
Automatic Resource Bound Analysis and Linear
Optimization

Jan Hoffmann

Jan Hoffmann
Assistant Professor

Computer Science Department
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213-3891

B jhoffmann@cmu.edu
http://www.cs.cmu.edu/~janh

Selection Committee
Mark Stehlik Impact Scholarship

Pittsburgh, 13th April 2016

Dear Members of the Selection Committee:

It is my great pleasure to nominate Benjamin Lichtman (Ben) for the Mark Stehlik Impact Schol-
arship. As part of Course 15-400, Ben is performing research that shows a level of maturity that is
comparable to our stronger first and second year Ph.D. students. His enthusiasm, work ethic, and
ability to own and drive a challenging research project set an outstanding example of excellence.

I met Ben in Fall 2015 when he came to my office to interview me about my research as part of a
class project. He immediately attracted my attention since he was well prepared and had very clear
understanding of the research problems I work on. I was delighted when he asked me a few weeks
later to advice him during the 15-400 research practicum.

The first time I noticed something unusual about Ben was during the preparation period for his
project. I was first skeptical when he stated that he had basically understood all the technical
material I asked him to read. However, I noticed during our discussion that he had no difficulty
understanding concepts that even experienced colleagues struggle with.

Ben selected one of the more challenging projects that I suggested: To extend a type-based automatic
complexity analysis for functional programs to handle references and arrays. As usual, it is a big
step to transition from purely functional code to programs with side effects and we made some
fallback plans in case we would not be able to complete the work. However, the fallback plans
were not necessary. Inspite of being busy with classes, Ben was able to complete every biweekly
milestone that he identified at start of the project; not because the project was going unusually
smoothly but because he was able to solve every problem that he faced along the way. This includes
a mathematically involved and lengthy soundness proof which was more difficult than anticipated,
and the (ongoing) implementation of the work in Resource Aware ML; a complex resource analysis
system that is integrated in Inria’s OCaml compiler. The result is novel and original research and
we are currently preparing a conference submission of the work.

Ben is clearly one of the most talented students I have worked with. But I am most impressed by
his ability to own and drive a research project, and his determination to overcome difficulties and
complete the work he set out to do. He always remains optimistic and is equally fearless when doing
complex mathematical proofs and hacking messy systems.

Beyond worst-case analysis

Beyond worst-case analysis

… of algorithms

Beyond worst-case analysis

… of algorithms

Resource bound analysis

Beyond worst-case analysis

… of algorithms

Resource bound analysis

… of programs / software

Motivation: Why analyze resource usage of
programs?

Resource Usage in Safety-Critical Systems

Memory Usage Timing

Resource Usage in Safety-Critical Systems

Unintended acceleration in
Toyota cars in the US

2005-2009.

Memory Usage Timing

Resource Usage in Safety-Critical Systems

ICE 3 Velaro D delivery delayed
by one year because of software

performance issues in 2013.

Unintended acceleration in
Toyota cars in the US

2005-2009.

Memory Usage Timing

Performance Bugs are Common and Expensive

HealthCare.gov debacle has
been mainly caused by

performance issues.

Google Apps Developer:
“Cannot test for performance

bugs with regression test”.

Software Security

Algorithmic Complexity
Attacks Side-Channel Attacks

Software Security

Algorithmic Complexity
Attacks Side-Channel Attacks

Space/Time Analysis for
Cybersecurity (STAC)
October 2014

$ 53M program

Our team:

Resource Aware ML
Jan Hoffmann Klaus Aehlig Martin Hofmann

Quick Sort for Integers Longest Common Subsequence

Matrix Multiplication with
Transposition

Matrix Multiplication with
Accumulation

Linear Constraint Solving

Resource-Aware Type System

Automatic Amortized
Resource Analysis

P(Int) = {a ⇥� 1}

P(A1,A2) = {(a1, a2) ⇤� p1(a1) · p2(a2) | pi ⇥ P(Ai)}

P(L(A)) = {[a1, ... , an] ⇤�
X

1�j1<···<jk�n

kY

i=1

pi (aji) | k ⇥ N, pi ⇥ P(A)}

Computed Bound Actual
Behavior Performance

Quick Sort (Integers) 12n2 + 14n + 3 O(n2) 0.1 s
Split and Sort 16n2 + 46n + 9 O(n2) 2.1 s
Insertion Sort (Strings) 8n2m + 8n2 - 8nm + 4n + 3 O(n2m) 0.91 s
Duplicate Elimination 6n2m + 9n2 - 6nm + 3n + 3 O(n2m) 0.97 s
Matrix Multiplication 28xmn + 32xm + 2x + 14n + 21 O(xmn) 1.96 s
Longest Com. Subseq. 39nm + 6m + 21n + 19 O(nm) 0.36 s
Subtrees 4n2 + 19n + 3 O(n2) 0.06 s

Computed Evaluation-Step Bounds

Multivariate Resource Polynomials

• Precise: bounds are resource polynomials

• Efficient: inference via linear programming

• Reliable: formal soundness proof of the bounds

• Verifiable: type derivation is a certificate

Polynomial Amortized Resource Analysis

Jan Hoffmann
Assistant Professor

Computer Science Department
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213-3891

B jhoffmann@cmu.edu
http://www.cs.cmu.edu/~janh

Selection Committee
Mark Stehlik Impact Scholarship

Pittsburgh, 13th April 2016

Dear Members of the Selection Committee:

It is my great pleasure to nominate Benjamin Lichtman (Ben) for the Mark Stehlik Impact Schol-
arship. As part of Course 15-400, Ben is performing research that shows a level of maturity that is
comparable to our stronger first and second year Ph.D. students. His enthusiasm, work ethic, and
ability to own and drive a challenging research project set an outstanding example of excellence.

I met Ben in Fall 2015 when he came to my office to interview me about my research as part of a
class project. He immediately attracted my attention since he was well prepared and had very clear
understanding of the research problems I work on. I was delighted when he asked me a few weeks
later to advice him during the 15-400 research practicum.

The first time I noticed something unusual about Ben was during the preparation period for his
project. I was first skeptical when he stated that he had basically understood all the technical
material I asked him to read. However, I noticed during our discussion that he had no difficulty
understanding concepts that even experienced colleagues struggle with.

