Automatic Resource Bound Analysis and Linear
Optimization

Jan Hoffmann

Carnegie Mellon



Seyond worst-case analysis



Seyond worst-case analysis

... of algorithms



Seyond worst-case analysis

... of algorithms

Resource bound analysis



Seyond worst-case analysis

... of algorithms

Resource bound analysis

... Of programs / software



Motivation: Why analyze resource usage of
programs”?




Resource Usage in Safety-Ciritical Systems

Memory Usage Timing



Resource Usage in Safety-Ciritical Systems

Memory Usage Timing

NETWORK DESIGN CENTERS - TOOLS & LEARNING - COMMUNITY - ED

Home > Actomotive Design Center > How To Article

Toyota's killer firmware: Bad design and
its consequences

Michael Dunn -October 28,2013

109 Comments
smn w W Tweet 724 m ". =
On Thursday October 24, 2013, an Oklahoma court ruled against Toyota in a case of unintended

acceleration that lead to the death of one the occupants, Central to the trial was the Engine
Control Module's (ECM) firmware.

Unintended acceleration in
Toyota cars in the US
2005-20009.



Resource Usage in Safety-Ciritical Systems

Memory Usage Timing

DESIGN CENTERS - TOOLS & LEARNING - COMMUNITY - ED

NETWORK

Home > Actomotive Design Center > How To Article

Toyota's killer firmware: Bad design and

-

Its consequences

Michael Dunn -October 28,2013

109 Comments

[ srae 27 39 oz wiweet 72¢  [FJEEY< o ¥y = ‘

On Thursday October 24, 2013, an Oklahoma court ruled against Toyota in a case of unintended
acceleration that lead to the death of one the occupants, Central to the trial was the Engine
Control Module's (ECM) firmware.

Unintended acceleration in ICE 3 Velaro D delivery delayed
Toyota cars in the US by one year because of software
2005-2009. performance issues in 2013.



Performance Bugs are Common and Expensive

HealthCare.gov Get Insurance ogin N :

Individuals & Families Small Businesses

The System is down at the moment.

We're working to resolve the issue as soon as possible. Please try again later. ‘ O —~ \ gl e !!

Please include the reference ID below if you wish to contact us at 1-800-318-2596

Error from: https%3A//www.healthcare.gov/marketplace/global/en_US/registration%
Reference ID: 0.cdc7¢117.1380633115.2739dce8

HealthCare.gov debacle has Google Apps Developer:
been mainly caused by “Cannot test for performance
performance issues. bugs with regression test”.



Software Security

Emter your mame and password 85 commect 1o
q O Cdassendy .
o} v ameand
. ' Commect as: () Cuest
© OW tered Uter
o s Name: oh27}
.' ’ mm[ oooooooooo . J
’
e | Ramember this password in my keycham

(_ Cancel ) (Conmect )

Algorithmic Complexity

Attacks Side-Channel Attacks



Software Security

d Emter your mame and password 85 commect 1o
J “classevl yale ody”.

o] . Comnect as: () Cuest
. o Registered Uier
@ s Name: oh273
L J

’ Pasyword  ssssescsses )
%47

Algorithmic Complexity

Attacks Side-Channel Attacks
Space/Time Analysis for Our team:
Cybersecurity (STAC) GRAMMATECH
October 2014

Carnegie Mellon

Yale WISCONSIN

IIIIIIIIIIIIIIIIIIIII -MADISON

$ 53M program



Static Resource Bound Analysis

Given: A program P

Question: What is the worst-case resource
consumption of P as a function of
the size of its inputs?



Static Resource Bound Analysis

Clock cycles, heap

Given: A program P space, power, ...

Question: What is the worst-case resource
consumption of P as a function of
the size of its inputs?



Static Resource Bound Analysis

Clock cycles, heap
space, power, ...

Given: A program P

What is the worst-case resource
consumption of P as a function of
the size of its inputs?

Question:

'HE CLASSIC WORK
Y UPDATED AND REVISED

The Art of Not only
Computer asymptotic bounds
Programming

DONALD E. KNUTH

but concrete
constant factors.



Automatic
Static’Resource Bound Analysis

Clock cycles, heap

Given: A program P space, power, ...

Question: What is the worst-case resource
consumption of P as a function of
the size of its inputs?

