
1 / 28

A Dichotomy

for Queries with Negation

in Probabilistic Databases

1 / 20

A Dichotomy

for Non-Repeating Queries with Negation

in Probabilistic Databases

Robert Fink and Dan Olteanu

PODS, June 24, 2014

Dan Olteanu
Joint work with Robert Fink

Uncertainty in Computation

Simons Institute for the Theory of Computing

Berkeley Oct 5, 2016

Probabilistic Databases 101

The Dichotomy

The Interesting but Hard Queries

The Easy Queries

Leftovers

2 / 28

Outline

Tuple-Independent Probabilistic Databases

Tuple-independent database of n tuples (ti)i∈[n]:

Each tuple ti associated with an independent Boolean random variable xi .

P(xi = true) gives the probability that ti exists in the database.

Possible-worlds semantics:

Each possible world defined by an assignment θ of the variables (xi)i∈[n]:

I It consists of all tuples ti for which θ(xi) = true.

I It has probability P(θ) = Πi∈[n]P(xi = θ(xi)).

A tuple-independent database with n tuples has 2n possible worlds.

3 / 28

Relational Algebra

Popular database query language since Codd times.

Algebra carrier: set of all finite relations

Algebra operations: π (projection), × (Cartesian product), − (set

difference), 1 (join), σ (selection), ∪ (set union), δ (renaming)

As expressive as domain relational calculus (RC)

In this talk: Relational algebra fragment 1RA−

Included: Equality joins, selections, projections, difference

Excluded: Repeating relation symbols, unions

Examples of (Boolean) 1RA− queries:

Are there combinations of tuples in (R,T) that are not in (U,V)?

π∅
[(
R(A)× T (B)

)
−

(
U(A)× V (B)

)]
∃A∃B

[(
R(A) ∧ T (B)

)
∧¬

(
U(A) ∧ V (B)

)]
(in RC)

Does relation S “hold hands” with both R and T?

π∅
[
R(A) 1 S(A,B) 1 T (B)

]
∃A∃B

[
R(A) ∧ S(A,B) ∧ T (B)

]
(in RC)

4 / 28

Relational Algebra

Popular database query language since Codd times.

Algebra carrier: set of all finite relations

Algebra operations: π (projection), × (Cartesian product), − (set

difference), 1 (join), σ (selection), ∪ (set union), δ (renaming)

As expressive as domain relational calculus (RC)

In this talk: Relational algebra fragment 1RA−

Included: Equality joins, selections, projections, difference

Excluded: Repeating relation symbols, unions

Examples of (Boolean) 1RA− queries:

Are there combinations of tuples in (R,T) that are not in (U,V)?

π∅
[(
R(A)× T (B)

)
−

(
U(A)× V (B)

)]
∃A∃B

[(
R(A) ∧ T (B)

)
∧¬

(
U(A) ∧ V (B)

)]
(in RC)

Does relation S “hold hands” with both R and T?

π∅
[
R(A) 1 S(A,B) 1 T (B)

]
∃A∃B

[
R(A) ∧ S(A,B) ∧ T (B)

]
(in RC)

4 / 28

The Query Evaluation Problem

For any Boolean 1RA− query Q and tuple-independent database D:

Compute the probability that Q is true in a random world of D.

The case of non-Boolean queries can be reduced to the Boolean case.

We are interested in the data complexity of this problem.

Fix the query Q and take the database D as input.

5 / 28

Probabilistic Databases 101

The Dichotomy

The Interesting but Hard Queries

The Easy Queries

Leftovers

6 / 28

Outline

Data complexity of any 1RA− query Q in tuple-independent databases:

Polynomial time if Q is hierarchical and #P-hard otherwise.

7 / 28

Hierarchical 1RA− Queries

(Boolean) 1RA− query Q is hierarchical if

For every pair of distinct query variables A and B in Q,

there is no triple of relation symbols R, S , and T in Q such that:

R has A but not B, S has both A and B, and T has B but not A.

