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Motivation: Why analyze resource usage of
programs”?
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Performance Bugs are Common and Expensive
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Research Challenges

Help developers to reason about quantitative properties.

- Computer support: Modeling, specification, verification,
automation and user interaction

- Compositionally: Track size changes and specify
resource-usage of library code

- Language features: Concurrency, higher-order, data
structures, ...



Why Is this Related”

1. Beyond worst-case analysis of algorithms

> Automation

> Concrete (non-asymptotic) bounds for specific hardware

2. We face similar challenges in resource-bound analysis

> “The worst-case behavior doesn’t happen in practice.”

3. We reduce bound inference to linear optimization
> Linear programs we get are solvable in linear time in practice

> Theoretical worst-case of the algorithm is exponential (simplex)



Outline

- Motivation \/

e How does automatic resource bound analysis work?

- How well does automatic resource bound analysis work?
(implementation and experiments)

- What are the properties of the LP instances that we get?
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l[dea: Automate Amortized Analysis

 Assign potential functions to data structures

( d(state) > 0 )

= States are mapped to non-negative numbers

- Potential pays the resource consumption and Gb(before) > ®(after) + cosa
. . s
the potential at the following program poin ¥ telescoping

+ Initial potential is an upper bound (Cb(initia/ state) > ) COSO

Type systems for automatic analysis Potential is given by

types.
 Fix a format of potential functions

» Develop type rules that manipulate potential functions
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Example: Append for Persistent Lists

append(x,y) Heap-space usage is 2n if

> n is the length of list x

> One list element requires two heap cells
(data and pointer)

Example evaluation:

x—(a) y—(d)}—c)~(o)—(a)— append(x,y)
(b) (e
(o)

Heap usage: 2'n =2*3 =6
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Example: Composing Calls of Append

F(x,y,z) = { Heap usage of f(x,y,z) is 2n + 2(n+m) if
t = append(x,y); > n is the length of list x
append(t,z)

} > m is the length of list y
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Example: Composing Calls of Append

¥

F(x,y,2) = 1

t = append(x,y);
append(t,z)

x—~(a)

Heap usage of f(x,y,z) is 2n + 2(n+m) if
> nis the length of list x

» m is the length of list y

y—(d )¢ )b )~a)—t Implicit reasoning

about size-changes.

z—»@«—@«—@«—@h append(t,z)
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Example: Composing Calls of Append

FOx,y,2) = { " append: ( cint). £ cinty) 2425 (2 (int)}

t = append(x,y);

append(t,z)

} append: (LZ (wLn’c),L0 (int)) —Q4Q> L® (int)}

The most general type of append is specialized at call-sites:

append: (19 (int),l” (int)) 245 1" (int) | o Linear

constraints.
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User-defined resource metrics
(i.e., by tick(q) in the code)

Naturally compositional: tracks size
changes, types are specifications

Bound inference by reduction to
efficient LP solving

Type derivations prove bounds
with respect to the cost semantics

°hd Thesis: Polynomial
Potential Functions

L For example m*n?. J

\
Linear Potential Multivariate Polynomial
Functions Potential Functions

First automatic, type-based resource
analysis for polynomial bounds.
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Example: Polynomial Potential Functions
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Example: Polynomial Potential Functions

t = append(xs,ys): Computed time bound:

quicksort(t) 12m? + 24mn + 12n> & 14m + 22n + 11

2

[ Cost of append >8n + 3\ 34 oy <n+m>

append : ((L(int), L(int)), )) — (L (/nt)\(?) 26.24))

+‘+ 24 (g) +24nm +24<';)
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Multivariate Resource Polynomials [POP

Map data structures to non-negative rational numbers
p: Al — Qg

Are non-negative linear combinations of the following base
polynomials:

P(Int) = {a+— 1}
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P(L(A) ={[ar,....an) = > |]p,i(a;) | k€N, pi € P(A)}

1<j1 <+ <ju<n i=1




Multivariate Resource Polynomials [POP

Map data structures to non-negative rational numbers
p: Al — Qg

Are non-negative linear combinations of the following base
polynomials:

P(Int) = {a+> 1} Important innovation:
sigma-pi formula for data

structures
P(A1, A2) = {(a1, a2) = pi(a1) - p2(a2) (ki i);
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Resource Polynomials: Examples

