

A PAC Approach to Application-
Specific Algorithm Selection

Rishi Gupta
Tim Roughgarden

Simons, Nov 16, 2016

Motivation and Set-up

Max weight indep. set

Problem Algorithms

Alg 1:

Alg 2:

Alg 3:

Greedy algorithm

Linear programming

Local search

● Question: Which algorithm is the best?
● Advice from theory: Worst-case analysis, parameterized

analysis, average-case analysis, etc.
– Allows you to use what you know

Motivation

● Issues in practice
– Instances have structure, but hard to articulate

– Structure matters; the best algorithm is often not
one suggested by worst-case analysis.

– Often the algorithm is github/mwis.

– Often there are many choices to make, e.g.
algorithm parameters.

● How can theory help?

Graph coloring

Towards objective measures of algorithm performance across instance space,
Smith-Miles/Baatar/Wreford/Lewis '14

● Instances have structure, but hard to articulate.
● Structure matters; the best algorithm is often not one suggested by worst-case analysis.
● Often the algorithm is github/mwis.
● Often there are many choices to make, e.g. algorithm parameters.

FCC Auctions

● Broadcast Television Incentive Auction (2016)
– Buy TV licenses: Estimated 15B cost.

– Sell 4G licenses: Estimated 40B revenue.

● Goal: buy out independent sets.

Tower

Conflict

FCC Auctions

● Reverse auction (“descending clock auction”)
– Broadcasters offered an initial price

– People leave when the price is too low

● Goal: set initial prices such that you buy:
– Broadcasters that don’t value their license much

– Broadcasters that don’t interfere much

● Solution: initial price = V * C^.5

● Instances have structure, but hard to articulate.
● Structure matters; the best algorithm is often not one suggested by worst-case analysis.
● Often the algorithm is github/mwis.
● Often there are many choices to make, e.g. algorithm parameters.

General set-up

● Given source of problem instances:
– Application generating graph coloring instances

– FCC auction simulations

● Given a family of algorithms.
– Seven algorithms you downloaded

– Different settings of the exponent

● Task: pick which algorithm to run.

Running example (Problem)

● Maximum Weight Independent Set (MWIS)

Find subset of nodes of maximum weight,
such that no two nodes share an edge

Running example (Algorithms)

Value: 6

Value: 81.5
1

1 .75

1

Greedy 0: (Repeatedly) take vertex of highest weight

Greedy 1: Take vertex of highest weight/(degree+1)

● Greedy ρ: Order by weight/(degree+1)^ρ, for ρ [0,1].∈

Notation: Aρ for algorithm Greedy ρ

1.5

1

2

Two models
● Running example (Task)

– Given a source of MWIS instances, pick an Aρ

● Learning models
– Inspired by online regret (learning from experts)

– Inspired by PAC learning

– Grounded in familiar theory

Model 1: Online regret
For T days, pick a ρt, and get an adversarial graph.

 Benchmark: Best single ρ* for those T graphs (in hindsight)

Number of vertices n is fixed. Max value is bounded.

A.7

1Value

A.3

5

A.5

0

Benchmark (A.4) 7 2 3

Sum = 6

Sum = 12

Average regret = (12 – 6) / 3 = 2

Goal: Average regret –> 0 as T –> infinity (aka "no-regret")

Learner

Adversary

No computational restrictions.

Instances () induce
 Aρ() for ρ [0,1]∈

Model 1: Online regret
For T days, pick a ρt, and get an adversarial graph.

 Benchmark: Best single ρ* for those T graphs (in hindsight)

A.7 A.3 A.5

Our Model Learning from experts

Algorithms (Aρ) Experts

Cost vectors

Learner

Adversary

Model 1: Online regret
For T days, pick a ρt, and get an adversarial graph.

Benchmark: Best single ρ* for those T graphs (in hindsight)
Goal: Average regret –> 0 as T –> infinity

● First try: multiplicative weights
– Infinite number of experts

– Cost vector is not Lipschitz

● Theorem: Not possible for MWIS with Aρ

– Even with oblivious adversary

v
a
lu

e

ρ*
0 1

...

Model 1: Online regret
For T days, pick a ρt, and get an adversarial graph.

Benchmark: Best single ρ* for those T graphs (in hindsight)

● New goal: Average regret –> 0 1/poly(n)
as T –> infinity ("no low-regret")

● σ-Smoothing: Gaussian of width 1/σ added to
each node weight.