R(A) S(A,B) T (B)

8 / 28

Hierarchical 1RA− Queries

(Boolean) 1RA− query Q is hierarchical if

For every pair of distinct query variables A and B in Q,

there is no triple of relation symbols R, S , and T in Q such that:

R has A but not B, S has both A and B, and T has B but not A.

R(A) S(A,B) T (B)

8 / 28

Hierarchical 1RA− Queries

(Boolean) 1RA− query Q is hierarchical if

For every pair of distinct query variables A and B in Q,

there is no triple of relation symbols R, S , and T in Q such that:

R has A but not B, S has both A and B, and T has B but not A.

9 / 28

Hierarchical 1RA− Queries

(Boolean) 1RA− query Q is hierarchical if

For every pair of distinct query variables A and B in Q,

there is no triple of relation symbols R, S , and T in Q such that:

R has A but not B, S has both A and B, and T has B but not A.

9 / 28

Examples

Hierarchical queries:

π∅
[(
R(A) 1 S(A,B)

)
− T (A,B)

]
π∅
[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]
π∅

[(
M(A)× N(B)

)
−
[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]]
π∅

[
πA
[
M(A)× N(B)

]
− πA

[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]]

Non-hierarchical queries:

π∅
[
R(A) 1 S(A,B) 1 T (B)

]
π∅

[
πB
(
R(A) 1 S(A,B)

)
− T (B)

]
π∅

[
T (B)− πB

(
R(A) 1 S(A,B)

)]
π∅

[
X (A) 1

[
R(A)− πA

(
T (B) 1 S(A,B)

)]]

10 / 28

Examples

Hierarchical queries:

π∅
[(
R(A) 1 S(A,B)

)
− T (A,B)

]
π∅
[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]
π∅

[(
M(A)× N(B)

)
−
[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]]
π∅

[
πA
[
M(A)× N(B)

]
− πA

[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]]
Non-hierarchical queries:

π∅
[
R(A) 1 S(A,B) 1 T (B)

]
π∅

[
πB
(
R(A) 1 S(A,B)

)
− T (B)

]
π∅

[
T (B)− πB

(
R(A) 1 S(A,B)

)]
π∅

[
X (A) 1

[
R(A)− πA

(
T (B) 1 S(A,B)

)]]

10 / 28

Probabilistic Databases 101

The Dichotomy

The Interesting but Hard Queries

The Easy Queries

Leftovers

11 / 28

Outline

Hardness Proof Idea

Reduction from #P-hard model counting problem for positive bipartite DNF:

Given a non-hierarchical 1RA− query Q and

Any positive bipartite DNF formula Ψ over disjoint sets X and Y of

random variables.

#Ψ can be computed using linearly many calls to an oracle for P(Q),

where Q is evaluated on tuple-independent databases of sizes linear in the

size of Ψ.

12 / 28

A Simple Case

Input formula and query:

Ψ = x1y1 ∨ x1y2 ∨ x2y1 over sets X = {x1, x2},Y = {y1, y2}

Q = π∅

[
R(A) 1 S(A,B) 1 T (B)

]
Construct a database D such that Ψ becomes the grounding of Q wrt D:

Column Φ holds formulas over random variables.
I We use > for true and ⊥ for false.

Variables also used as constants for A and B.

S(xi, yj,>): xiyj is a clause in Ψ.

R(xi, xi) and T (yj, yj): xi is a variable in X and yj is a variable in Y.

R

A Φ

x1 x1

x2 x2

T

B Φ

y1 y1

y2 y2

S

A B Φ

x1 y1 >
x1 y2 >
x2 y1 >

R 1 S 1 T

A B Φ

x1 y1 x1y1

x1 y2 x1y2

x2 y1 x2y1

π∅
[
R 1 S 1 T

]
Φ

() Ψ

This is the only minimal hard pattern for positive 1RA− queries!

