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Nearest neighbor

The primeval approach to information retrieval and classification.

Example: image retrieval and classification.
Given a query image, find similar images in a database using NN search.

E.g. Fixed-dimensional “semantic representation”:
278 From Pixels to Semantic Spaces: Advances in Content-Based Image Search

Fig. 1.7 Query by semantic example. Images are represented as vectors of concept proba-
bilities, i.e., points on the semantic probability simplex. The vector computed from a query
image is compared to those extracted from the images in the database, using a suitable

similarity function. The closest matches are returned by the retrieval system.

Fig. 1.8 Top four matches to the QBSE query derived from the image shown on the left.
Because good matches require agreement along various dimensions of the semantic space,
QBSE is significantly less prone to the errors made by QBVE. This can be seen by comparing

this set of image matches to those of Figure 1.3.

judgments of similarity that the QBVE matches of that figure.

Inspection of the semantic multinomials associated with all images

shown reveals that, although the query image receives a fair amount

Basic questions:

• Statistical: error analysis of NN classification

• Algorithmic: finding the NN quickly
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Rate of convergence of NN classification

The data distribution:

• Data points X are drawn from a distribution µ on Rp

• Labels Y ∈ {0, 1} follow Pr(Y = 1|X = x) = η(x).

Classical theory for NN (or k-NN) classifier based on n data points:

• Can we give a non-asymptotic error bound depending only on n, p?

No.

• Smoothness assumption: η is α-Holder continuous:

|η(x)− η(x ′)| ≤ L‖x − x ′‖α.

Then: error bound O(n−α/(2α+p)).

• This is “optimal”.

There exists a distribution with parameter α for which this bound is
achieved.
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Goals

What we need for nonparametric estimators like NN:

1 Bounds that hold without any assumptions.
Use these to determine parameters that truly govern the difficulty of
the problem.

2 How do we know when the bounds are tight enough?
When the lower and upper bounds are comparable for every
instance.



The complexity of nearest neighbor search

Given a data set of n points in Rp, build a data structure for efficiently
answering subsequent nearest neighbor queries q.

• Data structure should take space O(n)

• Query time should be o(n)

Troubling example: exponential dependence on dimension?
For any 0 < ε < 1,

• Pick 2O(ε2p) points uniformly from the unit sphere in Rp

• With high probability, all interpoint distances are (1± ε)
√

2
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Approximate nearest neighbor

For data set S ⊂ Rp and query q, a c-approximate nearest neighbor is
any x ∈ S such that

‖x − q‖ ≤ c ·min
z∈S
‖z − q‖.

Locality-sensitive hashing (Indyk, Motwani, Andoni):

• Data structure size n1+1/c2

• Query time n1/c2

Is “c” a good measure of the hardness of the problem?
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Approximate nearest neighbor

The MNIST data set of handwritten digits:

What % of c-approximate nearest neighbors have the wrong label?

c 1.0 1.2 1.4 1.6 1.8 2.0
Error rate (%) 3.1 9.0 18.4 29.3 40.7 51.4
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Talk outline

1 Complexity of NN search

2 Rates of convergence for NN classification



The k-d tree: a hierarchical partition of Rp

Defeatist search: return NN in query point’s leaf node.

Problem: This might fail to return the true NN.

Heuristics for reducing failure probability in high dimension:

• Random split directions (Liu, Moore, Gray, and Kang)

• Overlapping cells (Maneewongvatana and Mount; Liu et al)

Popular option: forests of randomized trees (e.g. FLANN)
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Heuristic 1: Random split directions

In each cell of the tree, pick split direction uniformly at random from the
unit sphere in Rp

Perturbed split: after projection, pick β ∈R [1/4, 3/4] and split at the
β-fractile point.



Heuristic 2: Overlapping cells

Overlapping split points: 1/2− α fractile and 1/2 + α fractile

Procedure:

• Route data (to multiple leaves) using overlapping splits

• Route query (to single leaf) using median split

Spill tree has size n1/(1−lg(1+2α)): e.g. n1.159 for α = 0.05.
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Two randomized partition trees

 12  12  
 

  1 � �� 1
2 + ↵ 1

2 + ↵

median split perturbed split overlapping split

Routing data Routing queries
k-d tree Median split Median split

Random projection tree Perturbed split Perturbed split
Spill tree Overlapping split Median split



Failure probability

Pick any data set x1, . . . , xn and any query q.

• Let x(1), . . . , x(n) be the ordering of data by distance from q.

• Probability of not returning the NN depends directly on

Φ(q, {x1, . . . , xn}) =
1

n

n∑
i=2

‖q − x(1)‖
‖q − x(i)‖

(This probability is over the randomization in tree construction.)

• Spill tree: failure probability ∝ Φ

• RP tree: failure probability ∝ Φ log 1/Φ



Random projection of three points

Let q ∈ Rp be the query, x its nearest neighbor and y some other point:

‖q − x‖ < ‖q − y‖.