'HE CLASSIC WORK
Y UPDATED AND REVISED

The Art of Not only
Computer asymptotic bounds
Programming

DONALD E. KNUTH

but concrete
constant factors.



Automatic
Static’Res

tatic’'Resource Bound Analysis

Given:

Question:

A program P

What is the worst-case resource
consumption of P as a function of

the size of its inputs?

IHE CLASSIC WORK

! PDATED AND REVISED

The Art of
Computer
Programming

DONALD E. KNUTH

Not only
asymptotic bounds
but concrete
constant factors.

Undecidable problem

Clock cycles, heap
space, power, ...



Research Challenges

Model and predict resource usage at development time.

Source code



Research Challenges

Model and predict resource usage at development time.

® S
amazon —
GCC m — webservigs"' Java

Compiler iy Libraries

o _—_— . R—— -

Source code

Run-time system Hardware



Research Challenges

Help developers to reason about quantitative properties.

- Computer support: Modeling, specification, verification,
automation and user interaction

- Compositionally: Track size changes and specify
resource-usage of library code

- Language features: Concurrency, higher-order, data
structures, ...



Why Is this Related”

1. Beyond worst-case analysis of algorithms

> Automation

> Concrete (non-asymptotic) bounds for specific hardware

2. We face similar challenges in resource-bound analysis

> “The worst-case behavior doesn’t happen in practice.”

3. We reduce bound inference to linear optimization
> Linear programs we get are solvable in linear time in practice

> Theoretical worst-case of the algorithm is exponential (simplex)



Outline

- Motivation \/

e How does automatic resource bound analysis work?

- How well does automatic resource bound analysis work?
(implementation and experiments)

- What are the properties of the LP instances that we get?




Source Code

120+ 14n + 3

Resource Bound

Bird’s Eye View Type-Based Resource Analysis




Source Code

12n% + 14n + 3

Resource Bound

Bird’s Eye View

applies to

Machine Code

Type-Based Resource Analysis




Source Code

> _
EEsaE applies to

Resource Bound Machine Code

Sird’s :ye View Type-Based Resource Analysis




Source Code

/2
¢ )

Run-time system Hardware

2 .
Ry L applies to

Resource Bound Machine Code

-

Sird’s Eye View Type-Based Resource Analysis




Source Code

Formal Cost Semantics

2 .
Ry L applies to

Resource Bound Machine Code

.

Sird’s Eye View Type-Based Resource Analysis




Source Code

:

€l Absint

Formal Cost Semantics

120+ 14n + 3

Resource Bound

A y\aiT WCET Analyzers

applies to

.

Machine Code

Sird’s Eye View Type-Based Resource Analysis



Source Code

Type Inference <

Formal Cost Semantics .
Ci Absint

A aiT WCET Analyzers

S(last) = (int, LP* (int)) —22L95 int
(A:VAR)

(A:APP)

acc:int I—Z;V— acc: int acc:int, x:int, xs:LP (int) I—Zra— last(x, xs) : int
v a

(A:MATL)

acc:int, I:LP (int) I% match | with | nil — acc| cons(x, xs) — last(x, xs) : int

Type Derivation

2 _
Ry L applies to

Resource Bound Machine Code

.

Sird’s :ye View Type-Based Resource Analysis




Source Code

:

®
i Absint
aiT WCET Analyzers

Formal Cost Semantics

S(last) = (int, LP* (int)) —2=L% int
————— (A:VaR) 7 (A:APP)
acc:int I—q;— acc: int acc:int, x:int, xs:LP (int) |—qr— last(x, xs) : int
£ ¢ (A:MATL)

acc:int, I:LP (int) I% match | with | nil — acc| cons(x, xs) — last(x, xs) : int

Type Derivation

-1_

3
SIIIIIRTIRT
BReReyY 341 3

5t

1
)

12n% + 14n + 3 e BonnS >

11
il

.