13 / 28

A Simple Case

Input formula and query:

Ψ = x1y1 ∨ x1y2 ∨ x2y1 over sets X = {x1, x2},Y = {y1, y2}

Q = π∅

[
R(A) 1 S(A,B) 1 T (B)

]
Construct a database D such that Ψ becomes the grounding of Q wrt D:

Column Φ holds formulas over random variables.
I We use > for true and ⊥ for false.

Variables also used as constants for A and B.

S(xi, yj,>): xiyj is a clause in Ψ.

R(xi, xi) and T (yj, yj): xi is a variable in X and yj is a variable in Y.

R

A Φ

x1 x1

x2 x2

T

B Φ

y1 y1

y2 y2

S

A B Φ

x1 y1 >
x1 y2 >
x2 y1 >

R 1 S 1 T

A B Φ

x1 y1 x1y1

x1 y2 x1y2

x2 y1 x2y1

π∅
[
R 1 S 1 T

]
Φ

() Ψ

This is the only minimal hard pattern for positive 1RA− queries!
13 / 28

A Surprising Case

Input formula and query:

Ψ = x1y1 ∨ x1y2 over sets X = {x1},Y = {y1, y2}

Q = π∅

[
R(A)− πA

(
T (B) 1 S(A,B)

)]
Construct a database D such that Ψ becomes the grounding of Q wrt D:

S(a, b,>): Clause a has variable b in Ψ.

R(a,>) and T (b,¬b): a is a clause and b is a variable in Ψ.

R

A Φ

1 >
2 >

T

B Φ

x1 ¬x1

y1 ¬y1

y2 ¬y2

S

A B Φ

1 x1 >
1 y1 >
2 x1 >
2 y2 >

T 1 S

A B Φ

1 x1 ¬x1

1 y1 ¬y1

2 x1 ¬x1

2 y2 ¬y2

πA(T 1 S)

A Φ

1 ¬x1 ∨ ¬y1

2 ¬x1 ∨ ¬y2

R − πA(T 1 S)

A Φ

1 x1y1

2 x1y2

This query is already hard when T is the only probabilistic input relation!

14 / 28

A Surprising Case

Input formula and query:

Ψ = x1y1 ∨ x1y2 over sets X = {x1},Y = {y1, y2}

Q = π∅

[
R(A)− πA

(
T (B) 1 S(A,B)

)]
Construct a database D such that Ψ becomes the grounding of Q wrt D:

S(a, b,>): Clause a has variable b in Ψ.

R(a,>) and T (b,¬b): a is a clause and b is a variable in Ψ.

R

A Φ

1 >
2 >

T

B Φ

x1 ¬x1

y1 ¬y1

y2 ¬y2

S

A B Φ

1 x1 >
1 y1 >
2 x1 >
2 y2 >

T 1 S

A B Φ

1 x1 ¬x1

1 y1 ¬y1

2 x1 ¬x1

2 y2 ¬y2

πA(T 1 S)

A Φ

1 ¬x1 ∨ ¬y1

2 ¬x1 ∨ ¬y2

R − πA(T 1 S)

A Φ

1 x1y1

2 x1y2

This query is already hard when T is the only probabilistic input relation!

14 / 28

A More Involved Case

Input formula and query:

Ψ = x1y1 ∨ x1y2 ∨ x2y1 over sets X = {x1, x2},Y = {y1, y2}

Q = π∅

[
S(A,B)− R(A)× T (B)

]
We need a different reduction gadget:

Use additional random variables Z = {z1, . . . , z|E |}, one per clause in

Ψ = ψ1 ∨ · · · ∨ ψ|E |.

Construct a database D such that the grounding of Q wrt D is

¬Υ = ¬
[∨|E |

i=1 ¬zi¬ψi

]
=
∧|E |

i=1(zi ∨ ψi).

R

A Φ

x1 x1

x2 x2

T

B Φ

y1 x1

y2 y2

S

A B Φ

x1 y1 ¬z1

x1 y2 ¬z2

x2 y1 ¬z3

S − R × T

A B Φ

x1 y1 ¬z1¬(x1y1)

x1 y2 ¬z2¬(x1y2)

x2 y1 ¬z3¬(x2y1)

π∅
[
S − R × T

]
Φ

()
∨|E |

i=1 ¬zi¬ψi

Compute #Ψ using linearly many calls to the oracle for PQ = 1− P(Υ).