Ben selected one of the more challenging projects that I suggested: To extend a type-based automatic
complexity analysis for functional programs to handle references and arrays. As usual, it is a big
step to transition from purely functional code to programs with side effects and we made some
fallback plans in case we would not be able to complete the work. However, the fallback plans
were not necessary. Inspite of being busy with classes, Ben was able to complete every biweekly
milestone that he identified at start of the project; not because the project was going unusually
smoothly but because he was able to solve every problem that he faced along the way. This includes
a mathematically involved and lengthy soundness proof which was more difficult than anticipated,
and the (ongoing) implementation of the work in Resource Aware ML; a complex resource analysis
system that is integrated in Inria’s OCaml compiler. The result is novel and original research and
we are currently preparing a conference submission of the work.

Ben is clearly one of the most talented students I have worked with. But I am most impressed by
his ability to own and drive a research project, and his determination to overcome difficulties and
complete the work he set out to do. He always remains optimistic and is equally fearless when doing
complex mathematical proofs and hacking messy systems.

Static Resource Bound Analysis

Given: A program P

Question: What is the worst-case resource
consumption of P as a function of
the size of its inputs?

Static Resource Bound Analysis

Given: A program P

Question: What is the worst-case resource
consumption of P as a function of
the size of its inputs?

Clock cycles, heap
space, power, ...

Static Resource Bound Analysis

Given: A program P

Question: What is the worst-case resource
consumption of P as a function of
the size of its inputs?

Clock cycles, heap
space, power, ...

Not only
asymptotic bounds

but concrete
constant factors.

Static Resource Bound Analysis

Given: A program P

Question: What is the worst-case resource
consumption of P as a function of
the size of its inputs?

Clock cycles, heap
space, power, ...

Not only
asymptotic bounds

but concrete
constant factors.

Automatic

Static Resource Bound Analysis

Given: A program P

Question: What is the worst-case resource
consumption of P as a function of
the size of its inputs?

Clock cycles, heap
space, power, ...

Not only
asymptotic bounds

but concrete
constant factors.

Automatic
Undecidable problem

Research Challenges

Model and predict resource usage at development time.

Source code

Research Challenges

Model and predict resource usage at development time.

Source code

Run-time system Hardware

LibrariesCompiler

Research Challenges

Help developers to reason about quantitative properties.

• Computer support: Modeling, specification, verification,
automation and user interaction

• Compositionally: Track size changes and specify
resource-usage of library code

• Language features: Concurrency, higher-order, data
structures, …

Why is this Related?

1. Beyond worst-case analysis of algorithms

‣ Automation

‣ Concrete (non-asymptotic) bounds for specific hardware

2. We face similar challenges in resource-bound analysis

‣ “The worst-case behavior doesn’t happen in practice.”

3. We reduce bound inference to linear optimization

‣ Linear programs we get are solvable in linear time in practice

‣ Theoretical worst-case of the algorithm is exponential (simplex)

• Motivation

• How does automatic resource bound analysis work?

• How well does automatic resource bound analysis work? 
(implementation and experiments)

• What are the properties of the LP instances that we get?

Outline

✓

Bird’s Eye View Type-Based Resource Analysis

Resource Bound

12n2 + 14n + 3

Source Code

Bird’s Eye View Type-Based Resource Analysis

Resource Bound

12n2 + 14n + 3

Source Code

applies to
Machine Code

Bird’s Eye View Type-Based Resource Analysis

Compiler

Resource Bound

12n2 + 14n + 3

Source Code

applies to
Machine Code

Bird’s Eye View Type-Based Resource Analysis

Compiler

Resource Bound

12n2 + 14n + 3

Source Code

applies to
Machine Code

Run-time system Hardware

Bird’s Eye View Type-Based Resource Analysis

Compiler
Formal Cost Semantics

Resource Bound

12n2 + 14n + 3

Source Code

applies to
Machine Code

Run-time system Hardware

Bird’s Eye View Type-Based Resource Analysis

Compiler
Formal Cost Semantics

aiT WCET Analyzers

Resource Bound

12n2 + 14n + 3

Source Code

applies to
Machine Code

Run-time system Hardware

Bird’s Eye View Type-Based Resource Analysis

Compiler
Formal Cost Semantics

aiT WCET Analyzers

Resource Bound

12n2 + 14n + 3

Source Code

applies to
Machine Code

CPLEX

CLP

Type Inference

68 Chapter 4. Linear Potential

acc:int
qv

q 0
v

acc : int
(A:VAR)

ß(last) = (int,Lpß(int))°°°°°!qß/q 0
ß int

acc:int, x:int,xs:Lp (int)
qa

q 0
a

last(x,xs) : int
(A:APP)

acc:int, l :Lp (int)
q
q 0 match l with | nil ! acc | cons(x,xs) ! last(x,xs) : int

(A:MATL)

A:VAR: qv ∏ q 0
v +K var

A:APP: qa = qß+ c +K app
1 q 0

a = q 0
ß+ c °K app

2
A:MATL: q+p∏qa+K matC

1 q∏qv+K matN
1 q 0

a∏q 0+K matC
2 q 0

v∏q 0+K matN
2

Recursive: pß = p qß = q q 0
ß = q 0

Minimize: qß+1000pß

Figure 4.4: Inferring a linear resource-annotated type for the last: the annotated
type derivation, the linear constraints derived from the algorithmic type rules,
and the objective function.

multiplicative factors 1 and 1000 reflect that linear potential (p) is more expensive then
constant potential (q). In general, we state in objective functions that inner potential,
say, in list of list, is more expensive than outer potential.

The choice of the multiplicative factors is a heuristic. You can always construct RAML
programs that will admit a linear constraint system in which the objective function is
minimized by a solution that assign more potential to linear annotations than necessary.
The problem is that classic linear programming does permit objectives that state that
the minimization of one constraint is more important than the minimization of another.

In practice, the objective function is however not very important. The results are
generally stable when changing the constant factors in the objective function. The
reason is that cases where the LP solver has an option to trade linear for constant
potential are relatively seldom. The example in Figure 4.4 is representative in this
regard.

4.5 Examples

This section exemplifies the analysis with different RAML programs. At first, I demon-
strate that the analysis works well on typical linear functions on lists and trees like
map, fold, and filter operations, which are naturally implemented by using structural
induction. Hereafter, I demonstrate the advantages of amortization by automatically
analyzing a breath-fist search on trees that uses a stack. Then I give more theoretically
motivated examples that demonstrate the need of rational potential and the possibility
of analyzing non-terminating functions.

