Pufferfish Privacy Mechanisms
for Correlated Data

Kamalika Chaudhuri
UC San Diego



Sensitive Data

Medical Records

Search Logs

@ ~ N\
Social Networks @B <,



Talk Agenda:

How do we analyze sensitive data while still
preserving privacy?

(Focus on correlated data)



Correlated Data

User information

in social networks d N e}

Physical Activity T ' '
Monitoring www




Why is Privacy Hard for Correlated Data!

Because neighbor’s information leaks
information on user



Talk Agenda:

|. Privacy for Correlated Data

- How to define privacy (for uncorrelated data)



Differential Privacy [DMNSO06]
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Differential Privacy: Attacker’s View
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Note: a. Algorithm could draw personal conclusions about Alice

b. Alice has the agency to participate or not



What happens with correlated data!?



Example |: Activity Monitoring
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Goal: Share aggregate data on physical activity with
doctor, while hiding activity at each specific time.
Agency is at the individual level.



Example 2: Spread of Flu in Network
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Goal: Publish aggregate statistics over a set of schools,
prevent adversary from knowing who has flu. Agency at
school level.



Why is Differential Privacy not Right
for Correlated data?



Example: Activity Monitoring

D = (xi,.,XT), X¢= activity at time t

Correlation

> > ' ' Network

Goal: (I) Publish activity histogram
(2) Prevent adversary from knowing activity at t



Example: Activity Monitoring

D = (xi,.,XT), X¢= activity at time t

Correlation

> > ' ' Network

Goal: (I) Publish activity histogram
(2) Prevent adversary from knowing activity at t

Agency is at individual level, not time entry level



Example: Activity Monitoring

D = (xi,.,XT), X¢= activity at time t

Correlation

> > ' ' Network

|-DP: Output histogram of activities + noise with stdev T

Too much noise - no utility!



Example: Activity Monitoring

D = (xi,.,XT), X¢= activity at time t

Correlation

> > ' ' Network

| -entry-DP: Output histogram of activities +
noise with stdev |

Not enough - activities across time are correlated!



Example: Activity Monitoring

D = (xi,.,XT), X¢= activity at time t

Correlation

> > ' ' Network

|-Entry-Group DP: Output histogram of activities
+ noise with stdev T

Too much noise - no utility!



Pufferfish Privacy [KMI2]

Secret Set S

S: Information to be protected

e.g: Alice’s age is 25, Bob has a disease



Pufferfish Privacy [KM 2]

Secret Pairs

Secret Set S Set O

Q: Pairs of secrets we want to be indistinguishable
e.g: (Alice’s age is 25,Alice’s age is 40)
(Bob is in dataset, Bob is not in dataset)



Pufferfish Privacy [KMI2]

Secret Pairs Distribution

Secret Set S Set Q Class ©

O: A set of distributions that plausibly generate the data

e.g: (connection graph G, disease transmits w.p [0.1, 0.5])

(Markov Chain with transition matrix in set P)

May be used to model correlation in data



Pufferfish Privacy [KM 2]

Secret Pairs Distribution

Secret Set S Set Q Class ©

An algorithm A is e-Pufferfish private with parameters
(5,Q,0) if for all (si,s) in Q,forall 6 € ©, X ~ 0,all t,

po.A(A(X) =t|s;,0) < e -pga(A(X) =t|s;,0)
whenever P(s;|0), P(s;]|0) > 0

p(A(X)]s4,0) p(A(X)|s;,0)




Pufferfish Generalizes DP [KMI2]

Theorem: Pufferfish = Differential Privacy when:

S ={ sia:= Person i has value a, for all i,all a in domain X}
Q ={ (sia sip), for all i and (a, b) pairs in X x X }

© = { Distributions where each person i is independent }



Pufferfish Generalizes DP [KMI2]

Theorem: Pufferfish = Differential Privacy when:

S ={ sia:= Person i has value a, for all i,all a in domain X}
Q ={ (sia sip), for all i and (a, b) pairs in X x X }

© = { Distributions where each person i is independent }

Theorem: No utility possible when:
O = { All possible distributions }



Talk Agenda:

|. Privacy for Correlated Data

- How to define privacy (for uncorrelated data)

- How to define privacy (for correlated data)

2. Privacy Mechanisms
- A General Pufferfish Mechanism



How to get Pufferfish privacy?

Special case [KMI2, HMD 12, LCMI6, GK16]

Is there a more general Pufferfish mechanism
analogous to the sensitivity mechanism in DP?

Our work: Yes, the Wasserstein Mechanism



Intuition

Sensitivity Method:

Find the worst case “distance” |F(D) - F(D’)|
where D, D’ differ in one person’s value

For our case:
We have p(F(X)|si,8) vs. p(F(X)|s;,0)

What is the relevant “‘distance” ?



