
Probabilistic Programming

Daniel M. Roy

Department of Statistical Sciences
Department of Computer Science

University of Toronto

Workshop on Uncertainty in Computation
2016 Program on Logical Structures in Computation

Simons Institute for the Theory of Computing

1. Simple story:
Probabilistic programming automates Bayesian inference

2. Real story:
It’s complicated

1/50

Probabilistic programming

1. Represent probability distributions by formulas programs that
generate samples.

2. Build generic algorithms for probabilistic conditioning
using probabilistic programs as representations.

Bayesian statistics

1. Express statistical assumptions via probability distributions.

Pr(parameters, data)| {z }
joint

= Pr(parameters)| {z }
prior

Pr(data | parameters)| {z }
model/likelihood

2. Statistical inference from data ! parameters via conditioning.

Pr(parameters, data), x

conditioning7����������! Pr(parameters | data = x)| {z }
posterior

2/50

Example: simple probabilistic Python program

1 def binomial(n, p):

2 return sum([bernoulli(p) for i in range(n)])

I returns a random integer in {0, . . . , n}.
I defines a family of distributions on {0, . . . , n},

in particular, the Binomial family.

I represents a statistical model of

the # of successes among
n independent and identical experiments

3/50

Example: simple probabilistic Python program

1 def binomial(n, p):

2 return sum([bernoulli(p) for i in range(n)])

3 def randomized_trial()

4 p_control = uniform(0,1) # prior

5 p_treatment = uniform(0,1) # prior

6 return (binomial(100, p_control),

7 binomial(10, p_treatment))

represents a Bayesian model of a randomized trial.

0 0.67 0.86 1
0

1
simulation�������������! (71,9)

0 0.71 0.9 1
0

inference ������������� (71,9)

4/50

The stochastic inference problem

Input: guesser and checker probabilistic programs.

Output: a sample from the same distribution as the program

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

This computation captures Bayesian statistical inference.

“prior” distribution ! distribution of guesser()

“likelihood(g)” ! Pr
�
checker(g) is True

�

“posterior” distribution ! distribution of return value

5/50

Example: inferring bias of a coin

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

Given x

1

, . . . , xn 2 {0, 1},
report probability of xn+1

= 1? E.g., 0, 0, 1, 0, 0

def guesser():

p = uniform()

return p

def checker(p):

return [0,0,1,0,0] == bernoulli(p,5)

6/50

Example: inferring bias of a coin

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

Given x

1

, . . . , xn 2 {0, 1},
report probability of xn+1

= 1? E.g., 0, 0, 1, 0, 0

def guesser():

p = uniform()

return p

def checker(p):

return [0,0,1,0,0] == bernoulli(p,5)

6/50

Example: inferring bias of a coin

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

Given x

1

, . . . , xn 2 {0, 1},
report probability of xn+1

= 1? E.g., 0, 0, 1, 0, 0

def guesser():

p = uniform()

return p

def checker(p):

return [0,0,1,0,0] == bernoulli(p,5)

6/50

Example: inferring objects from an image

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

How many objects in this image?

def guesser():

k = geometric()

blocks = [randomblock() for _ in range(k)]

colors = [randomcolor() for _ in range(k)]

return (k,blocks,colors)

def checker(k,blocks,colors):

return rasterize(blocks,colors) ==

7/50

Example: inferring objects from an image

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

How many objects in this image?

def guesser():

k = geometric()

blocks = [randomblock() for _ in range(k)]

colors = [randomcolor() for _ in range(k)]

return (k,blocks,colors)

def checker(k,blocks,colors):

return rasterize(blocks,colors) ==

7/50

Example: inferring objects from an image

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

How many objects in this image?

def guesser():

k = geometric()

blocks = [randomblock() for _ in range(k)]

colors = [randomcolor() for _ in range(k)]

return (k,blocks,colors)

def checker(k,blocks,colors):

return rasterize(blocks,colors) ==

7/50

Example: inferring objects from an image

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

How many objects in this image?

def guesser():

k = geometric()

blocks = [randomblock() for _ in range(k)]

colors = [randomcolor() for _ in range(k)]

return (k,blocks,colors)

def checker(k,blocks,colors):

return rasterize(blocks,colors) ==

7/50

Example: inferring objects from an image

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

How many objects in this image?

def guesser():

k = geometric()

blocks = [randomblock() for _ in range(k)]

colors = [randomcolor() for _ in range(k)]

return (k,blocks,colors)

def checker(k,blocks,colors):

return rasterize(blocks,colors) ==

7/50

Example: inferring objects from an image

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

How many objects in this image?