[31, e an] — 8n + 3

(a1, ..., a] — 36 (Q) +16 <g> +20n+ 3

([a1, ..., an], [b1, ..., bm]) — 39mn 4+ 6m + 21n + 19

1 1 n n n
[[al,...,aml],...,[al,...amn]]%18<2> +12n+ 3 + Z 12m;

1<i<yj<n
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Automatic Computation of the Bounds

1. Fix a maximal degree of resource polynomials

2. Annotate each type with (yet unknown) coefficients for resource
polynomials

Example for degree 2: ((L(int), L(int)), 90,0, G1,0, 92,0, G1.1. 90,1, G0.2)
General case: index system that enumerates resource polynomials
3. Extract linear constraints for the coefficients during type inference

4. Solve the constraints with an LP solver




Automatic Computation of the Bounds

1. Fix a maximal degree of resource polynomials

2. Annotate each type with (yet unknown) coefficients for resource

polynomials

n m
do,o +qi1,1nhm + qi10n + Q20 (2> + go,1M + Qo2 (2>

Example for degree 2: ((L(int), L(int)), 90,0, G1,0, 92,0, G1.1. 90,1, G0.2)
General case: index system that enumerates resource polynomials
3. Extract linear constraints for the coefficients during type inference

4. Solve the constraints with an LP solver
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Resource Aware ML

- Based on Inria’s OCaml compiler

- ~12,000 lines of code (+ ~29,000 loc form the OCaml| compiler)
* Currently we use Coin-Or’s CLP C interface

- Features:
* Higher-order functions and polymorphism
» User defined inductive types
- Parallel evaluation
- Side effects
» User defined (hon-monotone) resource metrics

* Upper and lower bounds




Web interface at

Resource Aware ML http://raml.co

- Based on Inria’s OCaml compiler

- ~12,000 lines of code (+ ~29,000 loc form the OCaml| compiler)
* Currently we use Coin-Or’s CLP C interface

- Features:
- Higher-order functions and polymorphism
» User defined inductive types
- Parallel evaluation
- Side effects
» User defined (hon-monotone) resource metrics

* Upper and lower bounds
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Experimental Evaluation



Quick Sort (Integers)

Split and Sort

Insertion Sort (Strings)

Duplicate Elimination

Longest Common
Subsequence

Matrix Multiplication
Breadth-First Matrix

Multiplication

Dijkstra’s Shortest-Path
Algorithm

In-Place Quick Sort for
Arrays

Micro Benchmarks

Computed Bound

12n%2 + 14n +3

16n° + 46n + 9

8n’m + 8n2 - 8nm + 4n + 3

6n’m + 9n? - 6nm + 3n + 3

39nm + 6m + 21n + 19

28xmn + 32xm + 2x + 14n + 21

2yz + 15ynmx + 14ynm + 15yn + 104n + 51
79.5n% + 31.5n + 38

12.25x2 + 52.75x + 3

Actual Behavior

Performance

0.1s

2.1s

091s

0.97 s

0.36 s

1.96 s

498 s

2.50 s

0.64 s

Evaluation-Step Bounds
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450000 measured worst-case cost X

400000
350000
300000
250000
200000

150000

100000 First tight bound
for quick sort.

50000

0

0

Evaluation-step bound vs.

Quick Sort for Integers . .acured behavior
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measured worst-case steps
39xy + 6y + 21x + 19 ———

100000
80000
60000
40000
20000

0 L

First automatically
derived bound for
LCS.

Longest Common  Evaluation-step bound vs.

measured behavior

Subseqguence
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1.2e+06
1le+06
800000
600000
400000
200000
0 L

Insertion Sort for
Strings

First automatic
bound for a sorting
algorithm for strings.

Evaluation-step bound vs.
measured behavior




Macro Benchmarks

1) OCaml’s standard list library list.ml
> Evaluation-step bounds for 47 of 51 top-level functions

» 428 lines of code; 3.2 seconds on a Macbook Pro

2) CompCert C Compiler
> OCaml code extracted from the Coq specification

> Evaluation-step bounds for 13 topmost modules
in the dependency graph

> 138 of 164 functions bounded; 2740 lines of code; 21min



Macro Benchmarks

1) OCaml’s standard list library list.ml
> Evaluation-step bounds for 47 of 51 top-level functions

» 428 lines of code; 3.2 seconds on a Macbook Pro

2) CompCert C Compiler
> OCaml code extracted from the Coq specification

- Evaluation-step bounds for 13 topmost modules ' Problems: Modules
in the dependency graph and untyped code.