Bad event: when the data is projected onto a random direction U, point
y falls between q and x .

x

y

q U

What is the probability of this?

This is a 2-d problem, in the plane defined by q, x , y .

• Only care about projection of U on this plane

• Projection of U is a random direction in this plane
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Random projection of three points

x

y

q ✓

Probability that U falls in this bad
region is θ/2π.

Lemma
Pick any three points q, x , y ∈ Rp such that ‖q − x‖ < ‖q − y‖. Pick U
uniformly at random from the unit sphere Sp−1. Then

Pr(y · U falls between q · U and x · U) ≤ 1

2

‖q − x‖
‖q − y‖ .

(Tight within a constant unless the points are almost-collinear)
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Random projection of a set of points

q

x(2)

x(1)

x(3)

Lemma
Pick any x1, . . . , xn and any query q. Pick U ∈R Sp−1 and project all points
onto direction U. Expected fraction of projected xi falling between q and x(1) is
at most

1

2n

n∑
i=2

‖q − x(1)‖
‖q − x(i)‖

=
1

2
Φ

Proof: Probability that x(i) falls between q and x(1) is at most 1
2

‖q−x(1)‖
‖q−x(i)‖

. Now

use linearity of expectation.

Bad event: this fraction is > αn. Happens with probability ≤ Φ/2α.
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Failure probability of NN search

Fix any data points x1, . . . , xn and query q. For m ≤ n, define

Φm(q, {x1, . . . , xn}) =
1

m

m∑
i=2

‖q − x(1)‖
‖q − x(i)‖

Theorem
Suppose a randomized spill tree is built for data set x1, . . . , xn with leaf
nodes of size no . For any query q, the probability that the NN query does
not return x(1) is at most

1

2α

∑̀
i=0

Φβin(q, {x1, . . . , xn})

where β = 1/2 + α and ` = log1/β(n/no) is the tree’s depth.

• RP tree: same result, with β = 3/4 and Φ→ Φ ln(2e/Φ)

• Extension to k nearest neighbors is immediate
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Bounding Φ in cases of interest

Need to bound

Φm(q, {x1, . . . , xn}) =
1

m

m∑
i=2

‖q − x(1)‖
‖q − x(i)‖

What structural assumptions on the data might be suitable?

Set S ⊂ Rp has doubling dimension k if for any (Euclidean) ball B, the
subset S ∩ B can be covered by 2k balls of half the radius.

Example: S = line has doubling dimension 1.

Dimension notion #1: doubling dimension

Set S ½ RD has doubling dimension· d if: for any ball B, 
subset S Å B can be covered by 2d balls of half the 
radius.

S = line
Doubling dimension = 1

S = k-dimensional affine subspace
Doubling dimension = O(k)

S = set of N points
Doubling dimension · log N

B S = k-dim submanifold of RD

with finite condition number
Doubling dimension = O(k) in small 
enough neighborhoods

S = points in RD with at most 
k nonzero coordinates
Doubling dimension =  O(k log D)

Also generalizes k-dimensional flat, k-dimensional Riemannian
submanifold of bounded curvature, k-sparse sets.
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NN search in spaces of bounded doubling dimension

Need to bound

Φm(q, {x1, . . . , xn}) =
1

m

m∑
i=2

‖q − x(1)‖
‖q − x(i)‖

Suppose:

• Pick any n + 1 points in Rp with doubling dimension k

• Randomly pick one of them as q; the rest are x1, . . . , xn

Then EΦm ≤ 1/m1/k .

For constant expected failure probability, use spill tree with leaf size
no = O(kk), and query time O(no + log n).



How does doubling dimension help?

Pick any n points in Rp. Pick one of these points, x . At most how many
of the remaining points can have x as its nearest neighbor?

At most cp, for some constant c [Stone].

Can (almost) replace p by the doubling dimension [Clarkson].
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Open problems

1 Formalizing helpful structure in data.
What are other types of structure in data for which

Φ(q, {x1, . . . , xn}) =
1

n

n∑
i=2

‖q − x(1)‖
‖q − x(i)‖

can be bounded?

2 Empirical study of Φ.
Is Φ a good predictor of which NN search problems are harder than
others?
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Nearest neighbor classification

x

x'

d(
x,
x'
)

Data points lie in a metric space (X , d).

Given n data points (x1, y1), . . . , (xn, yn), how to answer a query x?

• 1-NN returns the label of the nearest neighbor of x amongst the xi .

• k-NN returns the majority vote of the k nearest neighbors.

• Often let k grow with n.
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Statistical learning theory setup
Training points come from the same source as future query points:

• Underlying measure µ on X from which all points are generated.

• Label Y of X follows distribution η(x) = Pr(Y = 1|X = x).

