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Constant Symmetric

Juntas Partially symmetric

Def’n. f :{0,1}n→{0,1} is (n-k)-symmetric if 
there is a set J⊆[n] of k variables such that 
f(x) = f(y) whenever xJ = yJ and |x|=|y|.



An algebraic definition

‣ Def’n. f π(x) = f(πx) = f( xπ(1),...,xπ(n) ).
‣ Def’n. f is poly-symmetric if 

|ISOf |=|{f π : π ∈ Sn}| ≤ poly(n).

‣ Theorem. f is poly-symmetric if and only if 
it is (n-k)-symmetric for some k=O(1).

[Clote, Kranakis ’91]
[Chakraborty, Fischer, Garcia-Soriano, Matslieh ’12]



Partial Symmetry in 
Theoretical Computer Science



Circuit complexity

Theorem (Shannon ’49). Almost every 
function f has circuit complexity Ω(2n/n).
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Circuit complexity
‣ Theorem. Every symmetric function has 

circuit complexity at most n2.

‣ Theorem. Every k-junta has circuit 
complexity at most 2k+3/k. [Shannon ’49]

[Shannon ’38]



Circuit complexity
‣ Theorem. Every symmetric function has 

circuit complexity at most n2.

‣ Theorem. Every k-junta has circuit 
complexity at most 2k+3/k.

[Shannon ’49]

‣ Theorem. Every (n-k)-symmetric function 
has circuit complexity ≤ (n-k)2k + (n-k)2.

[Shannon ’49]

[Shannon ’38]



Parallel complexity and
Proof complexity

‣ Theorem. If f is (n-k)-symmetric for 
some k=O(1), then f is in TC0 ⊆ NC1.

‣ Corollary. “Frege probably does not 
effectively-p simulate Extended Frege.”

[Clote, Kranakis ’91]

[Pitassi, Santhanam ’10]



Testing function isomorphism
x f(x)

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0
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Testing function isomorphism
Def’n. A q-query tester for the property ISOf 
= { f π : π ∈ Sn } queries g:{0,1}n→{0,1} on at 
most q inputs and

(i) Accepts w.p. 2/3 when g ∈ ISOf,
(ii) Rejects w.p. 2/3 when for every π∈Sn, 

Pr[ g(x) ≠ f π(x) ] ≥ 1/100.

Main Question. For which functions f 
can we test ISOf with O(1) queries?



Testing function isomorphism
‣ Fact. For every symmetric function f, we 

can test ISOf with O(1) queries. 
‣ Theorem. For every k-junta f, we can test 

ISOf with O(k log k) queries.
[Fischer, Kindler, Ron, Safra, Samorodnitsky ’04]

[B. ’09]
[Chakraborty, Garcia-Soriano, Matslieh ’10]
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[Chakraborty, Fischer, Garcia-Soriano, Matslieh ’12]

‣ Theorem. For every (n-k)-symmetric f, we 
can test ISOf with O(k log k) queries.



Conjecture. Fix any k≥1. If f is ε-far from 
(n-k)-symmetric, then testing ISOf requires 
Ω(log log k) queries.

Testing function isomorphism

[B., Weinstein, Yoshida ’12]
[Chakraborty, Fischer, Garcia-Soriano, Matslieh ’12]



Influence and partial symmetry 



Three Notions of Influence

Influence of coordinate i:
‣ Infi(f) = Prx[ f(x) ≠ f(x⊕i) ].

Total influence / average sensitivity:
‣ Inf(f) = Σi Infi(f).
Influence of a set S⊆[n] of coordinates:
‣ InfS(f) = Prx,y[ f(x) ≠ f(x[n]\S yS) ].



Three Notions of Influence

Influence of coordinates i,j:
‣ Inf*i,j(f) = Prx[ f(x) ≠ f( (x(i↔j) ) ].

Total influence:
‣ Inf*(f) = Σi≠j Inf*i,j(f).
Influence of a set S of coordinates:
‣ Inf*S(f) = Prx,π∈SS[ f(x) ≠ f(πx) ].



