Pufferfish Privacy Mechanisms for Correlated Data

Kamalika Chaudhuri
UC San Diego
Sensitive Data

Medical Records

Search Logs

Social Networks
Talk Agenda:

How do we analyze sensitive data while still preserving privacy?

(Focus on correlated data)
Correlated Data

User information in social networks

Physical Activity Monitoring
Why is Privacy Hard for Correlated Data?

Because neighbor’s information leaks information on user
Talk Agenda:

1. Privacy for Correlated Data
 - How to define privacy (for uncorrelated data)
Differential Privacy [DMNS06]

Participation of a single person does not change output
Differential Privacy: Attacker’s View

Prior Knowledge + Algorithm Output on Data & = Conclusion on

Prior Knowledge + Algorithm Output on Data & = Conclusion on

Note:
- a. Algorithm could draw personal conclusions about Alice
- b. Alice has the agency to participate or not
What happens with correlated data?
Example 1: Activity Monitoring

Goal: Share aggregate data on physical activity with doctor, while hiding activity at each specific time. Agency is at the individual level.
Example 2: Spread of Flu in Network

Goal: Publish aggregate statistics over a set of schools, prevent adversary from knowing who has flu. Agency at school level.
Why is Differential Privacy not Right for Correlated data?
Example: Activity Monitoring

\[D = (x_1, \ldots, x_T), \quad x_t = \text{activity at time } t \]

Goal: (1) Publish activity histogram
(2) Prevent adversary from knowing activity at \(t \)
Example: Activity Monitoring

\[D = (x_1, \ldots, x_T), \quad x_t = \text{activity at time } t \]

Goal: (1) Publish activity histogram
(2) Prevent adversary from knowing activity at \(t \)

Agency is at individual level, not time entry level
Example: Activity Monitoring

\[D = (x_1, .., x_T), \quad x_t \text{ = activity at time } t \]

I-DP: Output histogram of activities + noise with stdev T

Too much noise - no utility!
Example: Activity Monitoring

\[D = (x_1, ..., x_T), \quad x_t = \text{activity at time } t \]

I-entry-DP: Output histogram of activities + noise with stdev 1

Not enough - activities across time are correlated!
Example: Activity Monitoring

\[D = (x_1, \ldots, x_T), \quad x_t = \text{activity at time } t \]

1-Entry-Group DP: Output histogram of activities + noise with std dev \(T \)

Too much noise - no utility!
Pufferfish Privacy [KM12]

Secret Set S

S: Information to be protected

e.g: Alice’s age is 25, Bob has a disease
Pufferfish Privacy [KM12]

Secret Set S

Secret Pairs Set Q

Q: Pairs of secrets we want to be indistinguishable

e.g: (Alice’s age is 25, Alice’s age is 40)
(Bob is in dataset, Bob is not in dataset)
Pufferfish Privacy [KM12]

Secret Set S

Secret Pairs Set Q

Distribution Class Θ

Θ: A set of distributions that plausibly generate the data
e.g: (connection graph G, disease transmits w.p $[0.1, 0.5]$)
(Markov Chain with transition matrix in set P)

May be used to model correlation in data
Pufferfish Privacy [KM12]

An algorithm A is ϵ-Pufferfish private with parameters (S, Q, Θ) if for all (s_i, s_j) in Q, for all $\theta \in \Theta$, $X \sim \theta$, all t,

$$p_{\theta, A}(A(X) = t|s_i, \theta) \leq e^\epsilon \cdot p_{\theta, A}(A(X) = t|s_j, \theta)$$

whenever $P(s_i|\theta), P(s_j|\theta) > 0$
Pufferfish Generalizes DP [KM12]

Theorem: Pufferfish = Differential Privacy when:

\[S = \{ s_{i,a} := \text{Person i has value a, for all i, all a in domain } X \} \]

\[Q = \{ (s_{i,a} s_{i,b}), \text{for all i and (a, b) pairs in } X \times X \} \]

\[\Theta = \{ \text{Distributions where each person i is independent} \} \]
Pufferfish Generalizes DP [KM12]

