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Tuple-Independent Probabilistic Databases

Tuple-independent database of n tuples (ti )i∈[n]:

Each tuple ti associated with an independent Boolean random variable xi .

P(xi = true) gives the probability that ti exists in the database.

Possible-worlds semantics:

Each possible world defined by an assignment θ of the variables (xi )i∈[n]:

I It consists of all tuples ti for which θ(xi ) = true.

I It has probability P(θ) = Πi∈[n]P(xi = θ(xi )).

A tuple-independent database with n tuples has 2n possible worlds.
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Relational Algebra

Popular database query language since Codd times.

Algebra carrier: set of all finite relations

Algebra operations: π (projection), × (Cartesian product), − (set

difference), 1 (join), σ (selection), ∪ (set union), δ (renaming)

As expressive as domain relational calculus (RC)

In this talk: Relational algebra fragment 1RA−

Included: Equality joins, selections, projections, difference

Excluded: Repeating relation symbols, unions

Examples of (Boolean) 1RA− queries:

Are there combinations of tuples in (R,T ) that are not in (U,V )?

π∅
[(
R(A)× T (B)

)
−

(
U(A)× V (B)

)]
∃A∃B

[(
R(A) ∧ T (B)

)
∧¬

(
U(A) ∧ V (B)

)]
(in RC)

Does relation S “hold hands” with both R and T?

π∅
[
R(A) 1 S(A,B) 1 T (B)

]
∃A∃B

[
R(A) ∧ S(A,B) ∧ T (B)

]
(in RC)
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The Query Evaluation Problem

For any Boolean 1RA− query Q and tuple-independent database D:

Compute the probability that Q is true in a random world of D.

The case of non-Boolean queries can be reduced to the Boolean case.

We are interested in the data complexity of this problem.

Fix the query Q and take the database D as input.
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Data complexity of any 1RA− query Q in tuple-independent databases:

Polynomial time if Q is hierarchical and #P-hard otherwise.
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Hierarchical 1RA− Queries

(Boolean) 1RA− query Q is hierarchical if

For every pair of distinct query variables A and B in Q,

there is no triple of relation symbols R, S , and T in Q such that:

R has A but not B, S has both A and B, and T has B but not A.

R(A) S(A,B) T (B)
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Examples

Hierarchical queries:

π∅
[(
R(A) 1 S(A,B)

)
− T (A,B)

]
π∅
[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]
π∅

[(
M(A)× N(B)

)
−
[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]]
π∅

[
πA
[
M(A)× N(B)

]
− πA

[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]]

Non-hierarchical queries:

π∅
[
R(A) 1 S(A,B) 1 T (B)

]
π∅

[
πB
(
R(A) 1 S(A,B)

)
− T (B)

]
π∅

[
T (B)− πB

(
R(A) 1 S(A,B)

)]
π∅

[
X (A) 1

[
R(A)− πA

(
T (B) 1 S(A,B)

)]]
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Hardness Proof Idea

Reduction from #P-hard model counting problem for positive bipartite DNF:

Given a non-hierarchical 1RA− query Q and

Any positive bipartite DNF formula Ψ over disjoint sets X and Y of

random variables.

#Ψ can be computed using linearly many calls to an oracle for P(Q),

where Q is evaluated on tuple-independent databases of sizes linear in the

size of Ψ.
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A Simple Case

Input formula and query:

Ψ = x1y1 ∨ x1y2 ∨ x2y1 over sets X = {x1, x2},Y = {y1, y2}

Q = π∅

[
R(A) 1 S(A,B) 1 T (B)

]
Construct a database D such that Ψ becomes the grounding of Q wrt D:

Column Φ holds formulas over random variables.
I We use > for true and ⊥ for false.

Variables also used as constants for A and B.

S(xi, yj,>): xiyj is a clause in Ψ.

R(xi, xi ) and T (yj, yj): xi is a variable in X and yj is a variable in Y.