def guesser():

k = geometric()

blocks = [randomblock() for _ in range(k)]

colors = [randomcolor() for _ in range(k)]

return (k,blocks,colors)

def checker(k,blocks,colors):

return rasterize(blocks,colors) ==

7/50

Example: inferring objects from an image

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

How many objects in this image?

def guesser():

k = geometric()

blocks = [randomblock() for _ in range(k)]

colors = [randomcolor() for _ in range(k)]

return (k,blocks,colors)

def checker(k,blocks,colors):

return rasterize(blocks,colors) ==

7/50

Example: inferring objects from an image

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

How many objects in this image?

def guesser():

k = geometric()

blocks = [randomblock() for _ in range(k)]

colors = [randomcolor() for _ in range(k)]

return (k,blocks,colors)

def checker(k,blocks,colors):

return rasterize(blocks,colors) ==

7/50

Fantasy example: extracting 3D structure from images

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

checker������!

8/50

Fantasy example: extracting 3D structure from images

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

inference ������

8/50

Example from Mansinghka’s group at MIT

9/50

Probabilistic programs defining unbounded distributions

1 def geometric(p):

2 if bernoulli(p) == 1: return 0

3 else: return 1 + geometric(p)

represents the Geometric distribution with mean 1/p� 1.

Note: no bound on running time! Only halts with probability 1!

A sampler that halts with probability one is called a.e. computable.

A sampler that always halts is called computable.

Theorem. The set of distributions with a.e. computable samplers is a
strict superset of those with computable samplers.

10/50

Conditioning as a higher-order procedure

1 def condition(guesser,checker):

2 # guesser: Unit -> S

3 # predicate : S -> Boolean

4 accept = False

5 while (not accept)

6 guess = guesser()

7 accept = checker(guess)

8 return guess

represents the higher order operation of conditioning. When
checker is deterministic, then

(P, 1A) 7! P (· |A) ⌘ P (· \A)

P (A)
.

Halts with probability 1 provided P (A) > 0.

11/50

condition as an algorithm

Key point: condition is not a serious proposal for an algorithm,
but it denotes the operation we care about in Bayesian analysis.

How e�cient is condition? Let model() represent a distribution P

and pred represent an indicator function 1A.

Proposition. In expectation, condition(model,pred) takes 1

P (A)

times as long to run as pred(model()).

Corollary. If pred(model()) is e�cient and P (A) not too small,
then condition(model,pred) is e�cient.

12/50

An e�cient “version” of condition

State-of-the-art Church engines work by MCMC, performing a
random walk over the possible executions of model(). These engines
are complex, but we can ignore polynomial factors to get a much
simpler algorithm:

1 # assume: r_model(random()) =d= model()

2 # : perturb(random()) =d= random()

3 # (and ergodic w.r.t. random() on every meas. set)

4 def mcmc_condition(r_model,predicate,n):

5 entropy = random()

6 for _ in range(n):

7 new_entropy = perturb(entropy)

8 if predicate(r_model(new_entropy)) == True:

9 entropy = new_entropy

10 return r_model(new_entropy)

approximates condition to arbitrary accuracy as n!1.

13/50

Perturb and traces

The key to this working reasonably well is perturb and to understand
perturb we’ve got to understand “traces”.

A traces is a tree data structure the captures the random choices
encountered and the path taken by the interpreter while evaluating
the probabilistic program.

Traces have two key parts.

1. Random primitives.

2. Applications/control-flow.

The trace is determined by the
values of the random primitives.
Changes to these primitives can
modify the control flow.

APP

IF

pred

Goal of perturb is to e�ciently take small steps in the space
of traces.

14/50

Perturb and traces

The key to this working reasonably well is perturb and to understand
perturb we’ve got to understand “traces”.

A traces is a tree data structure the captures the random choices
encountered and the path taken by the interpreter while evaluating
the probabilistic program.

Traces have two key parts.

1. Random primitives.

2. Applications/control-flow.

The trace is determined by the
values of the random primitives.
Changes to these primitives can
modify the control flow.

APP

IF

pred

Goal of perturb is to e�ciently take small steps in the space
of traces.