Theorem: Pufferfish = Differential Privacy when:

\[S = \{ s_{i,a} \text{ := Person } i \text{ has value } a, \text{ for all } i, \text{ all } a \text{ in domain } X \} \]
\[Q = \{ (s_{i,a}, s_{i,b}), \text{ for all } i \text{ and } (a, b) \text{ pairs in } X \times X \} \]
\[\Theta = \{ \text{Distributions where each person } i \text{ is independent} \} \]

Theorem: No utility possible when:

\[\Theta = \{ \text{All possible distributions} \} \]
Talk Agenda:

1. Privacy for Correlated Data
 - How to define privacy (for uncorrelated data)
 - How to define privacy (for correlated data)

2. Privacy Mechanisms
 - A General Pufferfish Mechanism
How to get Pufferfish privacy?

Special case [KM12, HMD12, LCM16, GK16]

Is there a more general Pufferfish mechanism analogous to the sensitivity mechanism in DP?

Our work: Yes, the Wasserstein Mechanism
Intuition

Sensitivity Method:

Find the worst case “distance” \(|F(D) - F(D')|\)
where \(D, D'\) differ in one person’s value

For our case:

We have \(p(F(X)|s_i, \theta)\) vs. \(p(F(X)|s_j, \theta)\)

What is the relevant “distance”?
Infinity Wasserstein Distance

Given measures p and q,
$G(p,q) = $ all joint distributions with p and q as marginals

Infinity-Wasserstein distance:

$$W_{\inf}(p, q) = \inf_{\gamma \in G(p,q)} \max_{x,y \text{ support}} d(x, y)$$
Infinity Wasserstein Distance

Given measures \(p \) and \(q \),

\[G(p, q) = \text{all joint distributions with } p \text{ and } q \text{ as marginals} \]

Infinity-Wasserstein distance:

\[W_{\text{inf}}(p, q) = \inf_{\gamma \in G(p, q)} \max_{(x, y) \in \text{supp}(\gamma)} d(x, y) \]
Infinity Wasserstein Distance

Given measures p and q,

$G(p,q) =$ all joint distributions with p and q as marginals

Infinity-Wasserstein distance:

$$W_{\text{inf}}(p, q) = \inf_{\gamma \in G(p,q)} \max_{(x,y) \in \text{supp}(\gamma)} d(x, y)$$
Infinity Wasserstein Distance

Given measures \(p \) and \(q \),
\(G(p,q) = \) all joint distributions with \(p \) and \(q \) as marginals

Infinity-Wasserstein distance:
\[
W_{\text{inf}}(p, q) = \inf_{\gamma \in G(p,q)} \max_{(x,y) \in \text{supp}(\gamma)} d(x, y)
\]
Infinity Wasserstein Distance

Given measures p and q,
$G(p,q) =$ all joint distributions with p and q as marginals

Infinity-Wasserstein distance:

$$W_{inf}(p, q) = \inf_{\gamma \in G(p,q)} \max_{(x,y) \in supp(\gamma)} d(x, y)$$
Infinity Wasserstein Distance

Given measures p and q,
$G(p,q) =$ all joint distributions with p and q as marginals

Infinity-Wasserstein distance:

$$W_{\text{inf}}(p, q) = \inf_{\gamma \in G(p,q)} \max_{(x, y) \in \text{supp}(\gamma)} d(x, y)$$
Infinity Wasserstein Distance

Given measures \(p \) and \(q \),
\(G(p,q) = \) all joint distributions with \(p \) and \(q \) as marginals

Infinity-Wasserstein distance:
\[
W_{\text{inf}}(p, q) = \inf_{\gamma \in G(p,q)} \max_{(x,y) \in \text{supp}(\gamma)} d(x, y)
\]
Infinity Wasserstein Distance

