The Analysis of Partially Symmetric Functions

Eric Blais

Based on joint work with Amit Weinstein Yuichi Yoshida

Classes of "simple" functions

Classes of "simple" functions

Constant

Classes of "simple" functions

Juntas

Constant

Classes of "simple" functions Constant → Symmetric Juntas

Def'n. $f : \{0,1\}^n \rightarrow \{0,1\}$ is (n-k)-symmetric if there is a set $J \subseteq [n]$ of k variables such that f(x) = f(y) whenever $x_J = y_J$ and |x| = |y|.

An algebraic definition

- **Def'n.** $f^{\pi}(x) = f(\pi x) = f(X_{\pi(1)}, \dots, X_{\pi(n)}).$
- **Def'n.** f is poly-symmetric if $|\mathbf{ISO}_f| = |\{f^{\pi} : \pi \in S_n\}| \le \operatorname{poly}(n).$

 Theorem. f is poly-symmetric if and only if it is (n-k)-symmetric for some k=O(1). [Clote, Kranakis '91]
 [Chakraborty, Fischer, Garcia-Soriano, Matslieh '12]

Partial Symmetry in Theoretical Computer Science

Circuit complexity

Theorem (Shannon '49). Almost every function *f* has circuit complexity $\Omega(2^n/n)$.

Circuit complexity

- **Theorem.** Every symmetric function has circuit complexity at most n^2 . [Shannon '38]
- **Theorem.** Every *k*-junta has circuit complexity at most $2^{k+3}/k$. [Shannon '49]

Circuit complexity

- **Theorem.** Every symmetric function has circuit complexity at most n^2 . [Shannon '38]
- **Theorem.** Every *k*-junta has circuit complexity at most $2^{k+3}/k$. [Shannon '49]
- **Theorem.** Every (n-k)-symmetric function has circuit complexity $\leq (n-k)2^k + (n-k)^2$. [Shannon '49]

Parallel complexity and Proof complexity

- **Theorem.** If *f* is (n-k)-symmetric for some k=O(1), then *f* is in $TC^0 \subseteq NC^1$. [Clote, Kranakis '91]
- Corollary. "Frege probably does not effectively-p simulate Extended Frege." [Pitassi, Santhanam '10]

g(x)

2

X	<i>f</i> (<i>x</i>)
000	1
001	0
010	0
011	1
100	1
101	1
110	0
111	0

Def'n. A *q*-query tester for the property **ISO**_{*f*} = { f^{π} : $\pi \in S_n$ } queries g:{0,1}^{*n*} \rightarrow {0,1} on at most *q* inputs and

(i) Accepts w.p. $^{2}/_{3}$ when $g \in ISO_{f}$, (ii) Rejects w.p. $^{2}/_{3}$ when for every $\pi \in S_{n}$, $Pr[g(x) \neq f^{\pi}(x)] \geq ^{1}/_{100}$.

Main Question. For which functions f can we test ISO_f with O(1) queries?

- Fact. For every symmetric function f, we can test ISO_f with O(1) queries.
- Theorem. For every k-junta f, we can test
 ISO_f with O(k log k) queries. [Fischer, Kindler, Ron, Safra, Samorodnitsky '04]

[B. '09] [Chakraborty, Garcia-Soriano, Matslieh '10]

- Fact. For every symmetric function f, we can test ISO_f with O(1) queries.
- Theorem. For every k-junta f, we can test
 ISO_f with O(k log k) queries. [Fischer, Kindler, Ron, Safra, Samorodnitsky '04] [B. '09]
- Theorem. For every (n-k)-symmetric f, we can test ISO_f with O(k log k) queries. [B., Weinstein, Yoshida '12]
 [Chakraborty, Fischer, Garcia-Soriano, Matslieh '12]

Conjecture. Fix any $k \ge 1$. If *f* is ε -far from (n-k)-symmetric, then testing **ISO**_f requires $\Omega(\log \log k)$ queries.

[B., Weinstein, Yoshida '12] [Chakraborty, Fischer, Garcia-Soriano, Matslieh '12]

Influence and partial symmetry

Three Notions of Influence

Influence of coordinate *i*:

• $\operatorname{Inf}_{i}(f) = \operatorname{Pr}_{X}[f(x) \neq f(x^{\oplus i})].$

Total influence / average sensitivity:

• $\operatorname{Inf}(f) = \sum_{i} \operatorname{Inf}_{i}(f)$.