Infinity Wasserstein Distance

Given measures p and q,

G(p,q) = all joint distributions with p and q as marginals

Infinity-VVasserstein distance:

Wint(p,q) = inf

v€G(p,q)



Infinity Wasserstein Distance

Given measures p and q,

G(p,q) = all joint distributions with p and q as marginals

Infinity-VVasserstein distance:
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Infinity Wasserstein Distance

Given measures p and q,

G(p,q) = all joint distributions with p and q as marginals

Infinity-VVasserstein distance:

Wine(p,q) = Inf max  d(z,
(P4 YEG(p,q) (z,y)Esupp(7) (9)
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G(p,q) = all joint distributions with p and q as marginals
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Infinity Wasserstein Distance

Given measures p and q,

G(p,q) = all joint distributions with p and q as marginals

Infinity-VVasserstein distance:
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Infinity Wasserstein Distance

Given measures p and q,

G(p,q) = all joint distributions with p and q as marginals

Infinity-VVasserstein distance:

Wint(p,q) = 1Inf max  d(x,
(P, ) YEG(p,q) (z,y)Esupp(7) (9)

=11

P g

K



Infinity Wasserstein Distance

Given measures p and q,

G(p,q) = all joint distributions with p and q as marginals
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Infinity Wasserstein Distance

Given measures p and q,

G(p,q) = all joint distributions with p and q as marginals

Infinity-VVasserstein distance:

Wine(p,q) = Inf max  d(z,
(P4 YEG(p,q) (z,y)Esupp(7) (9)




Woasserstein Mechanism

Inputs:
Function F, Pufferfish framework (S, Q, ©), Data D



Woasserstein Mechanism

Inputs:
Function F, Pufferfish framework (S, Q, ©), Data D

|. For each (si, sj) in Q, @ in©, define:
pio = P(F(X)|s0,0), iy = P(F(X)]s;,0)
when P(s;|0) > 0, P(s;|0) > 0



Woasserstein Mechanism

Inputs:
Function F, Pufferfish framework (S, Q, ©), Data D

|. For each (si, sj) in Q, @ in©, define:
pio = P(F(X)|s0,0), iy = P(F(X)]s;,0)
when P(s;|0) > 0, P(s;|0) > 0

2. Find: W™ = sup W(,Uiﬁa Mj,e)

1,,0



Woasserstein Mechanism

Inputs:
Function F, Pufferfish framework (S, Q, ©), Data D

|. For each (si, sj) in Q, @ in©, define:
pio = POF(X)|s1,0),  piz0 = P(F(X)]s;,0)
when P(s;|0) > 0, P(s;|0) > 0
2. Find: W™ = Sup Wi, o)
i,,0 -

€

3. Output: F(D) + Z, where 7 ~

Lap(1)



Wasserstein Mechanism: Properties

|. €-private in any Pufferfish framework

2. Reduces to sensitivity mechanism for DP

Problem: Computational efficiency

Can we do better?



Talk Agenda:

|. Privacy for Correlated Data

- How to define privacy (for uncorrelated data)

- How to define privacy (for correlated data)

2. Privacy Mechanisms

- A General Pufferfish Mechanism
- A Computationally Efficient Mechanism



Correlation Measure: Bayesian Networks

Node: variable

Directed Acyclic Graph

Joint distribution of variables:

Pr(X1,Xa,...,X,) = | | Pr(Xi|parents(X;))



A Simple Example

Model:
Xi in {0, |}

State Transition Probabilities:

I -p
(L0 (D
I -p



A Simple Example

Model:

. Pr(X2=0
Xi in {0, |}

Pr(X2=0

State Transition Probabilities:

I -p
(L0 (D
I -p

X|=O)

X

)



A Simple Example

Model:

Pr(X2=0| X, =0) =
Xiin{O,I} (2 | ) »

Pr(X2=O X|:|) =|_P

State Transition Probabilities:
I i P oo 0o
‘G 0’ Pr(Xi=0| X; = 0) = %—F%(Qp—l)i_l
| - p PrXi= 0| X = 1) = %_%(2p_1>i_1

Influence of X, diminishes with distance




Algorithm: Main ldea

Goal: Protect X



Algorithm: Main ldea

-------- ~O-O-®

Local nodes Rest
(high correlation) (almost independent)

Goal: Protect X



Algorithm: Main ldea

Local nodes
(high correlation)

Goal: Protect X

Add noise to hide

local nodes

=t

Rest
(almost independent)

Small correction

for rest



Measuring “Independence”

Max-influence of Xi on a set of nodes Xk:

PI‘(XR — CIZ‘R‘XZ — CL,@)
XplX;) = |
o(Xr|Xi) = maxsupmaxlog 5o — " v 5

Low e(Xgr|Xi) means XRr is almost independent of X

To protect X, correction term needed for Xr is
exp(e(Xr|Xi))