● Theorem: poly(n,σ) time algorithm with
expected regret 1/poly(n) after σ-smoothing.

Proof of Theorem

● Fact 1: cost vector = step function with poly(n) steps

● Fact 2: σ-smooth weights => Ω(σ)-smooth step boundaries

poly(n,σ) time algorithm with expected regret 1/poly(n) after σ-smoothing

ρ
0 1

v
a
lu

e
 =

 A
 ρ

 (
x
)

=> If T = poly(n), an ε-net of experts will include something
equivalent to ρ* (on all of the T graphs) with high probability

Fix arbitrary MWIS instance x.

–> multiplicative weights on the ε-net of experts

Proof of Theorem (Fact 1)

Fixed MWIS instance x

● Cost vector only changes at intersections below
● Only n2 possible intersections!

cost vector = step function with poly(n) steps

ρ
0 1

n
o
d

e
 p

ri
o
ri

ty node 4

node 2
node 3

node 1

Model 2: PAC Learning
Adversarial distribution D over graphs. See m samples from D, pick Aρ.

Benchmark: Best Aρ* for D.

Distribution D m samples ~ D

Aρ

(Expected) error = Aρ*(D) – Aρ(D)

Goal: ε error, polynomial m

Results preview: m = Õ(log n)/ε2 MWIS & others,
Õ(n1+c)/ε2 bucket sort, Õ(1/c3) gradient descent

As before: no computational restrictions, and max value is bounded

Online decisions,
adaptive adversary

Model 2: PAC Learning
Adversarial distribution D over graphs. See m samples from D, pick Aρ.

Benchmark: Best Aρ* for D.

Distribution D m samples ~ D

Aρ

(Expected) error = Aρ*(D) – Aρ(D)

Model 1 Model 2

Offline decisions,
oblivious adversary

Hidden distributionNo distribution

Algorithms (Aρ) induce functions

 from instances () –> R

Model 2: PAC Learning
Adversarial distribution D over graphs. See m samples from D, pick Aρ.

Benchmark: Best Aρ* for D.

(Expected) error = Aρ*(D) – Aρ(D)

Distribution D m samples ~ D

Aρ

Model 2 PAC Learning

Set of algorithms
Concept class

Hypothesis class

Concept

Model 2: PAC Learning

● Learner's task: choose Aρ

– Hope that samples are a good guide to D

– Pick the Aρ that works best on the m samples (ERM)

– Computational issues: infinite number of Aρ

● Reduction to pseudo-dimension of the set of algorithms
A (similar to VC dimension, fat shattering dimension)
– Theorem [Hau92]: If A has pseudo-dimension d, and

 m = Ω(d/ε^2), then the output of ERM has error < ε.

Adversarial distribution D over graphs. See m samples from D, pick Aρ.
Benchmark: Best Aρ* for D.

Goal: ε error with polynomial m

~

A pseudo-shatters (, ,) at (3, 7, 2) if M is surjective.

Pseudo-dimension

Fix d instances:

Fix d thresholds:

M : A.4 –> 1 1 0

3 7 2

The pseudo-dimension of A is the largest d for which
there exist X and T such that A pseudo-shatters X at T.

A.4() > 3 A.4() < 2

Example: if |A| = k, then pseudo-dimension of |A| < log k

● Natural families of greedy algorithms for MWIS, Knapsack,
Machine Scheduling have d = O(log(n))

● Similar families of local search algorithms have d = O(log(n))
● Bucket sort with n buckets (n-1 parameters, 1 for each

bucket boundary) has d = O(n1+c) (reinterpretation of one
part of self-improving algorithms in [ACCL06])

● Gradient descent (ρ = step size) in smooth, strongly convex
functions has 1-fat shattering dimension 1/c, where c is the
minimum progress made by each step.

Model 2: Example Results
If A has pseudo-dimension d, and m = Ω(d/ε^2), then

the output of ERM has error < ε.

For all examples above, best algorithm can be found in polynomial time.

Open directions

● Extend gradient descent to machine learning parameter
tuning?

● A that is both near-optimal, and has low pseudo-
dimension?

● A with poly sampling complexity, but where the learning
algorithm (ERM) has super-poly runtime? (under P != NP,
crypto assumptions)
– Would approximately learning the best algorithm help?

● Other non-trivial relationships between pseudo-dimension
and more traditional complexity measures?

Thank you!

