A PAC Approach to Application-
Specific Algorithm Selection

T "m,\”‘
- /
/ T Ly
o /
L - B

__; 7

IR /

Rishi Gupta
Im Roughgarden
Simons, Nov 16, 2016

Motivation and Set-up

Problem Algorithms

Alg 1: Greedy algorithm

Alg 2: Linear programming

Alg 3: Local search

Max weight indep. set

e Question: Which algorithm is the best?

* Advice from theory: Worst-case analysis, parameterized
analysis, average-case analysis, etc.

- Allows you to use what you know

Motivation

* |Ssues In practice

- |Instances have structure, but hard to articulate

- Structure matters; the best algorithm is often not
one suggested by worst-case analysis.

- Often the algorithm is github/mwis.

- Often there are many choices to make, e.g.
algorithm parameters.

 How can theory help?

Graph coloring

0.3

0.2

0.1

-0.1

-0.2

-0.3

-0.4

+
+*
=UJ. .
-
+

06 : I | 4 | 1 | | I
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
T

| | . I
| 1

| | |
None Bktr HillClimb HEA PartCol TabuCol AntCol

Towards objective measures of algorithm performance across instance space,
Smith-Miles/Baatar/Wreford/Lewis '14

Instances have structure, but hard to articulate.

Structure matters; the best algorithm is often not one suggested by worst-case analysis.
Often the algorithm is github/mwis.

Often there are many choices to make, e.g. algorithm parameters.

FCC Auctions

* Broadcast Television Incentive Auction (2016)

- Buy TV licenses: Estimated 15B cost.
- Sell 4G licenses: Estimated 40B revenue.

» Goal: buy out iIndependent sets.

Conflict

Tower @

FCC Auctions

* Reverse auction (“descending clock auction™)

- Broadcasters offered an initial price
- People leave when the price Is too low
» Goal: set initial prices such that you buy:

- Broadcasters that don’t value their license much
- Broadcasters that don’t interfere much

e Solution: initial price =V * CA5

« Often there are many choices to make, e.g. algorithm parameters.

General set-up

» Given source of problem instances:

- Application generating graph coloring instances
- FCC auction simulations
* Given a family of algorithms.
- Seven algorithms you downloaded
- Different settings of the exponent

» Task: pick which algorithm to run.

Running example (Problem)

 Maximum Weight Independent Set (MWIS)

Find subset of nodes of maximum weight,
such that no two nodes share an edge

Running example (Algorithms)
* Greedy p: Order by weight/(degree+1)"p, for p € [0,1].

Greedy O: (Repeatedly) take vertex of highest weight

Value: 6

Notation: Ao for algorithm Greedy p

Two models

 Running example (Task)
- Given a source of MWIS instances, pick an Agp

* Learning models

- Inspired by online regret (learning from experts)
- Inspired by PAC learning
- Grounded In familiar theory

Model 1: Online regret

For T days, pick a pt, and get an adversarial graph.
Benchmark: Best single p* for those T graphs (in hindsight)

Learner %\ A7 A3 A5

Adversary & AVAN .<I>- >

Value 1 5 0] Sum =26

Benchmark (A 4) 7/ 2 3 Sum =12

Average regret=(12—-6)/ 3 =2
Goal: Average regret —> 0 as T —> infinity (aka "no-regret")

No computational restrictions.
Number of vertices n is fixed. Max value is bounded.

Model 1: Online regret

For T days, pick a pt, and get an adversarial graph.
Benchmark: Best single p* for those T graphs (in hindsight)

Learner %\ A_7 A.3 A.5

Adversary & AVAN .<I>. X

Our Model Learning from experts

Algorithms (Ap) Experts

Instances (/™) induce

Cost vectors
Ap(\) for p €[0,1]

Model 1: Online regret

For T days, pick a pt, and get an adversarial graph.

Benchmark: Best single p* for those T graphs (in hindsight)
Goal: Average regret —> 0 as T —> Infinity

* First try: multiplicative weights

- Infinite number of experts
— Cost vector is not Lipschitz A B C

« Theorem: Not possible for MWIS with Ap

- Even with oblivious adversary

value
1

Model 1: Online regret

For T days, pick a pt, and get an adversarial graph.
Benchmark: Best single p* for those T graphs (in hindsight)

 New goal: Average regret —> 8 1/poly(n)
as T —> infinity ("re low-regret")

* g-Smoothing: Gaussian of width 1/o added to
each node weight.