15 / 28

The Small Print (1/2)

Ψ =
∨

(i,j)∈E xiyj = ψ1 ∨ · · · ∨ ψ|E | over disjoint variable sets X and Y

Let Θ be the set of assignments of variables X ∪ Y that satisfy Ψ:

#Ψ =
∑

θ∈Θ:θ|=Ψ

1.

Partition Θ into disjoint sets Θ0 ∪ · · · ∪Θ|E |, such that θ ∈ Θi if and only

if θ satisfies exactly i clauses of Ψ:

#Ψ =
∑

θ∈Θ1:θ|=Ψ

1 + · · ·+
∑

θ∈Θ|E|:θ|=Ψ

1 = |Θ1|+ · · ·+ |Θ|E ||.

|Θ1|, . . . , |Θ|E || can be computed using an oracle for PΥ:

Υ =

|E |∨
i=1

¬zi ∧ ¬ψi or, equivalently ¬Υ =

|E |∧
i=1

(zi ∨ ψi)

16 / 28

The Small Print (2/2)

Express the probability of ¬Υ =
∧|E |

i=1(zi ∨ψi) as a function of |Θ1|, . . . , |Θ|E ||:

Fix the probabilities of variables in X ∪ Y to 1/2 and of variables in Z to

pz . Then:

P¬Υ =

|E|∑
k=0

P

(
¬Υ

∣∣∣∣∣ exactly k clauses

of Ψ are satisfied

)

︸ ︷︷ ︸
p|E|−k
z

·P
(

exactly k clauses

of Ψ are satisfied

)

︸ ︷︷ ︸
1

2

|X|+|Y|
· |Θk |

=
1

2

|X|+|Y| |E|∑
k=0

p|E|−k
z |Θk |

This is a polynomial in pz of degree |E |, with coefficients |Θ0|, . . . , |Θ|E ||.

The coefficients can be derived from |E |+ 1 pairs (pz ,PΥ) using

Lagrange’s polynomial interpolation formula.

|E |+ 1 oracle calls to PΥ suffice to determine #Ψ =
∑|E |

i=0 |Θi |.

17 / 28

Hard Query Patterns

There are 48 (!) minimal non-hierarchical query patterns.

Binary trees with leaves A, AB, and B and inner nodes 1 or −.
I Some are symmetric and need not be considered separately:

A and B can be exchanged, joins are commutative and associative.
I Still, many cases left to consider due to the difference operator.

1

1

A B

AB

P1.1 1

−

A B

AB

P1.2 −

1

A B

AB

P1.3 −

−

A B

AB

P1.4

.

1

A 1

B AB

P5.1 1

A −

B AB

P5.2 −

A 1

B AB

P5.3 −

A −

B AB

P5.4

There is a database construction scheme for each pattern.

Each non-hierarchical query Q matches a pattern Px.y.

In the absence of negation, P1.1 is the only hard pattern to consider!

18 / 28

Hard Query Patterns

There are 48 (!) minimal non-hierarchical query patterns.

Binary trees with leaves A, AB, and B and inner nodes 1 or −.
I Some are symmetric and need not be considered separately:

A and B can be exchanged, joins are commutative and associative.
I Still, many cases left to consider due to the difference operator.

1

1

A B

AB

P1.1 1

−

A B

AB

P1.2 −

1

A B

AB

P1.3 −

−

A B

AB

P1.4

.

1

A 1

B AB

P5.1 1

A −

B AB

P5.2 −

A 1

B AB

P5.3 −

A −

B AB

P5.4

There is a database construction scheme for each pattern.

Each non-hierarchical query Q matches a pattern Px.y.

In the absence of negation, P1.1 is the only hard pattern to consider!