Resource Bound Machine Code

Sird’s :ye View Type-Based Resource Analysis




Type Inference

Source Code

S(last) = (int, LP* (int)) —22L95 int
(A:VAR)

9 qu g g 9 g qa 9 (A:APP)
acc:.int I—q;— acc: int acc:int, x:int, xs:LP (int) |—qr— last(x, xs) : int
£ ¢ (A:MATL)

acc:int, I:LP (int) I% match | with | nil — acc| cons(x, xs) — last(x, xs) : int

Type Derivation

120+ 14n + 3

Resource Bound

Sird’s Eye View Type-Based Resource Analysis




S(last) = (int, LP* (int)) —22L95 int

acc:int, x:int, xs: L (int) I—Zra— last(x, xs) :
a

int

(A:APP)

acc:int, I:LP (int) I% match | with | nil — acc| cons(x, xs) — last(x, xs) : int

Type Derivation

(A:MATL)

et

Resource Bound

120+ 14n + 3

Sird’s

Source Code

[ Clear soundness theorem. J

[ Naturally compositional. ]

Efficient inference via LP
solving.

:ye View Type-Based Resource Analysis




l[dea: Automate Amortized Analysis

 Assign potential functions to data structures

( d(state) > 0 )

= States are mapped to non-negative numbers

- Potential pays the resource consumption and Gb(before) > ®(after) + cosa
. . s
the potential at the following program poin ¥ telescoping

+ Initial potential is an upper bound (‘b("nit"a/ state) > ) COSt)




l[dea: Automate Amortized Analysis

 Assign potential functions to data structures

( d(state) > 0 )

= States are mapped to non-negative numbers

- Potential pays the resource consumption and @>(before) > O®(after) + cosa
. . s
the potential at the following program poin ¥ telescoping

+ Initial potential is an upper bound (q’("niﬁal state) > ) COSt)

Type systems for automatic analysis
 Fix a format of potential functions

» Develop type rules that manipulate potential functions




l[dea: Automate Amortized Analysis

 Assign potential functions to data structures

( d(state) > 0 )

= States are mapped to non-negative numbers

- Potential pays the resource consumption and Gb(before) > ®(after) + cosa
. . s
the potential at the following program poin ¥ telescoping

+ Initial potential is an upper bound (Cb(initia/ state) > ) COSO

Type systems for automatic analysis Potential is given by

types.
 Fix a format of potential functions

» Develop type rules that manipulate potential functions




Example: Append for Persistent Lists

Heap-space usage is 2n if

append(x,y)

> n is the length of list x

> One list element requires two heap cells
(data and pointer)



Example: Append for Persistent Lists

Heap-space usage is 2n if

append(x,y)

> n is the length of list x

> One list element requires two heap cells
(data and pointer)

Example evaluation:



Example: Append for Persistent Lists

Heap-space usage is 2n if

append(x,y)

> n is the length of list x

> One list element requires two heap cells
(data and pointer)

Example evaluation:

x—(a) y—(d)
(b) (e
(o)



Example: Append for Persistent Lists

Heap-space usage is 2n if

append(x,y)

> n is the length of list x

> One list element requires two heap cells
(data and pointer)

Example evaluation:

x—(a) y—~(d)c)
(b) (e
(o)



Example: Append for Persistent Lists

Heap-space usage is 2n if

append(x,y)

> n is the length of list x

> One list element requires two heap cells
(data and pointer)

Example evaluation:

x—(a) y () )b
(b) (e
(o)



Example: Append for Persistent Lists

Heap-space usage is 2n if

append(x,y)

> n is the length of list x

> One list element requires two heap cells
(data and pointer)

Example evaluation:

O 0202020
(5 (&
()



Example: Append for Persistent Lists

Heap-space usage is 2n if

append(x,y)

> n is the length of list x

> One list element requires two heap cells
(data and pointer)

Example evaluation:

x—(a) y—(d)}—c)~(o)—(a)— append(x,y)
(b) (e
(o)



Example: Append for Persistent Lists

append(x,y) Heap-space usage is 2n if

> n is the length of list x

> One list element requires two heap cells
(data and pointer)

Example evaluation:

x—(a) y—(d)}—c)~(o)—(a)— append(x,y)
(b) (e
(o)

Heap usage: 2'n =2*3 =6



Example: Composing Calls of Append

F(x,y,z) = { Heap usage of f(x,y,z) is 2n + 2(n+m) if
t = append(x,y); > n is the length of list x
append(t,z)

} > m is the length of list y




Example: Composing Calls of Append

F(x,y,z) = { Heap usage of f(x,y,z) is 2n + 2(n+m) if
t = append(x,y); > n is the length of list x
append(t,z)

} > m is the length of list y

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16



Example: Composing Calls of Append

f(x,y,z) = {
t = append(x,y);
append(t,z)