Given measures \(p \) and \(q \),
\[G(p, q) = \text{all joint distributions with } p \text{ and } q \text{ as marginals} \]

Infinity-Wasserstein distance:
\[W_{\inf}(p, q) = \inf_{\gamma \in G(p,q)} \max_{(x,y) \in \text{supp}(\gamma)} d(x, y) \]
Infinity Wasserstein Distance

Given measures p and q,
$G(p,q) = \text{all joint distributions with } p \text{ and } q \text{ as marginals}$

Infinity-Wasserstein distance:

$$W_{\text{inf}}(p,q) = \inf_{\gamma \in G(p,q)} \max_{(x,y) \in \text{supp}(\gamma)} d(x, y)$$

$$W_{\text{inf}}(p,q) = K - 1$$
Wasserstein Mechanism

Inputs:
Function F, Pufferfish framework \((S, Q, \Theta)\), Data D
Wasserstein Mechanism

Inputs:
Function F, Pufferfish framework (S, Q, Θ), Data D

1. For each (s_i, s_j) in Q, θ in Θ, define:

$$\mu_{i,\theta} = P(F(X)|s_i, \theta), \quad \mu_{j,\theta} = P(F(X)|s_j, \theta)$$

when $P(s_i|\theta) > 0$, $P(s_j|\theta) > 0$
Wasserstein Mechanism

Inputs:
Function F, Pufferfish framework (S, Q, Θ), Data D

1. For each (s_i, s_j) in Q, θ in Θ, define:
 \[\mu_{i,\theta} = P(F(X)|s_i, \theta), \quad \mu_{j,\theta} = P(F(X)|s_j, \theta) \]
 when $P(s_i|\theta) > 0$, $P(s_j|\theta) > 0$

2. Find: $W^* = \sup_{i, j, \theta} W(\mu_{i,\theta}, \mu_{j,\theta})$
Wasserstein Mechanism

Inputs:
Function F, Pufferfish framework (S, Q, Θ), Data D

1. For each (s_i, s_j) in Q, θ in Θ, define:

 \[
 \mu_{i,\theta} = P(F(X)|s_i, \theta), \quad \mu_{j,\theta} = P(F(X)|s_j, \theta)
 \]

 when $P(s_i|\theta) > 0, P(s_j|\theta) > 0$

2. Find:

 \[
 W^* = \sup_{i,j,\theta} W(\mu_{i,\theta}, \mu_{j,\theta})
 \]

3. Output: $F(D) + Z$, where $Z \sim \frac{W^*}{\epsilon} Lap(1)$
Wasserstein Mechanism: Properties

1. ϵ-private in any Pufferfish framework
2. Reduces to sensitivity mechanism for DP

Problem: Computational efficiency
Can we do better?
Talk Agenda:

1. Privacy for Correlated Data
 - How to define privacy (for uncorrelated data)
 - How to define privacy (for correlated data)

2. Privacy Mechanisms
 - A General Pufferfish Mechanism
 - A Computationally Efficient Mechanism
Correlation Measure: Bayesian Networks

Joint distribution of variables:

$$\Pr(X_1, X_2, \ldots, X_n) = \prod_{i} \Pr(X_i | \text{parents}(X_i))$$
A Simple Example

Model:

\[X_i \text{ in } \{0, 1\} \]

State Transition Probabilities:

\[p \quad 0 \quad 1 \quad p \]

\[p \quad 1-p \quad p \quad 1-p \]
A Simple Example

Model:
\[X_i \text{ in } \{0, 1\} \]

State Transition Probabilities:
\[\begin{align*}
\Pr(X_2 = 0|X_1 = 0) &= p \\
\Pr(X_2 = 0|X_1 = 1) &= 1 - p
\end{align*} \]

\[\ldots \]

\[\begin{align*}
\Pr(X_2 = 0|X_1 = 0) &= p \\
\Pr(X_2 = 0|X_1 = 1) &= 1 - p
\end{align*} \]

\[\ldots \]
A Simple Example

Model:

\(X_i \) in \(\{0, 1\} \)

State Transition Probabilities:

\[
\begin{align*}
Pr(X_2 = 0| X_1 = 0) & = p \\
Pr(X_2 = 0| X_1 = 1) & = 1 - p \\
Pr(X_i = 0| X_1 = 0) & = \frac{1}{2} + \frac{1}{2}(2p - 1)^{i-1} \\
Pr(X_i = 0| X_1 = 1) & = \frac{1}{2} - \frac{1}{2}(2p - 1)^{i-1}
\end{align*}
\]

Influence of \(X_1 \) diminishes with distance
Algorithm: Main Idea

Goal: Protect X_1
Algorithm: Main Idea

Goal: Protect X_1

Local nodes (high correlation)

Rest (almost independent)
Algorithm: Main Idea

Goal: Protect X_1

Add noise to hide local nodes $+$ Small correction for rest

Local nodes (high correlation) $+$ Rest (almost independent)
Measuring “Independence”

Max-influence of X_i on a set of nodes X_R:

$$e(X_R|X_i) = \max_{a,b} \sup_{\theta \in \Theta} \max_{x_R} \log \frac{\Pr(X_R = x_R|X_i = a, \theta)}{\Pr(X_R = x_R|X_i = b, \theta)}$$

Low $e(X_R|X_i)$ means X_R is almost independent of X_i

To protect X_i, correction term needed for X_R is $\exp(e(X_R|X_i))$
How to find large “almost independent” sets

Brute force search is expensive

Use structural properties of the Bayesian network
Markov Blanket

$\text{Markov Blanket}(X_i) =$

Set of nodes X_S s.t X_i is independent of $X \setminus (X_i \cup X_S)$ given X_S

(usually, parents, children, other parents of children)
Define: Markov Quilt

X_Q is a Markov Quilt of X_i if:
1. Deleting X_Q breaks graph into X_N and X_R
2. X_i lies in X_N
3. X_R is independent of X_i given X_Q

(For Markov Blanket $X_N = X_i$)
Recall: Algorithm

Goal: Protect X_1

Add noise to hide local nodes + Small correction for rest

Local nodes (high correlation) → Rest (almost independent)
Why do we need Markov Quilts?

Given a Markov Quilt,

\[X_N = \text{local nodes for } X_i \]

\[X_Q \cup X_R = \text{rest} \]
Why do we need Markov Quilts?

Given a Markov Quilt,

\[X_N = \text{local nodes for } X_i \]

\[X_Q \cup X_R = \text{rest} \]

Need to search over Markov Quilts \(X_Q \) to find the one which needs optimal amount of noise.
From Markov Quilts to Amount of Noise

Let $X_Q = \text{Markov Quilt for } X_i$

Stdev of noise to protect X_i:

Noise due to X_N

$$
\text{Score}(X_Q) = \frac{\text{card}(X_N)}{\epsilon - e(X_Q|X_i)}
$$

Correction for $X_Q U X_R$
The Markov Quilt Mechanism

For each X_i

Find the Markov Quilt X_Q for X_i with minimum score s_i

Output $F(D) + (\max_i s_i) Z$ where $Z \sim Lap(1)$
The Markov Quilt Mechanism

For each X_i

Find the Markov Quilt X_Q for X_i with minimum score s_i

Output $F(D) + (\max_i s_i) Z$ where $Z \sim Lap(1)$

Theorem: This preserves ϵ-Pufferfish privacy

Advantage: Poly-time in special cases.
Example: Activity Monitoring

\[D = (x_1, \ldots, x_T), \quad x_t = \text{activity at time } t \]
Example: Activity Monitoring

\[D = (x_1, \ldots, x_T), \quad x_t = \text{activity at time } t \]

