounding techniques

 [FL06]

Choose a
random
hyperplane h

Output: For each
vertex, assign
+1/-1 according to
some probability

Each value of s à expected OBJ

28

Randomized
Rounding

x = Distance from hyperplane.
Rounding function

y = Probability of +1
assignment

A family of s-linear rounding functions

Φs(x) =

-1 if y < -s

y/s if –s <= y <= s

+1 if y > s

Key Idea

29

•  Want to bound Pdim(OBJA):

OBJA = {OBJ(s, �) : problem instance space à [0, 1] | s > 0 }

where: OBJ(s,	I) = Ehyperplane[OBJ*(s,	I, hyperplane)]

OBJ*A = {OBJ*(s, �, �) : problem instance space x Rn à [0, 1] | s > 0 }

has a closed form expression
•  Consider:

•  Pdim(OBJA) <= Pdim(OBJ*A) à bound Pdim(OBJ*A) for sample
complexity.

Pseudodimension bounds

30

Theorem: For the class of s-linear based randomized
rounding approaches A:

Pdim(OBJ*A) = Θ(log	n)

OBJ*(s, I, h) =

•  OBJ*(s, I, h)at most n+1
quadratic/linear pieces

•  A threshold à O(n) intervals
•  2|S| < O(|S|n)

s	

Upper bound follows from: X

i,j

Φs(xi�h) Φs(xj�h)

Lower bound: Carefully construct Ω(log n) (max-cut problem
instance, hyperplane) pairs.

Computationally Efficient Algorithm Selection

31

•  Draw O (log	n) problem instance samples S.
•  For each, draw a random hyperplane.
•  Empirical average of OBJ*(s, Ii, hi)à O(|S|n) pieces.

s	

•  Find best s efficiently.

More general result

x = Distance from hyperplane.

y = Probability
of +1

Sigmoid-like rounding function

32

Theorem: For any class A based on sigmoid-like
parametrized rounding functions:

Pdim(OBJA) = Θ(log	n)

Summary

•  Design and analysis of algorithms and learning theory.
•  Multi-stage, randomized procedures.
•  Tight bounds on the intrinsic complexity
•  Surprisingly, superconstant bounds despite only O(1)

parameters.

33

Future directions:
•  Generalize analysis to other rounding functions and other

problems that can be relaxed to SDP?
•  Algorithm families with too slow algorithms?