Influence of a set $S \subseteq [n]$ of coordinates:

• $\operatorname{Inf}_{S}(f) = \operatorname{Pr}_{X,Y}[f(x) \neq f(x_{[n]\setminus S} y_{S})].$

Three Notions of Influence

Influence of coordinates *i*,*j*:

• $\operatorname{Inf}_{i,j}^{*}(f) = \operatorname{Pr}_{X}[f(x) \neq f((x^{(i \leftrightarrow j)}))].$

Total influence:

• $\operatorname{Inf}^{*}(f) = \sum_{i \neq j} \operatorname{Inf}^{*}_{i,j}(f).$

Influence of a set S of coordinates:

• $\operatorname{Inf}_{S}^{*}(f) = \operatorname{Pr}_{X,\pi \in S_{S}}[f(x) \neq f(\pi x)].$

Properties of $Inf^*_{i,j}$ and Inf^*

- **Fact.** When *f* is symmetric, $lnf^*(f) = 0$.
- **Fact.** $\ln f^*_{i,j}(f) = \sum_{T:i,j \notin T} (\hat{f}(T \cup \{i\}) \hat{f}(T \cup \{j\}))^2.$
- **Theorem** (KKL for Inf*). When *f* is far from symmetric, there exist $i \neq j$ such that $\ln f_{i,j}^*(f) = \Omega(\log(n)/n)$. [O'Donnell, Wimmer '08]

- **Fact.** When f is (n-k)-symmetric, there is a set J of size |J|=k s.t. $\ln f_{[n]\setminus J}(f) = 0$.
- **Fact.** $\ln f_{S}(f) = \Sigma_T \operatorname{Var}_{\pi \in S_S}(\hat{f}(\pi T)).$
- **Lemma** (Monotonicity). $Inf^*S(f) \le Inf^*S_{\cup T}(f)$.
- **Lemma** (Subadditivity). If $|S|, |T| \ge (1-\gamma)n$ then $\ln f^*_{S \cup T}(f) \le \ln f^*_S(f) + \ln f^*_T(f) + O(\gamma^{1/2})$.

Theorem. Let *f* be ε -far from (n-*k*)-symmetric and let *P* be a random O(k^2)-partition of [*n*]. Then whp every union *J* of *k* parts in *P* satisfies $\ln f^*_{[n] \cup J}(f) \ge \varepsilon/9$.

Proof sketch.

1. $F_{1/3}$ ={S⊆[n]: lnf*_{[n]\S}(f) < ε/3} is (k+1)-intersecting.

2. If $F_{1/3}$ contains a set S s.t. $|S| \le 2k$, the bound holds.

3. Else, $F_{1/9}={S \subseteq [n]: lnf^{*}_{[n] \setminus S}(f) < \epsilon/9}$ is (2*k*+1)-intersecting and the bound holds by the Intersection Theorem. □

Theorem. Let *f* be ε -far from (n-*k*)-symmetric and let *P* be a random O(k^2)-partition of [*n*]. Then whp every union *J* of *k* parts in *P* satisfies $Inf^*_{[n] \cup J}(f) \ge \varepsilon/9$.

Proof sketch.

1. $F_{1/3}$ ={S⊆[n]: lnf*_{[n]\S}(f) < ε/3} is (k+1)-intersecting.

 $Inf^{*}_{[n]\backslash(S\cap T)}(f) = Inf^{*}_{([n]\backslash S)\cup([n]\backslash T)}(f) \leq Inf^{*}_{[n]\backslash S}(f) + Inf^{*}_{[n]\backslash T}(f) + \varepsilon/3 < \varepsilon$

Theorem. Let *f* be ε -far from (n-*k*)-symmetric and let *P* be a random O(k^2)-partition of [*n*]. Then whp every union *J* of *k* parts in *P* satisfies $\ln f^*_{[n] \cup J}(f) \ge \varepsilon/9$.

Proof sketch.

- 1. *F*_{1/3}={*S*⊆[*n*]: lnf^{*}_{[n]\S}(*f*) < ε/3} is (*k*+1)-intersecting.
- 2. If $F_{1/3}$ contains a set S s.t. $|S| \le 2k$, the bound holds.

W.h.p., S is shattered by $P \Rightarrow J \cap S \leq k \Rightarrow J \notin F_{1/3}$.

Theorem. Let *f* be ε -far from (n-*k*)-symmetric and let *P* be a random O(k^2)-partition of [*n*]. Then whp every union *J* of *k* parts in *P* satisfies $\ln f^*_{[n] \cup J}(f) \ge \varepsilon/9$.

Proof sketch.

1. $F_{1/3}$ ={S⊆[n]: lnf*_{[n]\S}(f) < ε/3} is (k+1)-intersecting.

2. If $F_{1/3}$ contains a set S s.t. $|S| \le 2k$, the bound holds.

3. Else, $F_{1/9}={S \subseteq [n]: lnf^{*}_{[n] \setminus S}(f) < \epsilon/9}$ is (2*k*+1)-intersecting and the bound holds by the Intersection Theorem. □

Each J is O(1/k)-biased random set $\Rightarrow Pr[J \in F_{1/9}] \le k^{-2k}$.

Discussion

Open Problems

- Which other results in the analysis of boolean functions can we extend to partial symmetry?
 - Friedgut's junta theorem?
 - Structure of the Fourier spectrum?
- Can we use such extensions to prove the function isomorphism testing conjecture?
- In which other areas of TCS do partially symmetric functions appear?
 - Local reconstruction. [Alon, Weinstein '12]
 - Active property testing. [Alon, Hod, Weinstein '13]

Thanks!