18 / 28

Non-hierarchical Queries Match Minimal Hard Patterns

Each non-hierarchical query Q matches a pattern Px.y:

There is a total mapping from Px.y to Q’s parse tree that
I is identity on inner nodes 1 and −,
I preserves ancestor-descendant relationships,
I maps leaves to relations: A to R(A); AB to S(A,B); and B to T (B).

−

A 1

B AB

Pattern P5.3

π∅

1

X (A) −

R(A) πA

1

T (B) S(A, B)

Query Q

The match “preserves” the grounding of the query pattern:

Q and Px.y have the same grounding for any database using our

construction scheme.

19 / 28

Probabilistic Databases 101

The Dichotomy

The Interesting but Hard Queries

The Easy Queries

Leftovers

20 / 28

Outline

Evaluation of Hierarchical 1RA− Queries

Approach based on knowledge compilation

For any database D, the probability PQ(D) of a 1RA− query Q is the

probability PΨ of Q’s grounding Ψ.

Compile Ψ into OBDD(Ψ) in polynomial time.

Compute probability of OBDD(Ψ) in time linear in its size.

Distinction from existing tractability results [O. & Huang 2008]:

1RA− without negation: Grounding formulas are read-once.
I Read-once formulas admit linear-size OBBDs.

1RA−: Grounding formulas are not read-once.
I They admit OBBDs of sizes linear in the database size

but exponential in the query size.

21 / 28

Evaluation of Hierarchical 1RA− Queries

Approach based on knowledge compilation

For any database D, the probability PQ(D) of a 1RA− query Q is the

probability PΨ of Q’s grounding Ψ.

Compile Ψ into OBDD(Ψ) in polynomial time.

Compute probability of OBDD(Ψ) in time linear in its size.

Distinction from existing tractability results [O. & Huang 2008]:

1RA− without negation: Grounding formulas are read-once.
I Read-once formulas admit linear-size OBBDs.

1RA−: Grounding formulas are not read-once.
I They admit OBBDs of sizes linear in the database size

but exponential in the query size.

21 / 28

The Inner Workings

From hierarchical 1RA− to RC-hierarchical ∃-consistent RC∃:

Translate query Q into an equivalent disjunction of disjunction-free
existential relational calculus queries Q1 ∨ · · · ∨ Qk .

I k can be very large for queries with projection under difference!

RC-hierarchical:
For each ∃X (Q ′), every relation symbol in Q ′ has variable X .

I Each of the disjuncts yields a poly-size OBDD.

∃-consistent:
The nesting order of the quantifiers is the same in Q1, · · · ,Qk .

I All OBDDs have compatible variable orders and

their disjunction is a poly-size OBDD.

The OBDD width grows exponentially with k,

its height stays linear in the size of the database.

I Width = maximum number of edges crossing the section between any two

consecutive levels.

22 / 28

Query Evaluation Example (1/3)

Consider the following query and tuple-independent database:

Q = π∅

[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]

R

A Φ

1 r1
2 r2

T

B Φ

1 t1
2 t2

U

A Φ

1 u1

2 u2

V

B Φ

1 v1

2 v2

R × T

A B Φ

1 1 r1t1
1 2 r1t2
2 1 r2t1
2 2 r2t2

R × T − U × V

A B Φ

1 1 r1t1¬(u1v1)

1 2 r1t2¬(u1v2)

2 1 r2t1¬(u2v1)

2 2 r2t2¬(u2v2)

The grounding of Q is:

Ψ = r1

[
t1(¬u1 ∨ ¬v1) ∨ t2(¬u1 ∨ ¬v2)

]
∨ r2

[
t1(¬u2 ∨ ¬v1) ∨ t2(¬u2 ∨ ¬v2)

]
.

Variables entangle in Ψ beyond read-once factorization.

This is the pivotal intricacy introduced by the difference operator.