Heap usage of f(x,y,z) is 2n + 2(n+m) if
> nis the length of list x

» m is the length of list y

append(x,y)

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16



Example: Composing Calls of Append

F(x,y,z) = { Heap usage of f(x,y,z) is 2n + 2(n+m) if
t = append(x,y); > n is the length of list x
append(t,z)

} > m is the length of list y

append(x,y)

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16



Example: Composing Calls of Append

f(x,y,z) = {
t = append(x,y);
append(t,z)

Heap usage of f(x,y,z) is 2n + 2(n+m) if
> nis the length of list x

» m is the length of list y

append(x,y)

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16



Example: Composing Calls of Append

F(x,y,z) = { Heap usage of f(x,y,z) is 2n + 2(n+m) if
t = append(x,y); > n is the length of list x
append(t,z)

} > m is the length of list y

@ append(x,y)

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16



Example: Composing Calls of Append

F(x,y,z) = { Heap usage of f(x,y,z) is 2n + 2(n+m) if
t = append(x,y); > n is the length of list x
append(t,z)

} > m is the length of list y

x—(a)

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16



Example: Composing Calls of Append

F(x,y,z) = { Heap usage of f(x,y,z) is 2n + 2(n+m) if
t = append(x,y); > n is the length of list x
append(t,z)

} > m is the length of list y

X_’ append(t,z)

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16



Example: Composing Calls of Append

F(x,y,z) = { Heap usage of f(x,y,z) is 2n + 2(n+m) if
t = append(x,y); > n is the length of list x
append(t,z)

} > m is the length of list y

X_’ append(t,z)

® oo

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16



Example: Composing Calls of Append

F(x,y,z) = { Heap usage of f(x,y,z) is 2n + 2(n+m) if
t = append(x,y); > n is the length of list x
append(t,z)

} > m is the length of list y

X_’ append(t,z)

@ @@

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16



Example: Composing Calls of Append

F(x,y,z) = { Heap usage of f(x,y,z) is 2n + 2(n+m) if
t = append(x,y); > n is the length of list x
append(t,z)

} > m is the length of list y

append(t,z)

@ SUSOSOS0

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16



Example: Composing Calls of Append

F(x,y,z) = { Heap usage of f(x,y,z) is 2n + 2(n+m) if
t = append(x,y); > n is the length of list x
append(t,z)

} > m is the length of list y

X_’ append(t,z)

@ =@ ©-@--©®

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16



Example: Composing Calls of Append

F(x,y,z) = { Heap usage of f(x,y,z) is 2n + 2(n+m) if
t = append(x,y); > n is the length of list x
append(t,z)

} > m is the length of list y

X_’ y @ e @ <_ t append(t,z)

2020202080

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16



Example: Composing Calls of Append

F(x,y,z) = { Heap usage of f(x,y,z) is 2n + 2(n+m) if
t = append(x,y); > n is the length of list x
append(t,z)

} > m is the length of list y

O 02020200
(o) (&

z—»@«—@«—@«—@h append(t,z)

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16



Example: Composing Calls of Append

¥

F(x,y,2) = 1

t = append(x,y);
append(t,z)

x—~(a)

Heap usage of f(x,y,z) is 2n + 2(n+m) if
> nis the length of list x

» m is the length of list y

y—(d )¢ )b )~a)—t Implicit reasoning

about size-changes.

z—»@«—@«—@«—@h append(t,z)

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16



Example: Composing Calls of Append

FOx,y,2) = { " append: ( cint). £ cinty) 2425 (2 (int)}

t = append(x,y);

append(t,z)

} append: (LZ (wLn’c),L0 (int)) —Q4Q> L® (int)}

The most general type of append is specialized at call-sites:

append: (19 (int),l” (int)) 245 1" (int) | o Linear

constraints.