14/50

“Universal” MCMC inference for probabilistic programs

15/50

MIT-Church [GMR+08]

1 def geometric(p):

2 if bernoulli(p) == 1: return 1

3 else: return 1 + geometric(p)

1 def aliased_geometric(p):

2 g = geometric(p)

3 return 1 if g < 3 else 0

if

1

B

1

RET

1

1

p

if

1

B

1

D

1

A

1

+
1

if

2

B

2

RET

2

2

p(1 � p)

if

1

B

1

D

1

A

1

+
1

if

2

B

2

D

2

A

2

+
2

if

3

B

3

RET

3

3

p(1 � p)2

. . .

k

p(1 � p)k�1

18/50

MIT-Church [GMR+08]

Proposal Metropolis–Hastings

if

1

B

1

RET

1

if

1

B

1

D

1

A

1

+
1

if

2

B

2

RET

2

if

1

B

1

D

1

A

1

+
1

if

2

B

2

D

2

A

2

+
2

if

3

B

3

RET

3

4

5

6

4

5

6

p

pp̄

pp̄k

1
2

1
2p

1
2pp̄

k

if

1

B

1

RET

1

if

1

B

1

D

1

A

1

+
1

if

2

B

2

RET

2

if

1

B

1

D

1

A

1

+
1

if

2

B

2

D

2

A

2

+
2

if

3

B

3

RET

3

4

5

6

?
?

?

?

?
?

?

?

?
?

?

?

?
?

?

?

1 � p̄
2p

p̄
2p

1

1

1

1

1 � 1

2

p̄

1

2

p̄

1

2

1

2

✓
1� 1

2

p̄

1

2

p̄

1

2

1

2

◆k

!
✓ p

p+pp̄
p̄

p+pp̄
p

p+pp̄
p̄

p+pp̄

◆
as k ! 1

19/50

MIT-Church [GMR+08]

Proposal Metropolis–Hastings

if

1

B

1

RET

1

if

1

B

1

D

1

A

1

+
1

if

2

B

2

RET

2

if

1

B

1

D

1

A

1

+
1

if

2

B

2

D

2

A

2

+
2

if

3

B

3

RET

3

4

5

6

if

1

B

1

RET

1

if

1

B

1

D

1

A

1

+
1

if

2

B

2

RET

2

if

1

B

1

D

1

A

1

+
1

if

2

B

2

D

2

A

2

+
2

if

3

B

3

RET

3

4

5

6

p

pp̄

pp̄k

1
2

1
2p

1
2pp̄

k

if

1

B

1

RET

1

if

1

B

1

D

1

A

1

+
1

if

2

B

2

RET

2

if

1

B

1

D

1

A

1

+
1

if

2

B

2

D

2

A

2

+
2

if

3

B

3

RET

3

4

5

6

?
?

?

?

?
?

?

?

?
?

?

?

?
?

?

?

1 � p̄
2p

p̄
2p

1

1

1

1

1 � 1

2

p̄

1

2

p̄

1

2

1

2

✓
1� 1

2

p̄

1

2

p̄

1

2

1

2

◆k

!
✓ p

p+pp̄
p̄

p+pp̄
p

p+pp̄
p̄

p+pp̄

◆
as k ! 1

19/50

MIT-Church [GMR+08]

Proposal Metropolis–Hastings

if

1

B

1

RET

1

if

1

B

1

D

1

A

1

+
1

if

2

B

2

RET

2

if

1

B

1

D

1

A

1

+
1

if

2

B

2

D

2

A

2

+
2

if

3

B

3

RET

3

4

5

6

4

5

6

p

pp̄

pp̄k

1
2

1
2p

1
2pp̄

k

if

1

B

1

RET

1

if

1

B

1

D

1

A

1

+
1

if

2

B

2

RET

2

if

1

B

1

D

1

A

1

+
1

if

2

B

2

D

2

A

2

+
2

if

3

B

3

RET

3

4

5

6

?
?

?

?

?
?

?

?

?
?

?

?

?
?

?

?

1 � p̄
2p

p̄
2p

1

1

1

1

1 � 1

2

p̄

1

2

p̄

1

2

1

2

✓
1� 1

2

p̄

1

2

p̄

1

2

1

2

◆k

!
✓ p

p+pp̄
p̄

p+pp̄
p

p+pp̄
p̄

p+pp̄

◆
as k ! 1

19/50

The real story:
Probabilistic programming automates is game changing but messy

20/50

What is probabilistic programming?
Simple story from Gordon et al. (2014). Probabilistic Programming.

ICSE.

The goal of probabilistic programming is to enable probabilistic modeling and

machine learning to be accessible to the working programmer, who has

su�cient domain expertise, but perhaps not enough expertise in probability

theory or machine learning. We wish to hide the details of inference inside

the compiler and run-time, and enable the programmer to express models

using her domain expertise and dramatically increase the number of

programmers who can benefit from probabilistic modeling.

This is essentially the perspective the subfield took in 2008 at the

1st NIPS Workshop on Probabilistic Programming. It has turned

out to be possible for simple models with fixed structure, but constant work

is required on the part of system designers to keep cracks from appearing in

this facade as users then push beyond these simple models.