23 / 28

Query Evaluation Example (1/3)

Consider the following query and tuple-independent database:

Q = π∅

[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]

R

A Φ

1 r1
2 r2

T

B Φ

1 t1
2 t2

U

A Φ

1 u1

2 u2

V

B Φ

1 v1

2 v2

R × T

A B Φ

1 1 r1t1
1 2 r1t2
2 1 r2t1
2 2 r2t2

R × T − U × V

A B Φ

1 1 r1t1¬(u1v1)

1 2 r1t2¬(u1v2)

2 1 r2t1¬(u2v1)

2 2 r2t2¬(u2v2)

The grounding of Q is:

Ψ = r1

[
t1(¬u1 ∨ ¬v1) ∨ t2(¬u1 ∨ ¬v2)

]
∨ r2

[
t1(¬u2 ∨ ¬v1) ∨ t2(¬u2 ∨ ¬v2)

]
.

Variables entangle in Ψ beyond read-once factorization.

This is the pivotal intricacy introduced by the difference operator.

23 / 28

Query Evaluation Example (2/3)

Translate Q = π∅

[(
R(A)× T (B)

)
−
(
U(A)× V (B)

)]
into RC∃:

QRC =∃A
(
R(A) ∧ ¬U(A)

)
∧ ∃BT (B)︸ ︷︷ ︸

Q1

∨ ∃AR(A) ∧ ∃B
(
T (B) ∧ ¬V (B)

)︸ ︷︷ ︸
Q2

.

Both Q1 and Q2 are RC-hierarchical.

Q1 ∨ Q2 is ∃-consistent: Same order ∃A∃B for Q1 and Q2.

Query grounding:

Ψ = (r1¬u1 ∨ r2¬u2) ∧ (t1 ∨ t2)︸ ︷︷ ︸
Ψ1

∨ (r1 ∨ r2) ∧ (t1¬v1 ∨ t2¬v2)︸ ︷︷ ︸
Ψ2

.

Both Ψ1 and Ψ2 admit linear-size OBDDs.

The two OBDDs have compatible orders and their disjunction is an OBDD

whose width is the product of the widths of the two OBDDs.

24 / 28

Query Evaluation Example (3/3)

Compile grounding formula into OBDD:

Ψ = (r1¬u1 ∨ r2¬u2) ∧ (t1 ∨ t2)︸ ︷︷ ︸
Ψ1

∨ (r1 ∨ r2) ∧ (t1¬v1 ∨ t2¬v2)︸ ︷︷ ︸
Ψ2

.

r1

r2

¬u1

¬u2

t1

t2

>⊥

∨

Ψ1 ∨

r1

r2

t1

t2

¬v1

¬v2

>⊥

=

Ψ2 =

r1

¬u1

r2 r2

¬u2 ¬u2

t1 t1

¬v1

t2 t2

¬v2

>⊥

Ψ

25 / 28

Probabilistic Databases 101

The Dichotomy

The Interesting but Hard Queries

The Easy Queries

Leftovers

26 / 28

Outline

The Dichotomy

The Interesting but Hard Queries

The Easy Queries

Leftovers

18 / 20

Outline

Dichotomies Beyond 1RA−

Some known dichotomies

Non-repeating CQ, UCQ [Dalvi & Suciu 2004, 2010]

Quantified queries, ranking queries [O.& team 2011, 2012]

Non-repeating relational algebra = 1RA− + union.

Hierarchical property not enough, consistency also needed.

π∅[(R(A) 1 S1(A,B) ∪ T (B) 1 S2(A,B))− S(A,B)] is hard, though it is

equivalent to a union of two hierarchical 1RA− queries.

Non-repeating relational calculus

S(x , y) ∧ ¬R(x) is tractable, S(x , y) ∧ (R(x) ∨ T (y)) is hard.
I Both are non-repeating, yet not expressible in 1RA−.

Possible (though expensive) approach:
I Translate to RC∃ and check RC-hierarchical and ∃-consistency.

Full relational algebra (or full relational calculus)

It is undecidable whether the union of two equivalent relational algebra

queries, one hard and one tractable, is tractable.

27 / 28

Thank you!

28 / 28

	 Probabilistic Databases 101
	 The Dichotomy
	 The Interesting but Hard Queries
	 The Easy Queries
	 Leftovers