 Theorem: poly(n,o) time algorithm with
expected regret 1/poly(n) after o-smoothing.

Proof of Theorem

poly(n,o) time algorithm with expected regret 1/poly(n) after c-smoothing
Fix arbitrary MWIS instance x.
e Fact 1: cost vector = step function with poly(n) steps

value = A p (X)

« Fact 2: o-smooth weights => Q(o)-smooth step boundaries

0o 1
P

=> |If T = poly(n), an e-net of experts will include something
equivalent to p* (on all of the T graphs) with high probability

—> multiplicative weights on the e-net of experts

Proof of Theorem (Fact 1)

cost vector = step function with poly(n) steps
Fixed MWIS instance X

» Cost vector only changes at intersections below
* Only n2 possible intersections!

w1 — w9
(di+1)7 — (d2+1)°

node priofity

Model 2: PAC Learning

Adversarial distribution D over graphs. See m samples from D, pick Ap.
Benchmark: Best Ap+ for D.

Distribution D m samples ~ D
A A R Ao
7 N XN SN XN

(Expected) error = Ap<(D) — Ap(D)
Goal: € error, polynomial m

Results preview: m = O(log n)/e? MWIS & others,
O(n1*°)/e2 bucket sort, O(1/c3) gradient descent

As before: no computational restrictions, and max value is bounded

Model 2: PAC Learning

Adversarial distribution D over graphs. See m samples from D, pick Ap.
Benchmark: Best Ap+ for D.

Distribution D m samples ~ D
‘\7% /\/\ A %\ Ap
XN N XN

(Expected) error = Apx(D) — Ap(D)

Model 1 Model 2
Online decisions, Offline decisions,
adaptive adversary oblivious adversary

No distribution Hidden distribution

Model 2: PAC Learning

Adversarial distribution D over graphs. See m samples from D, pick Ap.
Benchmark: Best Ap+ for D.

Distribution D m samples ~ D
& /\/\ A % Ap
0N XN 0N XN

(Expected) error = Ap*(D) — Ap(D)

Model 2 PAC Learning

Algorithms (Ap) Induce functions

_ Concept
from instances (\,.) —> R

Concept class

Set of algorithms Hypothesis class

Model 2: PAC Learning

Adversarial distribution D over graphs. See m samples from D, pick Ap.
Benchmark: Best Ap+ for D.
Goal: € error with polynomial m

 Learner's task: choose Ap
- Hope that samples are a good guide to D
- Pick the Ap that works best on the m samples (ERM)
- Computational issues: infinite number of Ap

* Reduction to pseudo-dimension of the set of algorithms
A (similar to VC dimension, fat shattering dimension)

- Theorem [Hau92]: If A has pseudo-dimension d, and
m = Q(d/e"2), then the output of ERM has error < &.

Pseudo-dimension
Fix dinstances: /A <[> X}

Fix d thresholds: 3 7 2
M: Az —> 1 1 0
Vl N
A4S > 3 A4([X) <2

A pseudo-shatters (/<> X)) at (3, 7, 2) if M is surjective.

The pseudo-dimension of A is the largest d for which
there exist X and T such that A pseudo-shatters X at T.

Example: if |A| = k, then pseudo-dimension of |A| < log k

Model 2: Example Results

If A has pseudo-dimension d, and m = Q(d/e"2), then
the output of ERM has error < €.

« Natural families of greedy algorithms for MWIS, Knapsack,
Machine Scheduling have d = O(log(n))

« Similar families of local search algorithms have d = O(log(n))

» Bucket sort with n buckets (n-1 parameters, 1 for each
bucket boundary) has d = O(nl+c) (reinterpretation of one
part of self-improving algorithms in [ACCLOG6])

« Gradient descent (p = step size) in smooth, strongly convex
functions has 1-fat shattering dimension 1/c, where c is the
minimum progress made by each step.

For all examples above, best algorithm can be found in polynomial time.

Open directions

« Extend gradient descent to machine learning parameter
tuning?

A that is both near-optimal, and has low pseudo-
dimension?

* A with poly sampling complexity, but where the learning
algorithm (ERM) has super-poly runtime? (under P !'= NP,
crypto assumptions)

- Would approximately learning the best algorithm help?

e Other non-trivial relationships between pseudo-dimension
and more traditional complexity measures?

Thank you!