Type Derivation
Run-time system Hardware

Bird’s Eye View Type-Based Resource Analysis

Compiler
Formal Cost Semantics

aiT WCET Analyzers

Resource Bound

12n2 + 14n + 3

Source Code

applies to
Machine Code

CPLEX

CLP

Type Inference

68 Chapter 4. Linear Potential

acc:int
qv

q 0
v

acc : int
(A:VAR)

ß(last) = (int,Lpß(int))°°°°°!qß/q 0
ß int

acc:int, x:int,xs:Lp (int)
qa

q 0
a

last(x,xs) : int
(A:APP)

acc:int, l :Lp (int)
q
q 0 match l with | nil ! acc | cons(x,xs) ! last(x,xs) : int

(A:MATL)

A:VAR: qv ∏ q 0
v +K var

A:APP: qa = qß+ c +K app
1 q 0

a = q 0
ß+ c °K app

2
A:MATL: q+p∏qa+K matC

1 q∏qv+K matN
1 q 0

a∏q 0+K matC
2 q 0

v∏q 0+K matN
2

Recursive: pß = p qß = q q 0
ß = q 0

Minimize: qß+1000pß

Figure 4.4: Inferring a linear resource-annotated type for the last: the annotated
type derivation, the linear constraints derived from the algorithmic type rules,
and the objective function.

multiplicative factors 1 and 1000 reflect that linear potential (p) is more expensive then
constant potential (q). In general, we state in objective functions that inner potential,
say, in list of list, is more expensive than outer potential.

The choice of the multiplicative factors is a heuristic. You can always construct RAML
programs that will admit a linear constraint system in which the objective function is
minimized by a solution that assign more potential to linear annotations than necessary.
The problem is that classic linear programming does permit objectives that state that
the minimization of one constraint is more important than the minimization of another.

In practice, the objective function is however not very important. The results are
generally stable when changing the constant factors in the objective function. The
reason is that cases where the LP solver has an option to trade linear for constant
potential are relatively seldom. The example in Figure 4.4 is representative in this
regard.

4.5 Examples

This section exemplifies the analysis with different RAML programs. At first, I demon-
strate that the analysis works well on typical linear functions on lists and trees like
map, fold, and filter operations, which are naturally implemented by using structural
induction. Hereafter, I demonstrate the advantages of amortization by automatically
analyzing a breath-fist search on trees that uses a stack. Then I give more theoretically
motivated examples that demonstrate the need of rational potential and the possibility
of analyzing non-terminating functions.

Type Derivation
Run-time system Hardware

Bird’s Eye View Type-Based Resource Analysis

Resource Bound

12n2 + 14n + 3

Source Code

CPLEX

CLP

Type Inference

68 Chapter 4. Linear Potential

acc:int
qv

q 0
v

acc : int
(A:VAR)

ß(last) = (int,Lpß(int))°°°°°!qß/q 0
ß int

acc:int, x:int,xs:Lp (int)
qa

q 0
a

last(x,xs) : int
(A:APP)

acc:int, l :Lp (int)
q
q 0 match l with | nil ! acc | cons(x,xs) ! last(x,xs) : int

(A:MATL)

A:VAR: qv ∏ q 0
v +K var

A:APP: qa = qß+ c +K app
1 q 0

a = q 0
ß+ c °K app

2
A:MATL: q+p∏qa+K matC

1 q∏qv+K matN
1 q 0

a∏q 0+K matC
2 q 0

v∏q 0+K matN
2

Recursive: pß = p qß = q q 0
ß = q 0

Minimize: qß+1000pß

Figure 4.4: Inferring a linear resource-annotated type for the last: the annotated
type derivation, the linear constraints derived from the algorithmic type rules,
and the objective function.

multiplicative factors 1 and 1000 reflect that linear potential (p) is more expensive then
constant potential (q). In general, we state in objective functions that inner potential,
say, in list of list, is more expensive than outer potential.

The choice of the multiplicative factors is a heuristic. You can always construct RAML
programs that will admit a linear constraint system in which the objective function is
minimized by a solution that assign more potential to linear annotations than necessary.
The problem is that classic linear programming does permit objectives that state that
the minimization of one constraint is more important than the minimization of another.

In practice, the objective function is however not very important. The results are
generally stable when changing the constant factors in the objective function. The
reason is that cases where the LP solver has an option to trade linear for constant
potential are relatively seldom. The example in Figure 4.4 is representative in this
regard.

4.5 Examples

This section exemplifies the analysis with different RAML programs. At first, I demon-
strate that the analysis works well on typical linear functions on lists and trees like
map, fold, and filter operations, which are naturally implemented by using structural
induction. Hereafter, I demonstrate the advantages of amortization by automatically
analyzing a breath-fist search on trees that uses a stack. Then I give more theoretically
motivated examples that demonstrate the need of rational potential and the possibility
of analyzing non-terminating functions.

Type Derivation

Bird’s Eye View Type-Based Resource Analysis

Resource Bound

12n2 + 14n + 3

Source Code

CPLEX

CLP

Type Inference

68 Chapter 4. Linear Potential

acc:int
qv

q 0
v

acc : int
(A:VAR)

ß(last) = (int,Lpß(int))°°°°°!qß/q 0
ß int

acc:int, x:int,xs:Lp (int)
qa

q 0
a

last(x,xs) : int
(A:APP)

acc:int, l :Lp (int)
q
q 0 match l with | nil ! acc | cons(x,xs) ! last(x,xs) : int

(A:MATL)

A:VAR: qv ∏ q 0
v +K var

A:APP: qa = qß+ c +K app
1 q 0

a = q 0
ß+ c °K app

2
A:MATL: q+p∏qa+K matC

1 q∏qv+K matN
1 q 0

a∏q 0+K matC
2 q 0

v∏q 0+K matN
2

Recursive: pß = p qß = q q 0
ß = q 0

Minimize: qß+1000pß

Figure 4.4: Inferring a linear resource-annotated type for the last: the annotated
type derivation, the linear constraints derived from the algorithmic type rules,
and the objective function.

multiplicative factors 1 and 1000 reflect that linear potential (p) is more expensive then
constant potential (q). In general, we state in objective functions that inner potential,
say, in list of list, is more expensive than outer potential.

The choice of the multiplicative factors is a heuristic. You can always construct RAML
programs that will admit a linear constraint system in which the objective function is
minimized by a solution that assign more potential to linear annotations than necessary.
The problem is that classic linear programming does permit objectives that state that
the minimization of one constraint is more important than the minimization of another.