Polynomial Potential Functions



User-defined resource metrics
(i.e., by tick(q) in the code)

Naturally compositional: tracks size
changes, types are specifications

Bound inference by reduction to
efficient LP solving

Type derivations prove bounds
with respect to the cost semantics

°hd Thesis: Polynomial
Potential Functions

Linear Potential
Functions



User-defined resource metrics
(i.e., by tick(q) in the code)

Naturally compositional: tracks size
changes, types are specifications

Bound inference by reduction to
efficient LP solving

Type derivations prove bounds
with respect to the cost semantics

°hd Thesis: Polynomial
Potential Functions

Linear Potential
Functions

Multivariate Polynomial
Potential Functions



User-defined resource metrics
(i.e., by tick(q) in the code)

Naturally compositional: tracks size
changes, types are specifications

Bound inference by reduction to
efficient LP solving

Type derivations prove bounds
with respect to the cost semantics

°hd Thesis: Polynomial
Potential Functions

Linear Potential
Functions

L For example m*n?. J
Vo .
Multivariate Polynomial
Potential Functions




User-defined resource metrics
(i.e., by tick(q) in the code)

Naturally compositional: tracks size
changes, types are specifications

Bound inference by reduction to
efficient LP solving

Type derivations prove bounds
with respect to the cost semantics

°hd Thesis: Polynomial
Potential Functions

L For example m*n?. J

\
Linear Potential Multivariate Polynomial
Functions Potential Functions

First automatic, type-based resource
analysis for polynomial bounds.



Example: Polynomial

t = append(xs,ys); Co

quicksort(t)

Potential Functions

mputed time bound:
12m? + 24mn + 12n> & 14m + 22n + 11




Example: Polynomial Potential Functions

t = append(xs,ys): Computed time bound:

quicksort(t) 12m? + 24mn + 12n> & 14m + 22n + 11

6 26 24

append : ((L(int), L(int)), (34 24 )) — (L(int), (3,26,24))

24

quicksort : (L(int), (3,26,24)) — (L(int), (0,0,0))




Example: Polynomial Potential Functions

t = append(xs,ys): Computed time bound:

quicksort(t) 12m? + 24mn + 12n> & 14m + 22n + 11

append : ((L(int), L(int)),

quicksort : (L(int), (3,26,24)) — (L(int), (0,0,0))




Example: Polynomial Potential Functions

t = append(xs,ys): Computed time bound:

quicksort(t) 12m? + 24mn + 12n> & 14m + 22n + 11

[ Cost of append >8n + 3\

quicksort : (L(int), (3,26,24)) — (L(int), (0,0,0))




Example: Polynomial Potential Functions

t = append(xs,ys): Computed time bound:

quicksort(t) 12m? + 24mn + 12n> & 14m + 22n + 11

2

[ Cost of append >8n + 3\ 34 oy <n+m>

append : ((L(int), L(int)), )) — (L (/nt)\(?) 26.24))

+‘+ 24 (g) +24nm +24<';)

quicksort : (L(int), (3,26,24)) — (L(int), (0,0,0))




Multivariate Resource Polynomials [POP

Map data structures to non-negative rational numbers
p: Al — Qg

Are non-negative linear combinations of the following base
polynomials:

P(Int) = {a+— 1}

P(A1, A2) = {(a1, a2) = p1(a1) - p2(a2) | pi € P(A:)}

P(L(A) ={[ar,....an) = > |]p,i(a;) | k€N, pi € P(A)}

1<j1 <+ <ju<n i=1




Multivariate Resource Polynomials [POP

Map data structures to non-negative rational numbers
p: Al — Qg

Are non-negative linear combinations of the following base
polynomials:

P(Int) = {a+> 1} Important innovation:
sigma-pi formula for data

structures
P(A1, A2) = {(a1, a2) = pi(a1) - p2(a2) (ki i);

P(L(A) ={[ar,....an) = > |]p,i(a;) | k€N, pi € P(A)}

1<j1 <+ <ju<n i=1




Resource Polynomials: Examples

P(L(A) ={[ar,....an) = > |]pri(a;) | k€N, pi € P(A)}

1< <---<jk<ni=l1




Resource Polynomials: Examples

[31, e an] — 8n + 3

P(L(A) ={[ar,....an) = > |]pri(a;) | k€N, pi € P(A)}

1< <---<jk<ni=l1




Resource Polynomials: Examples

[31, e an] — 8n + 3

(a1, ..., a] — 36 (Q) +16 (2) +20n+ 3

P(L(A) ={[ar,....an) = > |]pri(a;) | k€N, pi € P(A)}

1< <---<jk<ni=l1




Resource Polynomials: Examples

[31, e an] — 8n + 3

(a1, ..., a] — 36 (Q) +16 <g> +20n+ 3

([a1, ..., an], [b1, ..., bm]) — 39mn 4+ 6m + 21n + 19

P(L(A) ={[ar,....an) = > |]pri(a;) | k€N, pi € P(A)}

1< <---<jk<ni=l1




Resource Polynomials: Examples

[31, e an] — 8n + 3

(a1, ..., a] — 36 (Q) +16 <g> +20n+ 3

([a1, ..., an], [b1, ..., bm]) — 39mn 4+ 6m + 21n + 19

1 1 n n n
[[al,...,aml],...,[al,...amn]]%18<2> +12n+ 3 + Z 12m;

