A PAC Approach to Application-Specific Algorithm Selection

Rishi Gupta
Tim Roughgarden
Simons, Nov 16, 2016
Motivation and Set-up

Problem

Max weight indep. set

Algorithms

Alg 1: Greedy algorithm
Alg 2: Linear programming
Alg 3: Local search

• Question: Which algorithm is the best?
• Advice from theory: Worst-case analysis, parameterized analysis, average-case analysis, etc.
 - Allows you to use what you know
Motivation

• Issues in practice
 – Instances have structure, but hard to articulate
 – Structure matters; the best algorithm is often not one suggested by worst-case analysis.
 – Often the algorithm is github/mwis.
 – Often there are many choices to make, e.g. algorithm parameters.

• How can theory help?
Graph coloring

Towards objective measures of algorithm performance across instance space,
Smith-Miles/Baatar/Wreford/Lewis '14

- Instances have structure, but hard to articulate.
- Structure matters; the best algorithm is often not one suggested by worst-case analysis.
- Often the algorithm is github/mwis.
- Often there are many choices to make, e.g. algorithm parameters.
FCC Auctions

- **Broadcast Television Incentive Auction (2016)**
 - Buy TV licenses: Estimated 15B cost.
 - Sell 4G licenses: Estimated 40B revenue.
- Goal: buy out independent sets.
FCC Auctions

• Reverse auction ("descending clock auction")
 – Broadcasters offered an initial price
 – People leave when the price is too low
• Goal: set initial prices such that you buy:
 – Broadcasters that don’t value their license much
 – Broadcasters that don’t interfere much
• Solution: initial price = V * C^{.5}

• Instances have structure, but hard to articulate.
• Structure matters; the best algorithm is often not one suggested by worst-case analysis.
• Often the algorithm is github/mwis.
• Often there are many choices to make, e.g. algorithm parameters.
General set-up

• Given source of problem instances:
 – Application generating graph coloring instances
 – FCC auction simulations
• Given a family of algorithms.
 – Seven algorithms you downloaded
 – Different settings of the exponent
• Task: pick which algorithm to run.
Running example (Problem)

- Maximum Weight Independent Set (MWIS)

Find subset of nodes of maximum weight, such that no two nodes share an edge.
Running example (Algorithms)

• Greedy ρ: Order by weight/(degree+1)^ρ, for ρ ∈ [0,1].

Greedy 0: (Repeatedly) take vertex of highest weight

Value: 6

Greedy 1: Take vertex of highest weight/(degree+1)

Value: 8

Notation: A_ρ for algorithm Greedy ρ
Two models

• Running example (Task)
 – Given a source of MWIS instances, pick an A_ρ

• Learning models
 – Inspired by online regret (learning from experts)
 – Inspired by PAC learning
 – Grounded in familiar theory
Model 1: Online regret

For T days, pick a ρ_t, and get an adversarial graph. Benchmark: Best single ρ^* for those T graphs (in hindsight)

<table>
<thead>
<tr>
<th>Learner</th>
<th>A.7</th>
<th>A.3</th>
<th>A.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adversary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Sum = 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benchmark (A.4)</td>
<td>7</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Sum = 12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average regret $= (12 - 6) / 3 = 2$

Goal: Average regret $\to 0$ as $T \to$ infinity (aka "no-regret")
No computational restrictions.
Number of vertices n is fixed. Max value is bounded.
Model 1: Online regret

For T days, pick a ρ_t, and get an adversarial graph. Benchmark: Best single ρ^* for those T graphs (in hindsight)

Our Model

- Algorithms (A_ρ)
- Instances (\(\bigtriangleup\)) induce $A_\rho(\bigtriangleup)$ for $\rho \in [0,1]$

Learning from experts

- Experts
- Cost vectors
Model 1: Online regret

For T days, pick a ρ_t, and get an adversarial graph.
Benchmark: Best single ρ^* for those T graphs (in hindsight)
Goal: Average regret $\rightarrow 0$ as $T \rightarrow$ infinity

- First try: multiplicative weights
 - Infinite number of experts
 - Cost vector is not Lipschitz

- Theorem: Not possible for MWIS with A_ρ
 - Even with oblivious adversary
Model 1: Online regret

For T days, pick a ρ_t, and get an adversarial graph. Benchmark: Best single ρ^* for those T graphs (in hindsight)

- New goal: Average regret $\rightarrow \Theta \frac{1}{\text{poly}(n)}$ as $T \rightarrow$ infinity ("no low-regret")
- σ-Smoothing: Gaussian of width $1/\sigma$ added to each node weight.
- Theorem: poly(n, σ) time algorithm with expected regret $1/\text{poly}(n)$ after σ-smoothing.
Proof of Theorem

\[\text{poly}(n,\sigma) \text{ time algorithm with expected regret } 1/\text{poly}(n) \text{ after } \sigma\text{-smoothing} \]

Fix arbitrary MWIS instance \(x \).