In practice, the objective function is however not very important. The results are
generally stable when changing the constant factors in the objective function. The
reason is that cases where the LP solver has an option to trade linear for constant
potential are relatively seldom. The example in Figure 4.4 is representative in this
regard.

4.5 Examples

This section exemplifies the analysis with different RAML programs. At first, I demon-
strate that the analysis works well on typical linear functions on lists and trees like
map, fold, and filter operations, which are naturally implemented by using structural
induction. Hereafter, I demonstrate the advantages of amortization by automatically
analyzing a breath-fist search on trees that uses a stack. Then I give more theoretically
motivated examples that demonstrate the need of rational potential and the possibility
of analyzing non-terminating functions.

Type Derivation

Clear soundness theorem.

Naturally compositional.

Efficient inference via LP
solving.

• Assign potential functions to data structures

➡ States are mapped to non-negative numbers

• Potential pays the resource consumption and
the potential at the following program point

• Initial potential is an upper bound

Idea: Automate Amortized Analysis

�(state) � 0

�(before) � �(after) + cost

�(initial state) �
P

cost

telescoping

• Assign potential functions to data structures

➡ States are mapped to non-negative numbers

• Potential pays the resource consumption and
the potential at the following program point

• Initial potential is an upper bound

Idea: Automate Amortized Analysis

�(state) � 0

�(before) � �(after) + cost

�(initial state) �
P

cost

Type systems for automatic analysis

• Fix a format of potential functions

• Develop type rules that manipulate potential functions

telescoping

• Assign potential functions to data structures

➡ States are mapped to non-negative numbers

• Potential pays the resource consumption and
the potential at the following program point

• Initial potential is an upper bound

Idea: Automate Amortized Analysis

�(state) � 0

�(before) � �(after) + cost

�(initial state) �
P

cost

Type systems for automatic analysis

• Fix a format of potential functions

• Develop type rules that manipulate potential functions

telescoping

Potential is given by
types.

Example: Append for Persistent Lists

Heap-space usage is 2n if

‣ n is the length of list x

‣ One list element requires two heap cells 
(data and pointer)

append(x,y)

Example: Append for Persistent Lists

Heap-space usage is 2n if

‣ n is the length of list x

‣ One list element requires two heap cells 
(data and pointer)

Example evaluation:

append(x,y)

Example: Append for Persistent Lists

c

b

x a y d

e

Heap-space usage is 2n if

‣ n is the length of list x

‣ One list element requires two heap cells 
(data and pointer)

Example evaluation:

append(x,y)

Example: Append for Persistent Lists

c

b

x a y d

e

c

Heap-space usage is 2n if

‣ n is the length of list x

‣ One list element requires two heap cells 
(data and pointer)

Example evaluation:

append(x,y)

Example: Append for Persistent Lists

c

b

x a y d

e

c b

Heap-space usage is 2n if

‣ n is the length of list x

‣ One list element requires two heap cells 
(data and pointer)

Example evaluation:

append(x,y)

Example: Append for Persistent Lists

c

b

x a y d

e

c b a

Heap-space usage is 2n if

‣ n is the length of list x

‣ One list element requires two heap cells 
(data and pointer)

Example evaluation:

append(x,y)

Example: Append for Persistent Lists

c

b

x a y d

e

c b a append(x,y)

Heap-space usage is 2n if

‣ n is the length of list x

‣ One list element requires two heap cells 
(data and pointer)

Example evaluation:

append(x,y)

Example: Append for Persistent Lists

c

b

x a y d

e

c b a append(x,y)

Heap usage: 2*n = 2*3 = 6

Heap-space usage is 2n if

‣ n is the length of list x

‣ One list element requires two heap cells 
(data and pointer)

Example evaluation:

append(x,y)

Example: Composing Calls of Append

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) = {
 t = append(x,y);
 append(t,z)
}

Example: Composing Calls of Append

c

b

x a y d

e

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

4

4

4

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) = {
 t = append(x,y);
 append(t,z)
}

2

2

z f

Example: Composing Calls of Append

c

b

x a y d

e

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

4

4

4

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

append(x,y)

f(x,y,z) = {
 t = append(x,y);
 append(t,z)
}

2

2

z f

Example: Composing Calls of Append

c

b

x a y d

e

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

4

4

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

append(x,y)

f(x,y,z) = {
 t = append(x,y);
 append(t,z)
}

2

2

z f

c
2

Example: Composing Calls of Append

c

b

x a y d

e

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

4

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

append(x,y)

f(x,y,z) = {
 t = append(x,y);
 append(t,z)
}

2

2

z f

c
2

b
2

Example: Composing Calls of Append

c

b

x a y d

e

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

append(x,y)

f(x,y,z) = {
 t = append(x,y);
 append(t,z)
}

2

2

z f

c
2

b
2

a
2

Example: Composing Calls of Append

c

b

x a y d

e

t

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) = {
 t = append(x,y);
 append(t,z)
}

2

2

z f

c
2

b
2

a
2

Example: Composing Calls of Append

c

b

x a y d

e

t

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) = {
 t = append(x,y);
 append(t,z)
}

2

2

z f

c
2

b
2

a
2

append(t,z)

Example: Composing Calls of Append

c

b

x a y d

e

t

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) = {
 t = append(x,y);
 append(t,z)
}

2

z f

c
2

b
2

a
2

e

append(t,z)

Example: Composing Calls of Append

c

b

x a y d

e

t

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) = {
 t = append(x,y);
 append(t,z)
}

z f

c
2

b
2

a
2

e d

append(t,z)

Example: Composing Calls of Append

c

b

x a y d

e

t

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) = {
 t = append(x,y);
 append(t,z)
}

z f

c b
2

a
2

e d c

append(t,z)

Example: Composing Calls of Append

c

b

x a y d

e

t

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) = {
 t = append(x,y);
 append(t,z)
}

z f

c b a
2

e d c b

append(t,z)

Example: Composing Calls of Append

c

b

x a y d

e

t

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) = {
 t = append(x,y);
 append(t,z)
}

z f

c b a

e d c b a

append(t,z)

Example: Composing Calls of Append

c

b

x a y d

e

t

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) = {
 t = append(x,y);
 append(t,z)
}

z f

c b a

append(t,z)e d c b a

Example: Composing Calls of Append

c

b

x a y d

e

t

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) = {
 t = append(x,y);
 append(t,z)
}

z f

c b a

append(t,z)e d c b a

Implicit reasoning
about size-changes.