1<i<yj<n

P(L(A) ={[ar,....an) = > |]pri(a;) | k€N, pi € P(A)}

1< <---<jk<ni=l1




Automatic Computation of the Bounds

1. Fix a maximal degree of resource polynomials

2. Annotate each type with (yet unknown) coefficients for resource
polynomials

Example for degree 2: ((L(int), L(int)), 90,0, G1,0, 92,0, G1.1. 90,1, G0.2)
General case: index system that enumerates resource polynomials
3. Extract linear constraints for the coefficients during type inference

4. Solve the constraints with an LP solver




Automatic Computation of the Bounds

1. Fix a maximal degree of resource polynomials

2. Annotate each type with (yet unknown) coefficients for resource

polynomials

n m
do,o +qi1,1nhm + qi10n + Q20 (2> + go,1M + Qo2 (2>

Example for degree 2: ((L(int), L(int)), 90,0, G1,0, 92,0, G1.1. 90,1, G0.2)
General case: index system that enumerates resource polynomials
3. Extract linear constraints for the coefficients during type inference

4. Solve the constraints with an LP solver




Outline

- Motivation \/

- How does automatic resource bound analysis work? \/

e How well does automatic resource bound analysis work?
(Implementation and experiments)

- What are the properties of the LP instances that we get?




Resource Aware ML

- Based on Inria’s OCaml compiler

- ~12,000 lines of code (+ ~29,000 loc form the OCaml| compiler)
* Currently we use Coin-Or’s CLP C interface

- Features:
* Higher-order functions and polymorphism
» User defined inductive types
- Parallel evaluation
- Side effects
» User defined (hon-monotone) resource metrics

* Upper and lower bounds




Web interface at

Resource Aware ML http://raml.co

- Based on Inria’s OCaml compiler

- ~12,000 lines of code (+ ~29,000 loc form the OCaml| compiler)
* Currently we use Coin-Or’s CLP C interface

- Features:
- Higher-order functions and polymorphism
» User defined inductive types
- Parallel evaluation
- Side effects
» User defined (hon-monotone) resource metrics

* Upper and lower bounds



http://raml.co

Experimental Evaluation



Quick Sort (Integers)

Split and Sort

Insertion Sort (Strings)

Duplicate Elimination

Longest Common
Subsequence

Matrix Multiplication
Breadth-First Matrix

Multiplication

Dijkstra’s Shortest-Path
Algorithm

In-Place Quick Sort for
Arrays

Micro Benchmarks

Computed Bound

12n%2 + 14n +3

16n° + 46n + 9

8n’m + 8n2 - 8nm + 4n + 3

6n’m + 9n? - 6nm + 3n + 3

39nm + 6m + 21n + 19

28xmn + 32xm + 2x + 14n + 21

2yz + 15ynmx + 14ynm + 15yn + 104n + 51
79.5n% + 31.5n + 38

12.25x2 + 52.75x + 3

Actual Behavior

Performance

0.1s

2.1s

091s

0.97 s

0.36 s

1.96 s

498 s

2.50 s

0.64 s

Evaluation-Step Bounds



500000 | | | | |
12xA2 + 14X + 3 ———

450000 measured worst-case cost X

400000
350000
300000
250000
200000
150000
100000

50000

0

0

Evaluation-step bound vs.

Quick Sort for Integers . .acured behavior




500000 | | , | |
12xA2 + 14X + 3 ———

450000 measured worst-case cost X

400000
350000
300000
250000
200000

150000

100000 First tight bound
for quick sort.

50000

0

0

Evaluation-step bound vs.

Quick Sort for Integers . .acured behavior




measured worst-case steps
39xy + oy + 21x + 19 ———

100000
80000
60000
40000
20000

0 L

Longest Common
Subseqguence

Evaluation-step bound vs.
measured behavior




measured worst-case steps
39xy + 6y + 21x + 19 ———

100000
80000
60000
40000
20000

0 L

First automatically
derived bound for
LCS.

