#### A PAC Approach to Application-Specific Algorithm Selection



## Motivation and Set-up

#### Problem



Max weight indep. set

#### Algorithms

Alg 1: Greedy algorithm

Alg 2: Linear programming

Alg 3: Local search

- Question: Which algorithm is the best?
- Advice from theory: Worst-case analysis, parameterized analysis, average-case analysis, etc.
  - Allows you to use what you know

## Motivation

- Issues in practice
  - Instances have structure, but hard to articulate
  - Structure matters; the best algorithm is often not one suggested by worst-case analysis.
  - Often the algorithm is github/mwis.
  - Often there are many choices to make, e.g. algorithm parameters.
- How can theory help?

#### Graph coloring



Towards objective measures of algorithm performance across instance space, Smith-Miles/Baatar/Wreford/Lewis '14

- Instances have structure, but hard to articulate.
- Structure matters; the best algorithm is often not one suggested by worst-case analysis.
- Often the algorithm is github/mwis.
- Often there are many choices to make, e.g. algorithm parameters.

#### **FCC** Auctions

- Broadcast Television Incentive Auction (2016)
  - Buy TV licenses: Estimated 15B cost.
  - Sell 4G licenses: Estimated 40B revenue.
- Goal: buy out independent sets.



## **FCC** Auctions

- Reverse auction ("descending clock auction")
  - Broadcasters offered an initial price
  - People leave when the price is too low
- Goal: set initial prices such that you buy:
  - Broadcasters that don't value their license much
  - Broadcasters that don't interfere much
- Solution: initial price = V \* C^.5
  - Instances have structure, but hard to articulate.
  - Structure matters; the best algorithm is often not one suggested by worst-case analysis.
  - Often the algorithm is github/mwis.
  - Often there are many choices to make, e.g. algorithm parameters.

## General set-up

- Given source of problem instances:
  - Application generating graph coloring instances
  - FCC auction simulations
- Given a family of algorithms.
  - Seven algorithms you downloaded
  - Different settings of the exponent
- Task: pick which algorithm to run.

## Running example (Problem)

• Maximum Weight Independent Set (MWIS)



Find subset of nodes of maximum weight, such that no two nodes share an edge

# Running example (Algorithms)

• Greedy  $\rho$ : Order by weight/(degree+1)^ $\rho$ , for  $\rho \in [0,1]$ .

Greedy 0: (Repeatedly) take vertex of highest weight



Greedy 1: Take vertex of highest weight/(degree+1)



Value: 8

Notation:  $A_{\rho}$  for algorithm Greedy  $\rho$ 

### Two models

- Running example (Task)
  - Given a source of MWIS instances, pick an  $A_{\rho}$
- Learning models
  - Inspired by online regret (learning from experts)
  - Inspired by PAC learning
  - Grounded in familiar theory

For T days, pick a  $\rho_t$ , and get an adversarial graph. Benchmark: Best single  $\rho^*$  for those T graphs (in hindsight)



Average *regret* = (12 – 6) / 3 = **2** 

Goal: Average regret -> 0 as T -> infinity (aka "no-regret") No computational restrictions. Number of vertices n is fixed. Max value is bounded.

For T days, pick a  $\rho_t$ , and get an adversarial graph. Benchmark: Best single  $\rho^*$  for those T graphs (in hindsight)



For T days, pick a  $\rho_t$ , and get an adversarial graph. Benchmark: Best single  $\rho^*$  for those T graphs (in hindsight) Goal: Average regret -> 0 as T -> infinity

- First try: multiplicative weights
  - Infinite number of experts
  - Cost vector is not Lipschitz
- Theorem: Not possible for MWIS with  $A_{\rho}$ 
  - Even with oblivious adversary





For T days, pick a  $\rho_t$ , and get an adversarial graph. Benchmark: Best single  $\rho^*$  for those T graphs (in hindsight)

- New goal: Average regret -> 0 1/poly(n) as T -> infinity ("no low-regret")
- $\sigma\text{-Smoothing:}$  Gaussian of width 1/ $\sigma$  added to each node weight.
- Theorem:  $poly(n,\sigma)$  time algorithm with expected regret 1/poly(n) after  $\sigma$ -smoothing.