• The Bayes-optimal classifier

h∗(x) =

{
1 if η(x) > 1/2
0 otherwise

,

has the minimum possible error, R∗ = EX min(η(X ), 1− η(X )).

• Let hn,k be the k-NN classifier based on n labeled data points.
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Questions of interest

Let hn,k be the k-NN classifier based on n labeled data points.

1 Bounding the error of hn,k .

Assumption-free bounds on Pr(hn,k(X ) 6= h∗(X )).

2 Smoothness.
The smoothness of η(x) = Pr(Y = 1|X = x) matters:

x

⌘(x)

x

⌘(x)

• A notion of smoothness tailor-made for NN.
• Upper and lower bounds that are qualitatively similar for all

distributions in the same smoothness class.

3 Consistency of NN
Earlier work: Universal consistency in Rp [Stone]

Now: Universal consistency in a richer family of metric spaces.
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General rates of convergence

For sample size n, can identify positive and
negative regions that will reliably be classified:

+

decision
boundary

-

• For any ball B, let µ(B) be its probability mass and η(B) its average
η-value, i.e. η(B) = 1

µ(B)

∫
B
η dµ.

• Probability-radius: Grow a ball around x until probability mass ≥ p:

rp(x) = inf{r : µ(B(x , r)) ≥ p}.

Probability-radius of interest: p = k/n.

• Reliable positive region:

X+
p,∆ = {x : η(B(x , r)) ≥ 1

2
+ ∆ for all r ≤ rp(x)}

where ∆ ≈ 1/
√
k. Likewise negative region, X−p,∆.

• Effective boundary: ∂p,∆ = X \ (X+
p,∆ ∪ X

−
p,∆).

Roughly, PrX (hn,k(X ) 6= h∗(X )) ≤ µ(∂p,∆).
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Smoothness and margin conditions

• The usual smoothness condition in Rp: η is α-Holder continuous if
for some constant L, for all x , x ′,

|η(x)− η(x ′)| ≤ L‖x − x ′‖α.

• Mammen-Tsybakov β-margin condition: For some constant C , for
any t, we have µ ({x : |η(x)− 1/2| ≤ t}) ≤ Ctβ .

Width-t margin
around decision
boundary

x

⌘(x)

1/2

1

• Audibert-Tsybakov: Suppose these two conditions hold, and that µ
is supported on a regular set with 0 < µmin < µ < µmax . Then
ERn − R∗ is Ω(n−α(β+1)/(2α+p)).

Under these conditions, for suitable (kn), this rate is achieved by kn-NN.
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A better smoothness condition for NN

How much does η change over
an interval?

⌘(x)

x x0

• The usual notions relate this to |x − x ′|.
• For NN: more sensible to relate to µ([x , x ′]).

We will say η is α-smooth in metric measure space (X , d , µ) if for
some constant L, for all x ∈ X and r > 0,

|η(x)− η(B(x , r))| ≤ Lµ(B(x , r))α,

where η(B) = average η in ball B = 1
µ(B)

∫
B
η dµ.

η is α-Holder continuous in Rp, µ bounded below ⇒ η is (α/p)-smooth.
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Rates of convergence under smoothness

Let hn,k denote the k-NN classifier based on n training points.
Let h∗ be the Bayes-optimal classifier.

Suppose η is α-smooth in (X , d , µ). Then for any n, k ,

1 For any δ > 0, with probability at least 1− δ over the training set,

PrX (hn,k(X ) 6= h∗(X )) ≤ δ + µ({x : |η(x)− 1
2 | ≤ C1

√
1
k ln 1

δ})
under the choice k ∝ n2α/(2α+1).

2 En PrX (hn,k(X ) 6= h∗(X )) ≥ C2 µ({x : |η(x)− 1
2 | ≤ C3

√
1
k }).

These upper and lower bounds are qualitatively similar for all smooth
conditional probability functions:

the probability mass of the width- 1√
k

margin around the

decision boundary.
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Universal consistency in metric spaces

• Let Rn be error of k-NN classifier and R∗ the Bayes-optimal error.

• Universal consistency: Rn → R∗ (for a suitable schedule of k), no
matter what the distribution.

• Stone (1977): universal consistency in Rp.

Let (X , d , µ) be a metric measure space in which the Lebesgue
differentiation property holds: for any bounded measurable f ,

lim
r↓0

1

µ(B(x , r))

∫
B(x,r)

f dµ = f (x)

for almost all (µ-a.e.) x ∈ X .

• If kn →∞ and kn/n→ 0, then Rn → R∗ in probability.

• If in addition kn/ log n→∞, then Rn → R∗ almost surely.

Examples of such spaces: finite-dimensional normed spaces; doubling
metric measure spaces.
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Open problems

1 Are there metric spaces in which k-NN fails to be consistent?

2 Consistency in more general distance spaces.
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