> 138 of 164 functions bounded; 2740 lines of code; 21min



Metric #Funs

LOC

Time

#Const

#Lin

#Quad

#Cubic

#Poly

#Fail

Asym.

Tight

steps 243 3218 72.10s 16 130 60 28 239 4 225

heap 243 3218 70.36s 41 112 60 22 239 4 225

tick 174 2144 64.68s 19 79 53 19 174 0 160
CompCert:

steps 164 2740 1300.91s 32 99 7 0 138 26 137

Macro Benchmarks



How can we make predictions about compiled
code”



Machine Learning Cost Models

How to obtain realistic cost metrics for high-level analysis?
- Treat hardware, compiler, and runtime systems as black box
 Select training programs that cover relevant operations

» Use linear regression to obtain average time and memory costs of
operations

- Combine time and memory predictions to get a time model for
execution with garbage collection
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Outline

- Motivation \/

- How does automatic resource bound analysis work? ‘/

- How well does automatic resource bound analysis work?? \/
(Implementation and experiments)

e What are the properties of the LP instances that we get?
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Network-Flow Problems

Constraints we derive are almost network-flow problems

Network-flow constraints: Constant sink/

Source.
E X — E X_, = b
I J

Outflow.

Inflow.

/,'<X,'<U,'

Flow capacity.
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- Pay for constant cost

Network
constraints.

q—=—4q —C
- Account for size changes Flow through an edge
q: = q; + git1 is used twice.
* Recursive call Account for cost
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- Conditional branches
q > p1 q = po



Linear Constraints have a Simple Form

o f - t Network
« Pay for constant cos :
y , constraints.
qa—4dg C

- Account for size changes Flow through an edge

q: = q; + git1 is used twice.
* Recursive call Account for cost

qa=2p recursively.
« Conditional branches
q> pp qg>p Cover cost in both

branches (possible
waste).
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Accounting for Size Change

List types:  L(9r- qk)(A)
Potential: (¢ : Lla-ad)y =35> g; (")
Additive shift: <(q1,....9x) = (g1 + g2, ..., Gk—1 + Gk, Gk)

potential of a list

constant

potential of the tail
using the shift




Generation of Linear Constraints

1. It is easy to pass potential to list tails without loss

O((x::xs) 1 L9) + ¢ = O(xs : LYND) 4+ (g1 + )

2. Pattern: one recursive call and polynomial spill

3. It is easy to share potential when aliasing data

O LITPY = (L L) + d(L: LP)




Generation of Linear Constraints
CQ(QL k) = (g1 + g2, ..., Gk—1 + qx, Qk))

1. It is easy to pass potential to list t\\/ils without loss
O((x::xs) 1 L9) + ¢ = O(xs : LYND) 4+ (g1 + )

2. Pattern: one recursive call and polynomial spill

3. It is easy to share potential when aliasing data
O LITP) = (¢ L9) + &(¢ : LP)
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Most Complex Constraints: Sharing

f(x) = g(x,x) Assume cost of g(x,y) is 10|x|-|y|

X
Bound for f is given as :
o)
5 X
Need to covert q|x|° to Z qi\

Constraints:

Coefficients for
change of basis.

g1 = 1-qg g = 2-q gx = 0-q for kK > 2



Constraint Solving in Practice

 LP solving of our constraints is linear in practice
« CLP and CPLEX are similar; Ip_solve is slow (non-linear)

- Large programs (with high degree search space) have around
1 million constraints

- Solving 1 million constraints takes about 1 minute with CLP

- Generating the constraints takes about as much time as solving them



Automatic Amortized Resource Analysis

 Precise: bounds are multivariate resource polynomials
- Efficient: inference via linear programming
- Reliable: formal soundness proof of the bounds

- Verifiable: type derivation is a certificate

Current and future research:
* Non-polynomial bounds
- Garbage collection

» Concurrency

« Better hardware models




Automatic Amortized Resource Analysis

 Precise: bounds are multivariate resource polynomials
- Efficient: inference via linear programming
- Reliable: formal soundness proof of the bounds

- Verifiable: type derivation is a certificate

Current and future research:
Web interface at

* Non-polynomial bounds http://raml.co

- Garbage collection
» Concurrency

« Better hardware models



http://raml.co