Longest Common  Evaluation-step bound vs.

measured behavior

Subseqguence




measured worst-case steps -+
XXy + 8XX - 8Xxy + 4x + 3 ————

1.2e+06
le+06
800000
600000
400000
200000
O_

Insertion Sort for
Strings

Evaluation-step bound vs.
measured behavior




measured worst-case steps -+
XXy + 8XX - 8Xxy + 4x + 3 ————

1.2e+06
1le+06
800000
600000
400000
200000
0 L

Insertion Sort for
Strings

First automatic
bound for a sorting
algorithm for strings.

Evaluation-step bound vs.
measured behavior




Macro Benchmarks

1) OCaml’s standard list library list.ml
> Evaluation-step bounds for 47 of 51 top-level functions

» 428 lines of code; 3.2 seconds on a Macbook Pro

2) CompCert C Compiler
> OCaml code extracted from the Coq specification

> Evaluation-step bounds for 13 topmost modules
in the dependency graph

> 138 of 164 functions bounded; 2740 lines of code; 21min



Macro Benchmarks

1) OCaml’s standard list library list.ml
> Evaluation-step bounds for 47 of 51 top-level functions

» 428 lines of code; 3.2 seconds on a Macbook Pro

2) CompCert C Compiler
> OCaml code extracted from the Coq specification

- Evaluation-step bounds for 13 topmost modules ' Problems: Modules
in the dependency graph and untyped code.

> 138 of 164 functions bounded; 2740 lines of code; 21min



Metric #Funs

LOC

Time

#Const

#Lin

#Quad

#Cubic

#Poly

#Fail

Asym.

Tight

steps 243 3218 72.10s 16 130 60 28 239 4 225

heap 243 3218 70.36s 41 112 60 22 239 4 225

tick 174 2144 64.68s 19 79 53 19 174 0 160
CompCert:

steps 164 2740 1300.91s 32 99 7 0 138 26 137

Macro Benchmarks



How can we make predictions about compiled
code”



Machine Learning Cost Models

How to obtain realistic cost metrics for high-level analysis?
- Treat hardware, compiler, and runtime systems as black box
 Select training programs that cover relevant operations

» Use linear regression to obtain average time and memory costs of
operations

- Combine time and memory predictions to get a time model for
execution with garbage collection



Bound for

st Append on X806

1.6 GHz Intel Core i5-5250U processor

45

Error ———
40 | Actual Time
Expected Time
35
£ 30} | L e
e 25t - g
|_
C = f
e 20} -
>
2 157 | Lo f
10 i ‘Ek_ _
0 1 1

0 2

14

16 18

20



Outline

- Motivation \/

- How does automatic resource bound analysis work? ‘/

- How well does automatic resource bound analysis work?? \/
(Implementation and experiments)

e What are the properties of the LP instances that we get?




Network-Flow Problems

Constraints we derive are almost network-flow problems



Network-Flow Problems

Constraints we derive are almost network-flow problems

Network-flow constraints:

ZX;—ZXJZ[)
] J



Network-Flow Problems

Constraints we derive are almost network-flow problems

Network-flow constraints:

ZX;—ZXJZ[)
] J

Inflow.



Network-Flow Problems

Constraints we derive are almost network-flow problems

Network-flow constraints:

ZX;—ZXJZ[)
] J

Outflow.

Inflow.



Network-Flow Problems

Constraints we derive are almost network-flow problems

Network-flow constraints: Constant sink/

Source.
E X — E X_, = b
I J

Outflow.

Inflow.



Network-Flow Problems

Constraints we derive are almost network-flow problems

Network-flow constraints: Constant sink/

Source.
E X — E X_, = b
I J

Outflow.

Inflow.

/,'<X,'<U,'



Network-Flow Problems

Constraints we derive are almost network-flow problems

Network-flow constraints: Constant sink/

Source.
E X — E X_, = b
I J

Outflow.

Inflow.

/,'<X,'<U,'

Flow capacity.



Linear Constraints have a Simple Form

- Pay for constant cost

- Account for size changes
qi = Gi + Qi1

 Recursive call

« Conditional branches



Linear Constraints have a Simple

- Pay for constant cost

- Account for size changes
qi = Gi + Qi1

 Recursive call

« Conditional branches

-orm

Network
constraints.



