linear programming and approximate constraint satisfaction

max \langle v_G, x \rangle
\quad b_1 - \langle A_1, x \rangle \geq 0
\quad b_2 - \langle A_2, x \rangle \geq 0
\quad \vdots
\quad b_R - \langle A_R, x \rangle \geq 0

Siu On Chan
MSR New England

James R. Lee
University of Washington

Prasad Raghavendra
UC Berkeley

David Steurer
Cornell
Main Theorem:

Any polynomial-sized linear program for...

<table>
<thead>
<tr>
<th>problem</th>
<th>integrality gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max-Cut</td>
<td>1/2</td>
</tr>
<tr>
<td>Max-2sat</td>
<td>3/4</td>
</tr>
<tr>
<td>Max-3sat</td>
<td>7/8</td>
</tr>
</tbody>
</table>

holds for LPs of size $\frac{\log n}{n^c \log \log n}$

Main Technique:

For approximating Max-CSPs, polynomial-size LPs are exactly as powerful as those arising from $O(1)$ rounds of the Sherali-Adams hierarchy.
a brief history of LP lower bounds

Specific LP hierarchies (Lovász-Schrijver, Sherali-Adams)
[Arora-Bollobás-Lovász 02]

Max-Cut has integrality gap $1/2$ for:

- $\Omega(n)$ rounds of LS
 [Schoenbeck-Trevisan-Tulsiani 07]
- $\omega(1)$ rounds of SA
 [Fernández de la Vega-Mathieu 07]
- $n^{\Omega(1)}$ rounds of SA
 [Charikar-Makarychev-Makarychev 09]

Extended formulations (EF)

[Yannakakis 88] — every symmetric EF for TSP (and matching) has exponential size

Every extended formulation for TSP has size $2^{\Omega(\sqrt{n})}$
[Fiorini-Massar-Pokutta-Tiwary-de Wolf 12]

EFs for approx. clique within $n^{\frac{1}{2}-\epsilon}$ require size 2^{n^ϵ}
[Braun-Fiorini-Pokutta-Steurer 12]

EFs for approx. clique within $n^{1-\epsilon}$ require size 2^{n^ϵ}
[Braverman-Moitra 13]
a brief history of LP lower bounds

\[\mathbb{R}^N \rightarrow \mathbb{R}^n \]

\[N \gg n \]

Extended formulations (EF)

[Yannakakis 88] — every symmetric EF for TSP (and matching) has exponential size

Every extended formulation for TSP has size \(2^{\Omega(\sqrt{n})}\)

[Fiorini-Massar-Pokutta-Tiwary-de Wolf 12]

EFs for approx. clique within \(n^{\frac{1}{2}-\epsilon}\) require size \(2^{n^\epsilon}\)

[Braun-Fiorini-Pokutta-Steurer 12]

EFs for approx. clique within \(n^{1-\epsilon}\) require size \(2^{n^\epsilon}\)

[Braverman-Moitra 13]
What is a linear program for MAX-CUT?

For a graph $G = (V, E)$ and $S \subseteq V$, write $\text{cut}_G(S) = \frac{|E(S, \overline{S})|}{|E|}$ so that $\text{opt}(G) = \max_{S \subseteq V} \text{cut}_G(S)$.

Standard relaxation:

$$\text{opt}(G) = \max_{x \in \{-1, 1\}^n} \sum_{i \sim j} \frac{1-x_i x_j}{2}$$

Introduce variables $\{y_{ij}\}$ meant to represent $(1 - x_i x_j)/2$

$$\max \sum_{i \sim j} y_{ij}$$

subject to:

$$\{0 \leq y_{ij} \leq 1\} \quad \{y_{ij} + y_{ik} + y_{jk} \leq 2\}$$

$$\{y_{ij} \leq y_{ik} + y_{jk}\} \quad \{y_{ij} + y_{jk} + y_{k\ell} + y_{\ell h} + y_{hi} \leq 4\}$$
For a graph $G = (V, E)$ and $S \subseteq V$, write $\text{cut}_G(S) = \frac{|E(S, \bar{S})|}{|E|}$ so that $\text{opt}(G) = \max_{S \subseteq V} \text{cut}_G(S)$.