R

A Φ

x1 x1

x2 x2

T

B Φ

y1 y1

y2 y2

S

A B Φ

x1 y1 >
x1 y2 >
x2 y1 >

R 1 S 1 T

A B Φ

x1 y1 x1y1

x1 y2 x1y2

x2 y1 x2y1

π∅
[
R 1 S 1 T

]
Φ

() Ψ

This is the only minimal hard pattern for positive 1RA− queries!
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A Surprising Case

Input formula and query:

Ψ = x1y1 ∨ x1y2 over sets X = {x1},Y = {y1, y2}

Q = π∅

[
R(A)− πA

(
T (B) 1 S(A,B)

)]
Construct a database D such that Ψ becomes the grounding of Q wrt D:

S(a, b,>): Clause a has variable b in Ψ.

R(a,>) and T (b,¬b): a is a clause and b is a variable in Ψ.

R

A Φ

1 >
2 >

T

B Φ

x1 ¬x1

y1 ¬y1

y2 ¬y2

S

A B Φ

1 x1 >
1 y1 >
2 x1 >
2 y2 >

T 1 S

A B Φ

1 x1 ¬x1

1 y1 ¬y1

2 x1 ¬x1

2 y2 ¬y2

πA(T 1 S)

A Φ

1 ¬x1 ∨ ¬y1

2 ¬x1 ∨ ¬y2

R − πA(T 1 S)

A Φ

1 x1y1

2 x1y2

This query is already hard when T is the only probabilistic input relation!

14 / 28



A Surprising Case

Input formula and query:

Ψ = x1y1 ∨ x1y2 over sets X = {x1},Y = {y1, y2}

Q = π∅

[
R(A)− πA

(
T (B) 1 S(A,B)

)]
Construct a database D such that Ψ becomes the grounding of Q wrt D:

S(a, b,>): Clause a has variable b in Ψ.

R(a,>) and T (b,¬b): a is a clause and b is a variable in Ψ.

R

A Φ

1 >
2 >

T

B Φ

x1 ¬x1

y1 ¬y1

y2 ¬y2

S

A B Φ

1 x1 >
1 y1 >
2 x1 >
2 y2 >

T 1 S

A B Φ

1 x1 ¬x1

1 y1 ¬y1

2 x1 ¬x1

2 y2 ¬y2

πA(T 1 S)

A Φ

1 ¬x1 ∨ ¬y1

2 ¬x1 ∨ ¬y2

R − πA(T 1 S)

A Φ

1 x1y1

2 x1y2

This query is already hard when T is the only probabilistic input relation!

14 / 28



A More Involved Case

Input formula and query:

Ψ = x1y1 ∨ x1y2 ∨ x2y1 over sets X = {x1, x2},Y = {y1, y2}

Q = π∅

[
S(A,B)− R(A)× T (B)

]
We need a different reduction gadget:

Use additional random variables Z = {z1, . . . , z|E |}, one per clause in

Ψ = ψ1 ∨ · · · ∨ ψ|E |.

Construct a database D such that the grounding of Q wrt D is

¬Υ = ¬
[∨|E |

i=1 ¬zi¬ψi

]
=
∧|E |

i=1(zi ∨ ψi ).

R

A Φ

x1 x1

x2 x2

T

B Φ

y1 x1

y2 y2

S

A B Φ

x1 y1 ¬z1

x1 y2 ¬z2

x2 y1 ¬z3

S − R × T

A B Φ

x1 y1 ¬z1¬(x1y1)

x1 y2 ¬z2¬(x1y2)

x2 y1 ¬z3¬(x2y1)

π∅
[
S − R × T

]
Φ

()
∨|E |

i=1 ¬zi¬ψi

Compute #Ψ using linearly many calls to the oracle for PQ = 1− P(Υ).
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The Small Print (1/2)

Ψ =
∨

(i,j)∈E xiyj = ψ1 ∨ · · · ∨ ψ|E | over disjoint variable sets X and Y

Let Θ be the set of assignments of variables X ∪ Y that satisfy Ψ:

#Ψ =
∑

θ∈Θ:θ|=Ψ

1.