(Minimal) Markov Quilts for \(X_i \) have form \(\{X_{i-a}, X_{i+b}\} \)

Efficiently searchable
Example: Activity Monitoring

\[\mathcal{X} : \text{set of states} \]

\[P_\theta : \text{transition matrix describing each } \theta \in \Theta \]
Example: Activity Monitoring

\mathcal{X} : set of states

P_θ : transition matrix describing each $\theta \in \Theta$

Under some assumptions, relevant parameters are:

$$\pi_\Theta = \min_{x \in \mathcal{X}, \theta \in \Theta} \pi_\theta(x)$$ \hspace{1em} (min prob of x under stationary distr.)

$$g_\Theta = \min_{\theta \in \Theta} \min \{1 - |\lambda| : P_\theta x = \lambda x, \lambda < 1\}$$ \hspace{1em} (min eigengap of any P_θ)
Example: Activity Monitoring

\(X \): set of states
\(P_\theta \): transition matrix describing each \(\theta \in \Theta \)

Under some assumptions, relevant parameters are:

\[
\pi_\theta = \min_{x \in X, \theta \in \Theta} \pi_\theta(x) \quad \text{(min prob of x under stationary distr.)}
\]

\[
g_\theta = \min_{\theta \in \Theta} \min \left\{ 1 - |\lambda| : P_\theta x = \lambda x, \lambda < 1 \right\} \quad \text{(min eigengap of any } P_\theta)\]

Max-influence of \(X_Q = \{X_{i-a}, X_{i+b}\} \) for \(X_i \)

\[
e(X_Q|X_i) \leq \log \left(\frac{\pi_\theta + \exp(-g_\theta b)}{\pi_\theta - \exp(-g_\theta b)} \right) + 2 \log \left(\frac{\pi_\theta + \exp(-g_\theta a)}{\pi_\theta - \exp(-g_\theta a)} \right)
\]

\[
\text{Score}(X_Q) = \frac{a + b - 1}{\epsilon - e(X_Q|X_i)}
\]
Markov Quilt Mechanism for Activity Monitoring

For each X_i

Find Markov Quilt $X_Q = \{X_{i-a}, X_{i+b}\}$ with minimum score s_i

Output $F(D) + (\max_i s_i) Z$ where $Z \sim Lap(1)$

Running Time: $O(T^3)$ (can be made $O(T^2)$)

Advantage 1: Consistency

Advantage 2: Composition (for chains)
Simulations - Task

Model:
\(X_i \) in \{0, 1\}

State Transition Probabilities:
\[
\begin{align*}
& 1 - p \\
p & 0 \\
q & 1 \\
& 1 - q
\end{align*}
\]

Model Class:
\(\Theta = [\ell, 1 - \ell] \)
(implies \(p \) and \(q \) can lie anywhere in \(\Theta \))

Sequence length = 100
Simulations - Results

Methods: Markov Quilt Mechanism vs. [GK16]
Preliminary Experiments

Data on physical activity performed by overweight subject

L_1 error:

<table>
<thead>
<tr>
<th>Group</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQM</td>
<td>0.012</td>
</tr>
<tr>
<td>Group-DP</td>
<td>0.214</td>
</tr>
<tr>
<td>GK16</td>
<td>NA</td>
</tr>
</tbody>
</table>
Preliminary Experiments

Electricity consumption of single household in Vancouver

L_1 error:

<table>
<thead>
<tr>
<th>MQM</th>
<th>0.019</th>
</tr>
</thead>
<tbody>
<tr>
<td>GK16</td>
<td>NA</td>
</tr>
</tbody>
</table>
Conclusion

Problem:
privacy of correlated data - time series, social networks

Contributions:
Two new mechanisms - a fully general mechanism, and a more efficient mechanism
Established composition of the Markov Quilt Mechanism

Future Work:
More efficient mechanisms, more detailed composition properties
Acknowledgements

Shuang Song

Mani Srivastava

Yizhen Wang
Questions?