- Fact 1: cost vector = step function with \(\text{poly}(n) \) steps
- Fact 2: \(\sigma \)-smooth weights \(\Rightarrow \Omega(\sigma) \)-smooth step boundaries

\[
\rho_0 \leq v_a \leq A_{\rho}(x)
\]

\(\Rightarrow \) If \(T = \text{poly}(n) \), an \(\varepsilon \)-net of experts will include something equivalent to \(\rho^* \) (on all of the \(T \) graphs) with high probability

\(\rightarrow \) multiplicative weights on the \(\varepsilon \)-net of experts
Proof of Theorem (Fact 1)

Cost vector = step function with poly(n) steps

Fixed MWIS instance \(x \)

- Cost vector only changes at intersections below
- Only \(n^2 \) possible intersections!
Model 2: PAC Learning

Adversarial distribution D over graphs. See m samples from D, pick A_ρ. Benchmark: Best A_{ρ^*} for D.

Distribution D

$\text{m samples} \sim D$

(Expected) $error = A_{\rho^*}(D) - A_\rho(D)$

Goal: ε error, polynomial m

Results preview: $m = \tilde{O}(\log n)/\varepsilon^2$ MWIS & others, $\tilde{O}(n^{1+c})/\varepsilon^2$ bucket sort, $\tilde{O}(1/c^3)$ gradient descent

As before: no computational restrictions, and max value is bounded
Model 2: PAC Learning

Adversarial distribution D over graphs. See m samples from D, pick A_ρ. Benchmark: Best A_ρ^* for D.

Distribution D

m samples ~ D

(Expected) error = $A_\rho^*(D) − A_\rho(D)$

Model 1

Online decisions, adaptive adversary

No distribution

Model 2

Offline decisions, oblivious adversary

Hidden distribution
Model 2: PAC Learning

Adversarial distribution D over graphs. See m samples from D, pick A_ρ. Benchmark: Best A_ρ^* for D.

(Expected) error = $A_\rho^*(D) - A_\rho(D)$

Model 2

Algorithms (A_ρ) induce functions from instances ($\nabla \bullet \nabla$) $\rightarrow \mathbb{R}$

Set of algorithms

PAC Learning

Concept

Concept class

Hypothesis class
Model 2: PAC Learning

Adversarial distribution D over graphs. See m samples from D, pick A_ρ.

Benchmark: Best A_ρ^* for D.
Goal: ϵ error with polynomial m

- Learner's task: choose A_ρ
 - Hope that samples are a good guide to D
 - Pick the A_ρ that works best on the m samples (ERM)
 - Computational issues: infinite number of A_ρ

- Reduction to *pseudo-dimension* of the set of algorithms A (similar to VC dimension, fat shattering dimension)
 - Theorem [Hau92]: If A has pseudo-dimension d, and $m \geq \Omega(d/\epsilon^2)$, then the output of ERM has error $< \epsilon$.
Pseudo-dimension

Fix d instances: \[\begin{array}{ccc} & \bullet & \bullet \\ & \bullet & \bullet \\ & \bullet & \bullet \end{array} \]

Fix d thresholds: \[\begin{array}{ccc} 3 & 7 & 2 \end{array} \]

\[\begin{array}{cc} M : & \text{A}_4 \rightarrow 1 \end{array} \]

\[\text{A}_4(\bullet \cdot \bullet \cdot \bullet) \geq 3 \]

\[\text{A}_4(\bullet \cdot \bullet \cdot \bullet) \leq 2 \]

A pseudo-shatters (\(\bullet \cdot \bullet \cdot \bullet\), \(\bullet \cdot \bullet \cdot \bullet\), \(\bullet \cdot \bullet \cdot \bullet\)) at (3, 7, 2) if M is surjective.

The pseudo-dimension of A is the largest d for which there exist X and T such that A pseudo-shatters X at T.

Example: if \(|A| = k\), then pseudo-dimension of \(|A| \leq \log k\)
Model 2: Example Results

If A has pseudo-dimension d, and $m = \Omega(d/\varepsilon^2)$, then the output of ERM has error $< \varepsilon$.

- Natural families of greedy algorithms for MWIS, Knapsack, Machine Scheduling have $d = O(\log(n))$
- Similar families of local search algorithms have $d = O(\log(n))$
- Bucket sort with n buckets ($n-1$ parameters, 1 for each bucket boundary) has $d = O(n^{1+c})$ (reinterpretation of one part of self-improving algorithms in [ACCL06])
- Gradient descent ($\rho = \text{step size}$) in smooth, strongly convex functions has 1-fat shattering dimension $1/c$, where c is the minimum progress made by each step.

For all examples above, best algorithm can be found in polynomial time.
Open directions

• Extend gradient descent to machine learning parameter tuning?

• A that is both near-optimal, and has low pseudo-dimension?

• A with poly sampling complexity, but where the learning algorithm (ERM) has super-poly runtime? (under P != NP, crypto assumptions)
 – Would approximately learning the best algorithm help?

• Other non-trivial relationships between pseudo-dimension and more traditional complexity measures?

Thank you!