Partition Θ into disjoint sets Θ0 ∪ · · · ∪Θ|E |, such that θ ∈ Θi if and only

if θ satisfies exactly i clauses of Ψ:

#Ψ =
∑

θ∈Θ1:θ|=Ψ

1 + · · ·+
∑

θ∈Θ|E|:θ|=Ψ

1 = |Θ1|+ · · ·+ |Θ|E ||.

|Θ1|, . . . , |Θ|E || can be computed using an oracle for PΥ:

Υ =

|E |∨
i=1

¬zi ∧ ¬ψi or, equivalently ¬Υ =

|E |∧
i=1

(zi ∨ ψi )
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The Small Print (2/2)

Express the probability of ¬Υ =
∧|E |

i=1(zi ∨ψi ) as a function of |Θ1|, . . . , |Θ|E ||:

Fix the probabilities of variables in X ∪ Y to 1/2 and of variables in Z to

pz . Then:

P¬Υ =

|E|∑
k=0

P

(
¬Υ

∣∣∣∣∣ exactly k clauses

of Ψ are satisfied

)

︸ ︷︷ ︸
p|E|−k
z

·P
(

exactly k clauses

of Ψ are satisfied

)

︸ ︷︷ ︸
1

2

|X|+|Y|
· |Θk |

=
1

2

|X|+|Y| |E|∑
k=0

p|E|−k
z |Θk |

This is a polynomial in pz of degree |E |, with coefficients |Θ0|, . . . , |Θ|E ||.

The coefficients can be derived from |E |+ 1 pairs (pz ,PΥ) using

Lagrange’s polynomial interpolation formula.

|E |+ 1 oracle calls to PΥ suffice to determine #Ψ =
∑|E |

i=0 |Θi |.
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Hard Query Patterns

There are 48 (!) minimal non-hierarchical query patterns.

Binary trees with leaves A, AB, and B and inner nodes 1 or −.
I Some are symmetric and need not be considered separately:

A and B can be exchanged, joins are commutative and associative.
I Still, many cases left to consider due to the difference operator.

1

1

A B

AB

P1.1 1

−

A B

AB

P1.2 −

1

A B

AB

P1.3 −

−

A B

AB

P1.4

. . . . . . . . . . . .

1

A 1

B AB

P5.1 1

A −

B AB

P5.2 −

A 1

B AB

P5.3 −

A −

B AB

P5.4

There is a database construction scheme for each pattern.

Each non-hierarchical query Q matches a pattern Px.y.

In the absence of negation, P1.1 is the only hard pattern to consider!
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Non-hierarchical Queries Match Minimal Hard Patterns

Each non-hierarchical query Q matches a pattern Px.y:

There is a total mapping from Px.y to Q’s parse tree that
I is identity on inner nodes 1 and −,
I preserves ancestor-descendant relationships,
I maps leaves to relations: A to R(A); AB to S(A,B); and B to T (B).

−

A 1

B AB

Pattern P5.3

π∅

1

X (A) −

R(A) πA

1

T (B) S(A, B)

Query Q

The match “preserves” the grounding of the query pattern:

Q and Px.y have the same grounding for any database using our

construction scheme.
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Evaluation of Hierarchical 1RA− Queries

Approach based on knowledge compilation

For any database D, the probability PQ(D) of a 1RA− query Q is the

probability PΨ of Q’s grounding Ψ.

Compile Ψ into OBDD(Ψ) in polynomial time.

Compute probability of OBDD(Ψ) in time linear in its size.

Distinction from existing tractability results [O. & Huang 2008]:

1RA− without negation: Grounding formulas are read-once.
I Read-once formulas admit linear-size OBBDs.

1RA−: Grounding formulas are not read-once.
I They admit OBBDs of sizes linear in the database size

but exponential in the query size.
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The Inner Workings

From hierarchical 1RA− to RC-hierarchical ∃-consistent RC∃:

Translate query Q into an equivalent disjunction of disjunction-free
existential relational calculus queries Q1 ∨ · · · ∨ Qk .

I k can be very large for queries with projection under difference!

RC-hierarchical:
For each ∃X (Q ′), every relation symbol in Q ′ has variable X .

I Each of the disjuncts yields a poly-size OBDD.