Linear Constraints have a Simple Form

- Pay for constant cost

Network
constraints.

q—=—4q —C
- Account for size changes Flow through an edge
q: = q; + git1 is used twice.
« Recursive call
qa—=2pr
- Conditional branches
q > p1 q = po



Linear Constraints have a Simple Form

- Pay for constant cost

Network
constraints.

q—=—4q —C
- Account for size changes Flow through an edge
q: = q; + git1 is used twice.
* Recursive call Account for cost
qa=2p recursively.
- Conditional branches
q > p1 q = po



Linear Constraints have a Simple Form

o f - t Network
« Pay for constant cos :
y , constraints.
qa—4dg C

- Account for size changes Flow through an edge

q: = q; + git1 is used twice.
* Recursive call Account for cost

qa=2p recursively.
« Conditional branches
q> pp qg>p Cover cost in both

branches (possible
waste).



Accounting for Size Change

Additive shift:  <(q1, ..., gx) = (g1 + @2, ..., Gk—1 + Gk, Gk )




Accounting for Size Change

Additive shift:  <(q1, ..., gx) = (g1 + @2, ..., Gk—1 + Gk, Gk )

potential of a list




Accounting for Size Change

List types:  L(9r- qk)(A)
Potential: (¢ : Lla-ad)y =35> g; (")
Additive shift: <(q1,....9x) = (g1 + g2, ..., Gk—1 + Gk, Gk)

potential of a list

constant

potential of the tail
using the shift




Generation of Linear Constraints

1. It is easy to pass potential to list tails without loss

O((x::xs) 1 L9) + ¢ = O(xs : LYND) 4+ (g1 + )

2. Pattern: one recursive call and polynomial spill

3. It is easy to share potential when aliasing data

O LITPY = (L L) + d(L: LP)




Generation of Linear Constraints
CQ(QL k) = (g1 + g2, ..., Gk—1 + qx, Qk))

1. It is easy to pass potential to list t\\/ils without loss
O((x::xs) 1 L9) + ¢ = O(xs : LYND) 4+ (g1 + )

2. Pattern: one recursive call and polynomial spill

3. It is easy to share potential when aliasing data
O LITP) = (¢ L9) + &(¢ : LP)




Most Complex Constraints: Sharing

f(x) = g(x,x) Assume cost of g(x,y) is 10|x|-|y|

X
Bound for f is given as :



Most Complex Constraints: Sharing

f(x) = g(x,x) Assume cost of g(x,y) is 10|x|-|y|

X
Bound for f is given as :
o)
5 X
Need to covert q|x|° to Z qi\



Most Complex Constraints: Sharing

f(x) = g(x,x) Assume cost of g(x,y) is 10|x|-|y|

X
Bound for f is given as :
o)
5 X
Need to covert q|x|° to Z qi\

Constraints:

g1 = 1-qg g = 2-q gx = 0-q for kK > 2



Most Complex Constraints: Sharing

f(x) = g(x,x) Assume cost of g(x,y) is 10|x|-|y|

X
Bound for f is given as :
o)
5 X
Need to covert q|x|° to Z qi\

Constraints:

Coefficients for
change of basis.

g1 = 1-qg g = 2-q gx = 0-q for kK > 2



Constraint Solving in Practice

 LP solving of our constraints is linear in practice
« CLP and CPLEX are similar; Ip_solve is slow (non-linear)

- Large programs (with high degree search space) have around
1 million constraints

- Solving 1 million constraints takes about 1 minute with CLP

- Generating the constraints takes about as much time as solving them



Automatic Amortized Resource Analysis

 Precise: bounds are multivariate resource polynomials
- Efficient: inference via linear programming
- Reliable: formal soundness proof of the bounds

- Verifiable: type derivation is a certificate

Current and future research:
* Non-polynomial bounds
- Garbage collection

» Concurrency

« Better hardware models




Automatic Amortized Resource Analysis

 Precise: bounds are multivariate resource polynomials
- Efficient: inference via linear programming
- Reliable: formal soundness proof of the bounds

- Verifiable: type derivation is a certificate

Current and future research:
Web interface at

* Non-polynomial bounds http://raml.co

- Garbage collection
» Concurrency

« Better hardware models



http://raml.co