Many systems now diverge from presenting this facade. E.g., in

Venture, probabilistic programs are interactions with an approximate

inference engine. Users control aspects of inference, which is emphasized to

be approximate, but convergent.

21/50

Q: Can we automate Bayesian reasoning?

Pr(X,Y), x 7������! Pr(Y |X = x)

A: No, but almost.

Y

X

Y

X

Y

X

X + ⇠

⇠

Y

S

X

· · ·

X discrete X continuous Pr(⇠) smooth p(X|S) givenp
⇥

p p
[Freer and R., 2010] [Ackerman, Freer, and R., 2011] . . .

22/50

The halting distribution
(Ackerman, Freer, and R., 2011)

Y ⇠ Uniform[0, 1]

N := b� log
2

Y c
X|Y ⇠ HaltingTime(MN)

Pr(N = n | X = x)

Pr(N =⇤| X = x)
· 2n�

⇤

2
(
{2/3, 4/3} Mn halts;

{1} otherwise.

0

1

2

3

"

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Q" 1�Q"

Q0 1�Q0 Q1 1�Q1

Q00 1 � Q00 Q01 1 � Q01 Q10 1 � Q10 Q11 1�Q11

Theorem (Ackerman, Freer, and R., 2011).
The halting problem is computable from Pr(Y | X = x).

23/50

Q: What about e�cient inference?

Pr(X,Y), x 7������! Pr(Y |X = x)

A: No, of course, but...

Y

X

X discrete

⇥

def hash_of_random_string(n):

str = random_binary_string(n)

return cryptographic_hash(str)

Bayes nets, Tree Width, ...

Conditional independence is importance!

24/50

Conditional independence and traces

Conditional independence looks
flat in a trace.

1. bad shape: deep
no conditional independence

2. good shape: shallow
lots of conditional
independence

Key idea: There are multiple
ways to implement the same dis-
tribution. Choose one that keeps
the trace shallow.

25/50

Measuring the reliability of MCMC is hard

Standard diagnostics are heuristic and can only hint that something is
wrong, rather than guarantee that answers are reliable.

(a) Posterior distribution (b) Predictive distribution (c) Clusters

(d) Log-likelihood (e) Complete Log-likelihood (f) Autocorrelation (LogLik)

Figure 13: PT representation (10), metropolis(steps). (a,b) Sample from the posterior and
predictive distributions. In blue the histogram of the data, in green the identified clusters.
Notice that the histogram of the data in the posterior corresponds to the training set, since
the data are observed. (c) Co-ocurrency matrix after the burn-In period. (d,e) Evolution of
the Log-Likelihood and Complete Log-Likelihood for 10 parallel chains. After the burn-In
period only one is kept. (f) Auto-Correlation after the burn-In period.

1.5 Time

CRP SB PT

default 2910.23 10274.97 18357.70
metropolis 7089.60 21405.44 40053.26

Table 1: Time spend in inference in seconds

12

26/50

Bidirectional Monte Carlo [GAG16]

New tools based on BDMC (joint work with Grosse and Ancha, NIPS
2016, see also Cusumano–Mansinghka arXiv:1606.00068) provide first
rigorous approach to diagnosing chains on synthetic data.

REVERSE AIS: pt ! p

1

yields upper bound Z

+ on marginal likelihood

FORWARD AIS: p
1

! pt yields lower bound Z

� on marginal likelihood

Theorem [GAR16,CM16]. Di↵erence Z

+ � Z

� bounds MCMC
approximation error in expectation.

27/50

Aspects of probabilistic programming

I Statistical models are models

I
Box: “All models are wrong, some are useful.”

I
Claim: We have a license to approximate

(Bigf di↵erence with logic programming)

I
Stronger claim: exact inference not possible in general

I
Stronger still: accuracy of approximate inference usually

unknown, but good empirical performance on task su�ces

I “Right” semantics for probabilistic program depends on inference

I
Inference is an extremely complex transformation:

probabilistic progra ! inference program

I
Distributional semantics: too coarse to capture this interaction

I
Most general languages demand a lot of users.

I
In contrast, Stan.

I Do we know how to write good probabilistic programs?

I E�cient approximations rule

I
Conditioning is hard

I
Whether an approximation is reasonable is often problem specific

28/50

Conclusions

I Probabilistic programming for machine learning and statistics is
a grand challenge for programming languages

I Underlying computational problem is much harder than execution

I Extreme approximation is licensed

I Current users must understand how to interact with underlying
inference

29/50