∃-consistent:
The nesting order of the quantifiers is the same in Q1, · · · ,Qk .

I All OBDDs have compatible variable orders and

their disjunction is a poly-size OBDD.

The OBDD width grows exponentially with k,

its height stays linear in the size of the database.

I Width = maximum number of edges crossing the section between any two

consecutive levels.
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Query Evaluation Example (1/3)

Consider the following query and tuple-independent database:

Q = π∅

[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]

R

A Φ

1 r1
2 r2

T

B Φ

1 t1
2 t2

U

A Φ

1 u1

2 u2

V

B Φ

1 v1

2 v2

R × T

A B Φ

1 1 r1t1
1 2 r1t2
2 1 r2t1
2 2 r2t2

R × T − U × V

A B Φ

1 1 r1t1¬(u1v1)

1 2 r1t2¬(u1v2)

2 1 r2t1¬(u2v1)

2 2 r2t2¬(u2v2)

The grounding of Q is:

Ψ = r1

[
t1(¬u1 ∨ ¬v1) ∨ t2(¬u1 ∨ ¬v2)

]
∨ r2

[
t1(¬u2 ∨ ¬v1) ∨ t2(¬u2 ∨ ¬v2)

]
.

Variables entangle in Ψ beyond read-once factorization.

This is the pivotal intricacy introduced by the difference operator.
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Query Evaluation Example (2/3)

Translate Q = π∅

[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]
into RC∃:

QRC =∃A
(
R(A) ∧ ¬U(A)

)
∧ ∃BT (B)︸ ︷︷ ︸

Q1

∨ ∃AR(A) ∧ ∃B
(
T (B) ∧ ¬V (B)

)︸ ︷︷ ︸
Q2

.

Both Q1 and Q2 are RC-hierarchical.

Q1 ∨ Q2 is ∃-consistent: Same order ∃A∃B for Q1 and Q2.

Query grounding:

Ψ = (r1¬u1 ∨ r2¬u2) ∧ (t1 ∨ t2)︸ ︷︷ ︸
Ψ1

∨ (r1 ∨ r2) ∧ (t1¬v1 ∨ t2¬v2)︸ ︷︷ ︸
Ψ2

.

Both Ψ1 and Ψ2 admit linear-size OBDDs.

The two OBDDs have compatible orders and their disjunction is an OBDD

whose width is the product of the widths of the two OBDDs.
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Query Evaluation Example (3/3)

Compile grounding formula into OBDD:

Ψ = (r1¬u1 ∨ r2¬u2) ∧ (t1 ∨ t2)︸ ︷︷ ︸
Ψ1

∨ (r1 ∨ r2) ∧ (t1¬v1 ∨ t2¬v2)︸ ︷︷ ︸
Ψ2

.

r1

r2

¬u1

¬u2

t1

t2

>⊥

∨

Ψ1 ∨

r1

r2

t1

t2

¬v1

¬v2

>⊥

=

Ψ2 =

r1

¬u1

r2 r2

¬u2 ¬u2

t1 t1

¬v1

t2 t2

¬v2

>⊥

Ψ
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Dichotomies Beyond 1RA−

Some known dichotomies

Non-repeating CQ, UCQ [Dalvi & Suciu 2004, 2010]

Quantified queries, ranking queries [O.& team 2011, 2012]

Non-repeating relational algebra = 1RA− + union.

Hierarchical property not enough, consistency also needed.

π∅[(R(A) 1 S1(A,B) ∪ T (B) 1 S2(A,B))− S(A,B)] is hard, though it is

equivalent to a union of two hierarchical 1RA− queries.

Non-repeating relational calculus

S(x , y) ∧ ¬R(x) is tractable, S(x , y) ∧ (R(x) ∨ T (y)) is hard.
I Both are non-repeating, yet not expressible in 1RA−.

Possible (though expensive) approach:
I Translate to RC∃ and check RC-hierarchical and ∃-consistency.

Full relational algebra (or full relational calculus)

It is undecidable whether the union of two equivalent relational algebra

queries, one hard and one tractable, is tractable.
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Thank you!
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