## Proof of Theorem

poly(n, $\sigma$ ) time algorithm with expected regret 1/poly(n) after  $\sigma$ -smoothing Fix arbitrary MWIS instance x.

- Fact 1: cost vector = step function with poly(n) steps
- Fact 2:  $\sigma$ -smooth weights =>  $\Omega(\sigma)$ -smooth step boundaries



=> If T = poly(n), an  $\varepsilon$ -net of experts will include something equivalent to  $\rho^*$  (on all of the T graphs) with high probability

 $\rightarrow$  multiplicative weights on the  $\epsilon$ -net of experts

## Proof of Theorem (Fact 1)

cost vector = step function with poly(n) steps

Fixed MWIS instance x

- Cost vector only changes at intersections below
- Only n<sup>2</sup> possible intersections!



Adversarial distribution D over graphs. See m samples from D, pick  $A_{\rho}$ . Benchmark: Best  $A_{\rho^*}$  for D.



(Expected) *error* =  $A_{\rho}^{*}(D) - A_{\rho}(D)$ 

Goal: ε error, polynomial m

Results preview:  $m = \tilde{O}(\log n)/\epsilon^2$  MWIS & others,  $\tilde{O}(n^{1+c})/\epsilon^2$  bucket sort,  $\tilde{O}(1/c^3)$  gradient descent

As before: no computational restrictions, and max value is bounded

Adversarial distribution D over graphs. See m samples from D, pick A $_{\rho}$ . Benchmark: Best A $_{\rho*}$  for D.



```
(Expected) error = A_{\rho}^{*}(D) - A_{\rho}(D)
```

#### Model 1

#### Model 2

Online decisions, adaptive adversary

No distribution

Offline decisions, oblivious adversary

Hidden distribution

Adversarial distribution D over graphs. See m samples from D, pick A $_{\rho}$ . Benchmark: Best A $_{\rho^*}$  for D.



from instances ( $\checkmark$ ) -> R

Set of algorithms

Concept

Concept class Hypothesis class

Adversarial distribution D over graphs. See m samples from D, pick A<sub>p</sub>. Benchmark: Best A<sub>p\*</sub> for D. Goal:  $\epsilon$  error with polynomial m

- Learner's task: choose  $A_{\rho}$ 
  - Hope that samples are a good guide to D
  - Pick the  $A_{\rho}$  that works best on the m samples (ERM)
  - Computational issues: infinite number of  $A_{\rho}$
- Reduction to *pseudo-dimension* of the set of algorithms A (similar to VC dimension, fat shattering dimension)
  - Theorem [Hau92]: If A has pseudo-dimension d, and  $m \cong \Omega(d/\epsilon^2)$ , then the output of ERM has error <  $\epsilon$ .



A pseudo-shatters ( $\checkmark$ ,  $\diamondsuit$ ,  $\bowtie$ ) at (3, 7, 2) if M is surjective.

The pseudo-dimension of A is the largest d for which there exist X and T such that A pseudo-shatters X at T.

Example: if |A| = k, then pseudo-dimension of  $|A| \le \log k$ 

## Model 2: Example Results

If A has pseudo-dimension d, and  $m = \Omega(d/\epsilon^2)$ , then the output of ERM has error  $< \epsilon$ .

- Natural families of greedy algorithms for MWIS, Knapsack, Machine Scheduling have d = O(log(n))
- Similar families of local search algorithms have d = O(log(n))
- Bucket sort with n buckets (n-1 parameters, 1 for each bucket boundary) has  $d = O(n^{1+c})$  (reinterpretation of one part of self-improving algorithms in [ACCL06])
- Gradient descent (ρ = step size) in smooth, strongly convex functions has 1-fat shattering dimension 1/c, where c is the minimum progress made by each step.

For all examples above, best algorithm can be found in polynomial time.

# **Open directions**

- Extend gradient descent to machine learning parameter tuning?
- A that is both near-optimal, and has low pseudodimension?
- A with poly sampling complexity, but where the learning algorithm (ERM) has super-poly runtime? (under P != NP, crypto assumptions)
  - Would approximately learning the best algorithm help?
- Other non-trivial relationships between pseudo-dimension and more traditional complexity measures?

Thank you!