Linearization: For every n, we have a natural number m and:

- For every n-vertex graph G, a vector $v_G \in \mathbb{R}^m$
- For every cut S, a vector $y_S \in \mathbb{R}^m$

satisfying $\text{cut}_G(S) = \langle v_G, y_S \rangle$

Relaxation: A polytope $P \subseteq \mathbb{R}^m$ such that $y_S \in P$ for every cut S

The LP value is given by $\mathcal{L}(G) = \max_{x \in P} \langle v_G, x \rangle$

Size of the relaxation $= \#$ of inequalities needed to specify P
approximation and integrality gaps

An LP relaxation \mathcal{L} is a $\mathbf{(c, s)}$-approximation for MAX-CUT if for every graph G with $\text{opt}(G) \leq s$, we have $\mathcal{L}(G) \leq c$.

Linearization: For every n, we have a natural number m and:
- For every n-vertex graph G, a vector $v_G \in \mathbb{R}^m$
- For every cut S, a vector $y_S \in \mathbb{R}^m$
 satisfying $\text{cut}_G(S) = \langle v_G, y_S \rangle$

Relaxation: A polytope $P \subseteq \mathbb{R}^m$ such that $y_S \in P$ for every cut S

The LP value is given by $\mathcal{L}(G) = \max_{x \in P} \langle v_G, x \rangle$

Size of the relaxation $= \#$ of inequalities needed to specify P
approximation and integrality gaps

An LP relaxation \mathcal{L} is a (c, s)-approximation for MAX-CUT if for every graph G with $\text{opt}(G) \leq s$, we have $\mathcal{L}(G) \leq c$.

For the next theorem, view cut_G as a function from $\{-1,1\}^n$ to $[0,1]$.

Theorem [Yannakakis via Farkas]: If there exists an LP relaxation of size R that is a (c, s)-approximation, then there are non-negative functions $q_1, q_2, \ldots, q_R : \{-1,1\}^n \to \mathbb{R}_+$ such that for every graph G with $\text{opt}(G) \leq s$, there exists $\lambda_1, \lambda_2, \ldots, \lambda_R \geq 0$ satisfying

$$c - \text{cut}_G = \lambda_1 q_1 + \lambda_2 q_2 + \cdots + \lambda_R q_R$$
THEOREM [Yannakakis via Farkas]: If there exists an LP relaxation of size R that is a (c, s)-approximation, then there are non-negative functions $q_1, q_2, \ldots, q_R: \{-1,1\}^n \rightarrow \mathbb{R}_+$ such that for every graph G with $\text{opt}(G) \leq s$, there exists $\lambda_1, \lambda_2, \ldots, \lambda_R \geq 0$ satisfying

$$c - \text{cut}_G = \lambda_1 q_1 + \lambda_2 q_2 + \cdots + \lambda_R q_R$$

max $\langle v_G, x \rangle$

$$b_1 - \langle A_1, x \rangle \geq 0$$

$$b_2 - \langle A_2, x \rangle \geq 0$$

$$\vdots$$

$$b_R - \langle A_R, x \rangle \geq 0$$

$q_i(S) = b_i - \langle A_i, y_S \rangle$

Farkas’ Lemma says that every linear inequality valid for the polytope P can be derived from a non-negative combination of the defining inequalities.

Apply to the valid inequality

$$c - \langle v_G, x \rangle \geq 0$$
Theorem [Yannakakis via Farkas]: If there exists an LP relaxation of size R that is a (c, s)-approximation, then there are non-negative functions $q_1, q_2, \ldots, q_R : \{-1,1\}^n \to \mathbb{R}_+$ such that for every graph G with $\text{opt}(G) \leq s$, there exists $\lambda_1, \lambda_2, \ldots, \lambda_R \geq 0$ satisfying

$$c - \text{cut}_G = \lambda_1 q_1 + \lambda_2 q_2 + \cdots + \lambda_R q_R$$

Find a graph G and a hyperplane H such that:

$$\langle H, q_i \rangle \geq 0 \text{ for } i = 1, 2, \ldots, R,$$

but $\langle H, c - \text{cut}_G \rangle < 0$

$$H : \{-1,1\}^n \to \mathbb{R}$$
Theorem [Yannakakis via Farkas]: If there exists an LP relaxation of size R that is a (c, s)-approximation, then there are non-negative functions $q_1, q_2, \ldots, q_R : \{-1, 1\}^n \rightarrow \mathbb{R}_+$ such that for every graph G with $\text{opt}(G) \leq s$, there exist $\lambda_1, \lambda_2, \ldots, \lambda_R \geq 0$ satisfying

$$c - \text{cut}_G = \lambda_1 q_1 + \lambda_2 q_2 + \ldots + \lambda_R q_R$$

A function $q : \{-1, 1\}^n \rightarrow \mathbb{R}$ is a k-junta if it only depends on k of its input coordinates.

k rounds of Sherali-Adams corresponds to the case when all the q_i's are k-junta's, i.e.

$$c - \text{cut}_G \in \text{cone}(\text{non-negative } k\text{-juntas})$$
Let G_0 be a (c, s) gap instance for k rounds of Sherali-Adams.

$q_1, q_2, \ldots, q_R: \{-1, 1\}^n \rightarrow \mathbb{R}_+$ are $n^{0.2}$-juntas.

Works for $R \sim n^{0.3k}$.

\[|G_0| = m \]

\[|G| = n \gg m \sim \sqrt{n} \]
smoothing the q'_is

Normalize $q_1, q_2, \ldots, q_R: \{-1,1\}^n \to \mathbb{R}_+$ so that $\mathbb{E}(q_i) = 1$

Consider all the points at which $q_i(x) > R^2$ for some i

By Markov's inequality, total measure of such points is $< \frac{1}{R}$

Zero out the separating functional H on these points.

Uses: $\|H_{SA}\|_\infty$ small
Lemma:

Suppose $q : \{-1,1\}^n \to \mathbb{R}_+$ satisfies $\mathbb{E}(q) = 1$ and $\|q\|_\infty < R^2$.

Then there is an $O(k (\log R) n^{0.2})$-junta q' such that every degree-k Fourier coefficient of $q - q'$ is at most $n^{-0.1}$

Tells us nothing about the high-degree Fourier coefficients of $q - q'$.

That's OK. The Sherali-Adams(k) functional $H_{SA} : \{-1,1\}^n \to \mathbb{R}$ is degree-k (as a multi-linear polynomial).
Lemma:

Suppose \(q : \{-1,1\}^n \to \mathbb{R}_+ \) satisfies \(\mathbb{E}(q) = 1 \) and \(\|q\|_\infty < R^2 \).

Then there is an \(O(k (\log R) n^{0.2}) \)-junta \(q' \) such that every degree-\(k \) Fourier coefficient of \(q - q' \) is at most \(n^{-0.1} \).

Tells us nothing about the high-degree coefficients.

That's OK. The Sherali-Adams(\(k \)) functional \(H \) of degree-\(k \) (as a multi-linear polynomial)
Recap

(i) By zeroing H on a small set, can assume that $\mathbb{E}(q_i) = 1$ and $\|q_i\|_\infty < R^2$.

(ii) Every such q_i can be approximated by an $n^{0.2}$-junta q_i' so that $q_i - q_i'$ has small degree-k Fourier coefficients.

(iii) When randomly planting G_0, each q_i' becomes a k-junta on the support of G_0.

(iv) The Sherali-Adams functional H_{SA} is degree-k. Cannot see the high-degree discrepancy between q_i and q_i'.

$q_1, q_2, \ldots, q_R : \{-1,1\}^n \to \mathbb{R}_+$

$H : \{-1,1\}^n \to \mathbb{R}$
future directions

- For CSPs, does the connection between Sherali-Adams(k) and general LPs hold for $k \sim n^\epsilon$?

- Can our method be extended beyond CSPs? (TSP, Vertex Cover, . . .)

- Can it be used to resolve the long-standing open problem: Do there exist polynomial-size extended formulations of the perfect matching polytope?

- Is there a similar connection between SDPs and the Lasserre hierarchy?