         Inf         vs.        Inf*



Properties of Inf*i,j and Inf*

‣ Fact. When f is symmetric, Inf*(f) = 0. 
‣ Fact. Inf*i,j(f) = ΣT:i,j∉T ( f(T∪{i}) - f(T∪{j}) )2.
‣ Theorem (KKL for Inf*). When f is far 

from symmetric, there exist i≠j such that 
Inf*i,j(f) = Ω(log(n)/n). [O’Donnell, Wimmer ’08]

^ ^



Properties of Inf*S

‣ Fact. When f is (n-k)-symmetric, there is a 
set J of size |J|=k s.t. Inf*[n]\J(f) = 0.

‣ Fact. Inf*S(f) = ΣT Varπ∈SS( f(πT) ).

‣ Lemma (Monotonicity). Inf*S(f) ≤ Inf*S∪T(f).
‣ Lemma (Subadditivity). If |S|,|T|≥(1-γ)n 

then Inf*S∪T(f) ≤ Inf*S(f) + Inf*T(f) + o(γ1/2).

^



Properties of Inf*

Theorem. Let f be ε-far from (n-k)-symmetric and let P 
be a random O(k2)-partition of [n]. Then whp every 
union J of k parts in P satisfies Inf*[n]\J(f) ≥ ε/9.

Proof sketch. 
1. F1/3={S⊆[n]: Inf*[n]\S(f) < ε/3} is (k+1)-intersecting.
2. If F1/3 contains a set S s.t. |S|≤2k, the bound holds.
3. Else, F1/9={S⊆[n]:Inf*[n]\S(f)<ε/9} is (2k+1)-intersecting 
and the bound holds by the Intersection Theorem.  ☐
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 Inf*[n]\(S∩T)(f) = Inf*([n]\S)∪([n]\T)(f) ≤ Inf*[n]\S(f)+Inf*[n]\T(f)+ε/3 < ε



Properties of Inf*

Theorem. Let f be ε-far from (n-k)-symmetric and let P 
be a random O(k2)-partition of [n]. Then whp every 
union J of k parts in P satisfies Inf*[n]\J(f) ≥ ε/9.

Proof sketch. 
1. F1/3={S⊆[n]: Inf*[n]\S(f) < ε/3} is (k+1)-intersecting.
2. If F1/3 contains a set S s.t. |S|≤2k, the bound holds.
3. Else, F1/9={S⊆[n]:Inf*[n]\S(f)<ε/9} is (2k+1)-intersecting 
and the bound holds by the Intersection Theorem.  ☐
W.h.p., S is shattered by P ⇒ J∩S≤k ⇒ J∉F1/3.



Properties of Inf*

Theorem. Let f be ε-far from (n-k)-symmetric and let P 
be a random O(k2)-partition of [n]. Then whp every 
union J of k parts in P satisfies Inf*[n]\J(f) ≥ ε/9.

Proof sketch. 
1. F1/3={S⊆[n]: Inf*[n]\S(f) < ε/3} is (k+1)-intersecting.
2. If F1/3 contains a set S s.t. |S|≤2k, the bound holds.
3. Else, F1/9={S⊆[n]:Inf*[n]\S(f)<ε/9} is (2k+1)-intersecting 
and the bound holds by the Intersection Theorem.  ☐

Each J is O(1/k)-biased random set ⇒ Pr[J∈F1/9]≤ k-2k.



Discussion



‣ Which other results in the analysis of boolean 
functions can we extend to partial symmetry?
‣ Friedgut’s junta theorem?
‣ Structure of the Fourier spectrum?

‣ Can we use such extensions to prove the 
function isomorphism testing conjecture?

‣ In which other areas of TCS do partially 
symmetric functions appear?
‣ Local reconstruction.
‣ Active property testing.

Open Problems

[Alon, Weinstein ’12]
[Alon, Hod, Weinstein ’13]



Thanks!