Example: Composing Calls of Append

The most general type of append is specialized at call-sites:

f(x,y,z) = {

 t = append(x,y);

 append(t,z)

} append: (L (int),L (int)) ----> L (int)2 00/00

append: (L (int),L (int)) ----> L (int)4 20/02

append: (L (int),L (int)) ----> L (int) | Φq rs/tp Linear
constraints.

Polynomial Potential Functions

Phd Thesis: Polynomial
Potential Functions

User-defined resource metrics  
(i.e., by tick(q) in the code)

Naturally compositional: tracks size
changes, types are specifications

Bound inference by reduction to
efficient LP solving

Type derivations prove bounds
with respect to the cost semantics

Linear Potential
Functions

✓

✓

✓

✓

Phd Thesis: Polynomial
Potential Functions

User-defined resource metrics  
(i.e., by tick(q) in the code)

Naturally compositional: tracks size
changes, types are specifications

Bound inference by reduction to
efficient LP solving

Type derivations prove bounds
with respect to the cost semantics

Linear Potential
Functions

✓

✓

✓

✓

Multivariate Polynomial
Potential Functions

✓

✓

✓

✓

Phd Thesis: Polynomial
Potential Functions

User-defined resource metrics  
(i.e., by tick(q) in the code)

Naturally compositional: tracks size
changes, types are specifications

Bound inference by reduction to
efficient LP solving

Type derivations prove bounds
with respect to the cost semantics

Linear Potential
Functions

✓

✓

✓

✓

Multivariate Polynomial
Potential Functions

✓

✓

✓

✓

For example m*n2.

Phd Thesis: Polynomial
Potential Functions

User-defined resource metrics  
(i.e., by tick(q) in the code)

Naturally compositional: tracks size
changes, types are specifications

Bound inference by reduction to
efficient LP solving

Type derivations prove bounds
with respect to the cost semantics

Linear Potential
Functions

✓

✓

✓

✓

Multivariate Polynomial
Potential Functions

✓

✓

✓

✓

For example m*n2.

First automatic, type-based resource
analysis for polynomial bounds.

Example: Polynomial Potential Functions

Computed time bound:
12m2 + 24mn + 12n2 + 14m + 22n + 11

t = append(xs,ys);
quicksort(t)

Example: Polynomial Potential Functions

Computed time bound:
12m2 + 24mn + 12n2 + 14m + 22n + 11

t = append(xs,ys);
quicksort(t)

quicksort : (L(int), (3, 26, 24)) ! (L(int), (0, 0, 0))

append : ((L(int), L(int)),

11 26 24
34 24
24

!
) ! (L(int), (3, 26, 24))

6

Example: Polynomial Potential Functions

Computed time bound:
12m2 + 24mn + 12n2 + 14m + 22n + 11

t = append(xs,ys);
quicksort(t)

26m34n 24

✓
n

2

◆
24

✓
m

2

◆
24nm6 + + + + +

quicksort : (L(int), (3, 26, 24)) ! (L(int), (0, 0, 0))

append : ((L(int), L(int)),

11 26 24
34 24
24

!
) ! (L(int), (3, 26, 24))

6

Example: Polynomial Potential Functions

Computed time bound:
12m2 + 24mn + 12n2 + 14m + 22n + 11

t = append(xs,ys);
quicksort(t)

26m34n 24

✓
n

2

◆
24

✓
m

2

◆
24nm6 + + + + +

quicksort : (L(int), (3, 26, 24)) ! (L(int), (0, 0, 0))

append : ((L(int), L(int)),

11 26 24
34 24
24

!
) ! (L(int), (3, 26, 24))

6

8n + 3Cost of append

Example: Polynomial Potential Functions

Computed time bound:
12m2 + 24mn + 12n2 + 14m + 22n + 11

t = append(xs,ys);
quicksort(t)

3 + + 24

✓
n+m

2

◆
26(n+m)

26m34n 24

✓
n

2

◆
24

✓
m

2

◆
24nm6 + + + + +

quicksort : (L(int), (3, 26, 24)) ! (L(int), (0, 0, 0))

append : ((L(int), L(int)),

11 26 24
34 24
24

!
) ! (L(int), (3, 26, 24))

6

8n + 3Cost of append

Multivariate Resource Polynomials [POPL’11]

Are non-negative linear combinations of the following base
polynomials:

P(Int) = {a ⇥� 1}

P(A1,A2) = {(a1, a2) ⇤� p1(a1) · p2(a2) | pi ⇥ P(Ai)}

P(L(A)) = {[a1, ... , an] ⇤�
X

1�j1<···<jk�n

kY

i=1

pi (aji) | k ⇥ N, pi ⇥ P(A)}

Map data structures to non-negative rational numbers
p : JAK ! Q+

0

Multivariate Resource Polynomials [POPL’11]

Are non-negative linear combinations of the following base
polynomials:

P(Int) = {a ⇥� 1}

P(A1,A2) = {(a1, a2) ⇤� p1(a1) · p2(a2) | pi ⇥ P(Ai)}

P(L(A)) = {[a1, ... , an] ⇤�
X

1�j1<···<jk�n

kY

i=1

pi (aji) | k ⇥ N, pi ⇥ P(A)}

Map data structures to non-negative rational numbers
p : JAK ! Q+

0

Important innovation:
sigma-pi formula for data

structures

Resource Polynomials: Examples

P(L(A)) = {[a1, ... , an] ⇤�
X

1�j1<···<jk�n

kY

i=1

pi (aji) | k ⇥ N, pi ⇥ P(A)}

Resource Polynomials: Examples

P(L(A)) = {[a1, ... , an] ⇤�
X

1�j1<···<jk�n

kY

i=1

pi (aji) | k ⇥ N, pi ⇥ P(A)}

[a1, ... , an] 7! 8n + 3

Resource Polynomials: Examples

P(L(A)) = {[a1, ... , an] ⇤�
X

1�j1<···<jk�n

kY

i=1

pi (aji) | k ⇥ N, pi ⇥ P(A)}

[a1, ... , an] 7! 8n + 3

[a1, ... , an] 7! 36

✓
n

3

◆
+ 16

✓
n

2

◆
+ 20n + 3

Resource Polynomials: Examples

P(L(A)) = {[a1, ... , an] ⇤�
X

1�j1<···<jk�n

kY

i=1

pi (aji) | k ⇥ N, pi ⇥ P(A)}

[a1, ... , an] 7! 8n + 3

([a1, ... , an], [b1, ... , bm]) 7! 39mn + 6m + 21n + 19

[a1, ... , an] 7! 36

✓
n

3

◆
+ 16

✓
n

2

◆
+ 20n + 3

Resource Polynomials: Examples

P(L(A)) = {[a1, ... , an] ⇤�
X

1�j1<···<jk�n

kY

i=1

pi (aji) | k ⇥ N, pi ⇥ P(A)}

[a1, ... , an] 7! 8n + 3

([a1, ... , an], [b1, ... , bm]) 7! 39mn + 6m + 21n + 19

[a1, ... , an] 7! 36

✓
n

3

◆
+ 16

✓
n

2

◆
+ 20n + 3

[[a11, ... , a
1
m1
], ... , [an1 , ... a

n
mn
]] 7! 18

✓
n

2

◆
+ 12n + 3 +

X

1i<jn

12mi

Automatic Computation of the Bounds

1. Fix a maximal degree of resource polynomials

2. Annotate each type with (yet unknown) coefficients for resource
polynomials

Example for degree 2:

General case: index system that enumerates resource polynomials

3. Extract linear constraints for the coefficients during type inference

4. Solve the constraints with an LP solver

((L(int), L(int)), q0,0, q1,0, q2,0, q1,1, q0,1, q0,2)

Automatic Computation of the Bounds

1. Fix a maximal degree of resource polynomials

2. Annotate each type with (yet unknown) coefficients for resource
polynomials

Example for degree 2:

General case: index system that enumerates resource polynomials

3. Extract linear constraints for the coefficients during type inference

4. Solve the constraints with an LP solver

((L(int), L(int)), q0,0, q1,0, q2,0, q1,1, q0,1, q0,2)

q0,0 + q1,1nm + q1,0n + q2,0

✓
n

2

◆
+ q0,1m + q0,2

✓
m

2

◆

• Motivation

• How does automatic resource bound analysis work?

• How well does automatic resource bound analysis work?  
(Implementation and experiments)

• What are the properties of the LP instances that we get?

Outline

✓
✓

Resource Aware ML

• Based on Inria’s OCaml compiler

• ~12,000 lines of code (+ ~29,000 loc form the OCaml compiler)

• Currently we use Coin-Or’s CLP C interface

• Features:
• Higher-order functions and polymorphism

• User defined inductive types

• Parallel evaluation

• Side effects

• User defined (non-monotone) resource metrics

• Upper and lower bounds

Resource Aware ML

• Based on Inria’s OCaml compiler

• ~12,000 lines of code (+ ~29,000 loc form the OCaml compiler)

• Currently we use Coin-Or’s CLP C interface

• Features:
• Higher-order functions and polymorphism

• User defined inductive types

• Parallel evaluation

• Side effects

• User defined (non-monotone) resource metrics

• Upper and lower bounds

Web interface at 
http://raml.co

http://raml.co

Experimental Evaluation

Micro Benchmarks Evaluation-Step Bounds

Computed Bound Actual Behavior Performance

Quick Sort (Integers) 12n2 + 14n + 3 O(n2) 0.1 s

Split and Sort 16n2 + 46n + 9 O(n2) 2.1 s

Insertion Sort (Strings) 8n2m + 8n2 - 8nm + 4n + 3 O(n2m) 0.91 s

Duplicate Elimination 6n2m + 9n2 - 6nm + 3n + 3 O(n2m) 0.97 s

Longest Common
Subsequence 39nm + 6m + 21n + 19 O(nm) 0.36 s

Matrix Multiplication 28xmn + 32xm + 2x + 14n + 21 O(xmn) 1.96 s

Breadth-First Matrix
Multiplication 2yz + 15ynmx + 14ynm + 15yn + 104n + 51 O(ynmx) 4.98 s

Dijkstra’s Shortest-Path
Algorithm 79.5n2 + 31.5n + 38 O(n2) 2.50 s

In-Place Quick Sort for
Arrays 12.25x2 + 52.75x + 3 O(x2) 0.64 s

Quick Sort for Integers Evaluation-step bound vs.
measured behavior

Quick Sort for Integers Evaluation-step bound vs.
measured behavior

First tight bound
for quick sort.

Longest Common
Subsequence	

Evaluation-step bound vs.
measured behavior

Longest Common
Subsequence	

Evaluation-step bound vs.
measured behavior

First automatically
derived bound for

LCS.

Insertion Sort for
Strings

Evaluation-step bound vs.
measured behavior

Insertion Sort for
Strings

Evaluation-step bound vs.
measured behavior

First automatic
bound for a sorting

algorithm for strings.

Macro Benchmarks

1) OCaml’s standard list library list.ml

‣ Evaluation-step bounds for 47 of 51 top-level functions

‣ 428 lines of code; 3.2 seconds on a Macbook Pro

2) CompCert C Compiler

‣ OCaml code extracted from the Coq specification

‣ Evaluation-step bounds for 13 topmost modules 
in the dependency graph

‣ 138 of 164 functions bounded; 2740 lines of code; 21min

Macro Benchmarks

1) OCaml’s standard list library list.ml

‣ Evaluation-step bounds for 47 of 51 top-level functions

‣ 428 lines of code; 3.2 seconds on a Macbook Pro

2) CompCert C Compiler

‣ OCaml code extracted from the Coq specification

‣ Evaluation-step bounds for 13 topmost modules 
in the dependency graph

‣ 138 of 164 functions bounded; 2740 lines of code; 21min

Problems: Modules
and untyped code.

Macro Benchmarks

8 Experimental Evaluation 31

Metric #Funs LOC Time #Const #Lin #Quad #Cubic #Poly #Fail
Asym.
Tight

steps 243 3218 72.10s 16 130 60 28 239 4 225
heap 243 3218 70.36s 41 112 60 22 239 4 225

tick 174 2144 64.68s 19 79 53 19 174 0 160
CompCert steps 164 2740 1300.91s 32 99 7 0 138 26 137

Table 1: Overview of experimental results.

Example Experiment. To give an impression of the experiments we performed, Figure 11
contains the output of an analysis of a challenging function in RAML. The code is an adoption of
an example that has been recently presented by Avanzini et al. [10] as a function that can not
be handled by existing tools. To illustrate the challenges of resource analysis for higher-order
programs, Avanzini et al. implemented a (somewhat contrived) reverse function rev for lists
using higher-order functions. RAML automatically derives a tight linear bound on the number
of evaluation steps used by rev.