How to find large “almost
independent” sets

Brute force search is expensive

Use structural properties of the Bayesian network



Markov Blanket

Markov
Blanket ()’(lf

Xs

N

Markov Blanket(Xi) =
Set of nodes Xs s.t Xi is
independent of X\(X; U Xs)

given Xs

(usually, parents, children,
other parents of children)



Define: Markov Quilt

Xa is a Markov Quilt of X; if:

|. Deleting Xq breaks graph
into XN and XRr

2. X lies in XN

3. Xr is independent of X;
given Xo

(For Markov Blanket Xn = X)



Recall: Algorithm

-------- ~OO-®

Local nodes Rest
(high correlation) (almost independent)

Goal: Protect X

Add noise to hide " Small correction

local nodes for rest



Why do we need Markov Quilts?

Given a Markov Quilt,

XN = local nodes for X
Xo U XRr = rest

5

e



Why do we need Markov Quilts?

Given a Markov Quilt,

XN = local nodes for X
Xo U XRr = rest

Need to search over Markov
Quilts Xo to find the one
which needs optimal amount
of noise




From Markov Quilts to
Amount of Noise

Let Xo = Markov Quilt for X;
Stdev of noise to protect Xi:

Noise due to XN

card(X )
Score(XQ) = e— e(Xo|X;)

Correction for Xq U Xr




The Markov Quilt Mechanism

For each X;

Find the Markov Quilt Xq for X with
minimum score s;

Output F(D) + (max; si) Z where Z ~ Lap(1)

\_




The Markov Quilt Mechanism

For each X;

Find the Markov Quilt Xq for X with
minimum score s;

Output F(D) + (max; si) Z where Z ~ Lap(1)

\_

Theorem: This preserves ¢ -Pufferfish privacy

Advantage: Poly-time in special cases.



Example: Activity Monitoring
D = (xi, .., XT), X¢= activity at time t

—_— —> —> —> ——>> —>



Example: Activity Monitoring

D = (xi, .., XT), X¢= activity at time t
Xi-a X Xi+b

(Minimal) Markov Quilts for Xi have form {Xi.,,Xi+b}
Efficiently searchable




Example: Activity Monitoring

X : set of states
Py : transition matrix describing each 6 € ©



Example: Activity Monitoring

X : set of states
Py : transition matrix describing each 6 € ©

Under some assumptions, relevant parameters are:
Te = min my(x) (min prob of x under stationary distr.)
reX,0€c0

Jo = I@Ili({)l min{1l — |A| : Ppx = Ax, A < 1} (min eigengap of any Fp)
c



Example: Activity Monitoring

X : set of states
Py : transition matrix describing each 6 € ©

Under some assumptions, relevant parameters are:

Te = x;}(l,lglé@ To () (min prob of x under stationary distr.)
Jgo = I@Ili({)l min{1l — |A| : Ppx = Ax, A < 1} (min eigengap of any Fp)
c

Max-influence of Xq = {Xi.a,Xi+b} for X

Te + GXP(—Q@b)) - 21og (77@ + eXP(—g@a))
To — exp(—geb) To — exp(—gea)

a+b—1
Score(XQ) = T i X))

e(Xq|X;) < log (




Markov Quilt Mechanism for
Activity Monitoring

-

.

For each X

Find Markov Quilt Xq = {Xi.,Xi+b} With
minimum score s;

Output F(D) + (max; si) Z where Z ~ Lap(1)

Running Time: O(T?) (can be made O(T?) )

Advantage |: Consistency

Advantage 2: Composition (for chains)




Simulations - Task

Model:
Xi in {0, |}

State Transition Probabilities:

I -p
IGOPOSL
q

Model Class:
O=1[01—1

(implies p and q can lie
anywhere in ©)

Sequence length = 100
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Simulations - Results

O
—h

S o)

=Markov Quilt Méchanism * &\ arkov Quilt Méchanism
#|nferential Privacy = 0.08 #|nferential Privacy

5

- 0.06

)

N

© |

£ 0.04

@)

< 0.0
02, 03 0.4 81 02 03 0.4

Methods: Markov Quilt Mechanism vs. [GK 6]



Preliminary Experiments

Data on physical activity performed by overweight subject

L error: 08
MQM 0.012 o
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Preliminary Experiments

Electricity consumption of single household in Vancouver

L, error:

MQM
GKI16

0.019
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Conclusion

Problem:
privacy of correlated data - time series, social networks

Contributions:

Two new mechanisms - a fully general mechanism,
and a more efficient mechanism

Established composition of the Markov Quilt Mechanism

Future Work:

More efficient mechanisms, more detailed composition
properties
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