To show more features of our analysis, we modified Avanzini et al.’s rev in Figure 11 by
adding an additional argument f and a pattern match to the definition of the function walk. The
resulting type of walk is

(Æ!Æ! bool) ! [(Ø§Æ list)either list; (Ø§Æ list)either list]
! (Ø§Æ list)either list

Like before the modification, walk is essentially the append_reverse function for lists. However,
we assume that the input lists contain nodes of the form Left a or Right b so that b is a list.
During the reverse process of the first list in the argument, we sort each list that is contained in
a Right-node using the standard implementation of quick sort (not given here). RAML derives
the tight evaluation-step bound that is shown in Figure 11. Since the comparison function for
quicksort (argument f) is not available, RAML assumes that it does not consume any resources
during the analysis. If rev_sort is applied to a concrete argument f then the analysis is repeated
to derive a bound for this instance.

CompCert Evaluation. We also performed an evaluation with the OCaml code that is created
by Coq’s code extraction mechanism during the compilation of the verified CompCert compil-
ers [46]. We sorted the files topologically from their dependency requirements, and analyzed 13
files from the top. 1 We could not process the files further down the dependency graph because
they heavily relied on modules which we do not currently support. Using the evaluation-step
metric, we analyzed 164 functions, 2740 LOC in 1300 seconds.

Figure 12 shows example functions from the CompCert code base. As an artifact from the
Coq code extraction, CompCert uses two implementations of the reverse function for lists. The
function rev is a naive quadratic implementation that uses append and the function rev’ is an
efficient tail-recursive linear implementation. RAML automatically derives precise evaluation
step bounds for both functions. As a result, a Coq user who is inspecting the derived bounds for
the extracted OCaml code is likely to spot performance problems resulting from the use of rev.

Summary of Results. Table 1 contains a compilation of the experimental results. The first 3
rows show the results for OCaml libraries, handwritten code, and the OCaml tutorial [48]. The

1A list of analyzed files and functions is included in the TR.

8 Experimental Evaluation 31

Metric #Funs LOC Time #Const #Lin #Quad #Cubic #Poly #Fail
Asym.
Tight

steps 243 3218 72.10s 16 130 60 28 239 4 225
heap 243 3218 70.36s 41 112 60 22 239 4 225

tick 174 2144 64.68s 19 79 53 19 174 0 160
CompCert steps 164 2740 1300.91s 32 99 7 0 138 26 137

Table 1: Overview of experimental results.

Example Experiment. To give an impression of the experiments we performed, Figure 11
contains the output of an analysis of a challenging function in RAML. The code is an adoption of
an example that has been recently presented by Avanzini et al. [10] as a function that can not
be handled by existing tools. To illustrate the challenges of resource analysis for higher-order
programs, Avanzini et al. implemented a (somewhat contrived) reverse function rev for lists
using higher-order functions. RAML automatically derives a tight linear bound on the number
of evaluation steps used by rev.

To show more features of our analysis, we modified Avanzini et al.’s rev in Figure 11 by
adding an additional argument f and a pattern match to the definition of the function walk. The
resulting type of walk is

(Æ!Æ! bool) ! [(Ø§Æ list)either list; (Ø§Æ list)either list]
! (Ø§Æ list)either list

Like before the modification, walk is essentially the append_reverse function for lists. However,
we assume that the input lists contain nodes of the form Left a or Right b so that b is a list.
During the reverse process of the first list in the argument, we sort each list that is contained in
a Right-node using the standard implementation of quick sort (not given here). RAML derives
the tight evaluation-step bound that is shown in Figure 11. Since the comparison function for
quicksort (argument f) is not available, RAML assumes that it does not consume any resources
during the analysis. If rev_sort is applied to a concrete argument f then the analysis is repeated
to derive a bound for this instance.

CompCert Evaluation. We also performed an evaluation with the OCaml code that is created
by Coq’s code extraction mechanism during the compilation of the verified CompCert compil-
ers [46]. We sorted the files topologically from their dependency requirements, and analyzed 13
files from the top. 1 We could not process the files further down the dependency graph because
they heavily relied on modules which we do not currently support. Using the evaluation-step
metric, we analyzed 164 functions, 2740 LOC in 1300 seconds.

Figure 12 shows example functions from the CompCert code base. As an artifact from the
Coq code extraction, CompCert uses two implementations of the reverse function for lists. The
function rev is a naive quadratic implementation that uses append and the function rev’ is an
efficient tail-recursive linear implementation. RAML automatically derives precise evaluation
step bounds for both functions. As a result, a Coq user who is inspecting the derived bounds for
the extracted OCaml code is likely to spot performance problems resulting from the use of rev.

Summary of Results. Table 1 contains a compilation of the experimental results. The first 3
rows show the results for OCaml libraries, handwritten code, and the OCaml tutorial [48]. The

1A list of analyzed files and functions is included in the TR.

CompCert:

How can we make predictions about compiled
code?

Machine Learning Cost Models

How to obtain realistic cost metrics for high-level analysis?

• Treat hardware, compiler, and runtime systems as black box

• Select training programs that cover relevant operations

• Use linear regression to obtain average time and memory costs of
operations

• Combine time and memory predictions to get a time model for
execution with garbage collection

Bound for List Append on x86

1.6 GHz Intel Core i5-5250U processor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12 14 16 18 20

E
xe

cu
tio

n
 T

im
e
 (

m
s)

Error
Actual Time

Expected Time

• Motivation

• How does automatic resource bound analysis work?

• How well does automatic resource bound analysis work? 
(Implementation and experiments)

• What are the properties of the LP instances that we get?

Outline

✓
✓

✓

Network-Flow Problems

Constraints we derive are almost network-flow problems

Network-Flow Problems

Constraints we derive are almost network-flow problems

Network-flow constraints:X

i

xi �
X

j

xj = b

Network-Flow Problems

Constraints we derive are almost network-flow problems

Network-flow constraints:X

i

xi �
X

j

xj = b

Inflow.

Network-Flow Problems

Constraints we derive are almost network-flow problems

Network-flow constraints:X

i

xi �
X

j

xj = b

Inflow.
Outflow.

Network-Flow Problems

Constraints we derive are almost network-flow problems

Network-flow constraints:X

i

xi �
X

j

xj = b

Inflow.
Outflow.

Constant sink/
source.

Network-Flow Problems

Constraints we derive are almost network-flow problems

Network-flow constraints:X

i

xi �
X

j

xj = b

Inflow.
Outflow.

Constant sink/
source.

li xi ui

Network-Flow Problems

Constraints we derive are almost network-flow problems

Network-flow constraints:X

i

xi �
X

j

xj = b

Inflow.
Outflow.

Constant sink/
source.

li xi ui

Flow capacity.

Linear Constraints have a Simple Form

• Pay for constant cost

• Account for size changes

• Recursive call

• Conditional branches

q = q0 + c

q0i = qi + qi+1

q = p

q � p1 q � p2

Linear Constraints have a Simple Form

• Pay for constant cost

• Account for size changes

• Recursive call

• Conditional branches

q = q0 + c

Network
constraints.

q0i = qi + qi+1

q = p

q � p1 q � p2

Linear Constraints have a Simple Form

• Pay for constant cost

• Account for size changes

• Recursive call

• Conditional branches

q = q0 + c

Network
constraints.

q0i = qi + qi+1

Flow through an edge
is used twice.

q = p

q � p1 q � p2

Linear Constraints have a Simple Form

• Pay for constant cost

• Account for size changes

• Recursive call

• Conditional branches

q = q0 + c

Network
constraints.

q0i = qi + qi+1

Flow through an edge
is used twice.

q = p

q � p1 q � p2

Account for cost
recursively.

Linear Constraints have a Simple Form

• Pay for constant cost

• Account for size changes

• Recursive call

• Conditional branches

q = q0 + c

Network
constraints.

q0i = qi + qi+1

Flow through an edge
is used twice.

q = p

q � p1 q � p2

Account for cost
recursively.

Cover cost in both
branches (possible

waste).

Accounting for Size Change

X

i=1,...,k

qi

✓
n + 1

i

◆
= q1 +

X

i=1,...,k�1

qi+1

✓
n

i

◆
+

X

i=1,...,k

qi

✓
n

i

◆

List types:

Potential:

Additive shift: C(q1, ... , qk) = (q1 + q2, ... , qk�1 + qk , qk)

L(q1,...,qk)(A)

�(` : L(q1,...,qk)) =
P

i=1,...,k qi
�|`|

i

�

Accounting for Size Change

X

i=1,...,k

qi

✓
n + 1

i

◆
= q1 +

X

i=1,...,k�1

qi+1

✓
n

i

◆
+

X

i=1,...,k

qi

✓
n

i

◆

potential of a list

List types:

Potential:

Additive shift: C(q1, ... , qk) = (q1 + q2, ... , qk�1 + qk , qk)

L(q1,...,qk)(A)

�(` : L(q1,...,qk)) =
P

i=1,...,k qi
�|`|

i

�

Accounting for Size Change

X

i=1,...,k

qi

✓
n + 1

i

◆
= q1 +

X

i=1,...,k�1

qi+1

✓
n

i

◆
+

X

i=1,...,k

qi

✓
n

i

◆

constant potential of the tail
using the shiftpotential of a list

List types:

Potential:

Additive shift: C(q1, ... , qk) = (q1 + q2, ... , qk�1 + qk , qk)

L(q1,...,qk)(A)

�(` : L(q1,...,qk)) =
P

i=1,...,k qi
�|`|

i

�

Generation of Linear Constraints

1. It is easy to pass potential to list tails without loss

�((x ::xs) : L~q) + c = �(xs : LC(~q)) + (q1 + c)

2. Pattern: one recursive call and polynomial spill

�((x ::xs):L~q)��(xs:L~q) = �(xs:L(q2,...,qk ,0))+q1

3. It is easy to share potential when aliasing data

�(` : L~q+~p) = �(` : L~q) + �(` : L~p)

Generation of Linear Constraints

1. It is easy to pass potential to list tails without loss

�((x ::xs) : L~q) + c = �(xs : LC(~q)) + (q1 + c)

2. Pattern: one recursive call and polynomial spill

�((x ::xs):L~q)��(xs:L~q) = �(xs:L(q2,...,qk ,0))+q1

C(q1, ... , qk) = (q1 + q2, ... , qk�1 + qk , qk)

3. It is easy to share potential when aliasing data

�(` : L~q+~p) = �(` : L~q) + �(` : L~p)

Most Complex Constraints: Sharing

f(x) = g(x,x) Assume cost of g(x,y) is 10|x |·|y |

Bound for f is given as
X

i

qi

✓
x

i

◆

Most Complex Constraints: Sharing

f(x) = g(x,x) Assume cost of g(x,y) is 10|x |·|y |

Bound for f is given as
X

i

qi

✓
x

i

◆

Need to covert q|x |2 to
X

i

qi

✓
x

i

◆

Most Complex Constraints: Sharing

f(x) = g(x,x) Assume cost of g(x,y) is 10|x |·|y |

Bound for f is given as
X

i

qi

✓
x

i

◆

Need to covert q|x |2 to
X

i

qi

✓
x

i

◆

q1 = 1·q q2 = 2·q qk = 0·q for k > 2

Constraints:

Most Complex Constraints: Sharing

f(x) = g(x,x) Assume cost of g(x,y) is 10|x |·|y |

Bound for f is given as
X

i

qi

✓
x

i

◆

Need to covert q|x |2 to
X

i

qi

✓
x

i

◆

q1 = 1·q q2 = 2·q qk = 0·q for k > 2

Constraints:

Coefficients for
change of basis.

Constraint Solving in Practice

• LP solving of our constraints is linear in practice

• CLP and CPLEX are similar; lp_solve is slow (non-linear)

• Large programs (with high degree search space) have around 
1 million constraints

• Solving 1 million constraints takes about 1 minute with CLP

• Generating the constraints takes about as much time as solving them

Automatic Amortized Resource Analysis

• Precise: bounds are multivariate resource polynomials

• Efficient: inference via linear programming

• Reliable: formal soundness proof of the bounds

• Verifiable: type derivation is a certificate

Current and future research:

• Non-polynomial bounds

• Garbage collection

• Concurrency

• Better hardware models

Automatic Amortized Resource Analysis

• Precise: bounds are multivariate resource polynomials

• Efficient: inference via linear programming

• Reliable: formal soundness proof of the bounds

• Verifiable: type derivation is a certificate

Current and future research:

• Non-polynomial bounds

• Garbage collection

• Concurrency

• Better hardware models

Web interface at 
http://raml.co

http://raml.co

