A Dichotomy

for Queries with **Negation**

in **Probabilistic** Databases

Dan Olteanu

Joint work with Robert Fink

Uncertainty in Computation

Simons Institute for the Theory of Computing

Berkeley Oct 5, 2016
Outline

Probabilistic Databases 101

The Dichotomy

The Interesting but Hard Queries

The Easy Queries

Leftovers
Tuple-Independent Probabilistic Databases

Tuple-independent database of n tuples $\(t_i\)_{i \in [n]}$:

- Each tuple t_i associated with an independent Boolean random variable x_i.
- $P(x_i = \text{true})$ gives the probability that t_i exists in the database.

Possible-worlds semantics:

- Each possible world defined by an assignment θ of the variables $\(x_i\)_{i \in [n]}$:
 - It consists of all tuples t_i for which $\theta(x_i) = \text{true}$.
 - It has probability $P(\theta) = \prod_{i \in [n]} P(x_i = \theta(x_i))$.

- A tuple-independent database with n tuples has 2^n possible worlds.
Relational Algebra

Popular database query language since Codd times.

- Algebra carrier: set of all finite relations
- Algebra operations: π (projection), \times (Cartesian product), $-$ (set difference), \Join (join), σ (selection), \cup (set union), δ (renaming)
- As expressive as domain relational calculus (RC)

In this talk: Relational algebra fragment 1RA$^-$

- Included: Equality joins, selections, projections, difference
- Excluded: Repeating relation symbols, unions
Relational Algebra

Popular database query language since Codd times.

- Algebra carrier: set of all finite relations
- Algebra operations: π (projection), \times (Cartesian product), \neg (set difference), \Join (join), σ (selection), \cup (set union), δ (renaming)
- As expressive as domain relational calculus (RC)

In this talk: Relational algebra fragment 1RA$^-$

- Included: Equality joins, selections, projections, difference
- Excluded: Repeating relation symbols, unions

Examples of (Boolean) 1RA$^-$ queries:

- Are there combinations of tuples in (R, T) that are not in (U, V)?

 $\pi_\emptyset [(R(A) \times T(B)) \neg (U(A) \times V(B))]$
 $\exists_A \exists_B [(R(A) \land T(B)) \land \neg (U(A) \land V(B))]$ (in RC)

- Does relation S “hold hands” with both R and T?

 $\pi_\emptyset [R(A) \Join S(A,B) \Join T(B)]$
 $\exists_A \exists_B [R(A) \land S(A,B) \land T(B)]$ (in RC)
The Query Evaluation Problem

For any Boolean 1RA− query Q and tuple-independent database D:

Compute the probability that Q is true in a random world of D.

The case of non-Boolean queries can be reduced to the Boolean case.

We are interested in the data complexity of this problem.

- Fix the query Q and take the database D as input.
Outline

Probabilistic Databases 101

The Dichotomy

The Interesting but Hard Queries

The Easy Queries

Leftovers
Data complexity of any 1RA- query Q in tuple-independent databases:

- Polynomial time if Q is hierarchical and \#P-hard otherwise.
Hierarchical 1RA\(^{-}\) Queries

(Boolean) 1RA\(^{-}\) query \(Q\) is *hierarchical* if

- For every pair of distinct query variables \(A\) and \(B\) in \(Q\),
- there is no triple of relation symbols \(R\), \(S\), and \(T\) in \(Q\) such that:
- \(R\) has \(A\) but not \(B\), \(S\) has both \(A\) and \(B\), and \(T\) has \(B\) but not \(A\).
Hierarchical \(1\text{RA}^-\) Queries

(Boolean) \(1\text{RA}^-\) query \(Q\) is \textit{hierarchical} if

- For every pair of distinct query variables \(A\) and \(B\) in \(Q\),
- there is no triple of relation symbols \(R, S,\) and \(T\) in \(Q\) such that:
- \(R\) has \(A\) but not \(B\), \(S\) has both \(A\) and \(B\), and \(T\) has \(B\) but not \(A\).

\[
\begin{align*}
R(A) & \quad S(A, B) & \quad T(B)
\end{align*}
\]
(Boolean) 1RA^- query Q is *hierarchical* if

- For every pair of distinct query variables A and B in Q,
- there is no triple of relation symbols R, S, and T in Q such that:
- R has A but not B, S has both A and B, and T has B but not A.
Hierarchical 1RA^- Queries

(Boolean) 1RA^- query Q is \textit{hierarchical} if

- For every pair of distinct query variables A and B in Q,
- there is no triple of relation symbols R, S, and T in Q such that:
 - R has A but not B,
 - S has both A and B,
 - T has B but not A.
Examples

Hierarchical queries:

- $\pi_\emptyset[(R(A) \boxtimes S(A, B)) - T(A, B)]$
- $\pi_\emptyset[(R(A) \times T(B)) - (U(A) \times V(B)))]$
- $\pi_\emptyset[(M(A) \times N(B)) - [(R(A) \times T(B)) - (U(A) \times V(B))]]$
- $\pi_\emptyset[\pi_A[M(A) \times N(B)] - \pi_A[(R(A) \times T(B)) - (U(A) \times V(B))]]$
Examples

Hierarchical queries:

- $\pi_\emptyset[(R(A) \times S(A, B)) - T(A, B)]$
- $\pi_\emptyset[(R(A) \times T(B)) - (U(A) \times V(B))]$
- $\pi_\emptyset[(M(A) \times N(B)) - [(R(A) \times T(B)) - (U(A) \times V(B))]]$
- $\pi_\emptyset[\pi_A[M(A) \times N(B)] - \pi_A[(R(A) \times T(B)) - (U(A) \times V(B))]]$

Non-hierarchical queries:

- $\pi_\emptyset[R(A) \times S(A, B) \times T(B)]$
- $\pi_\emptyset[\pi_B(R(A) \times S(A, B)) - T(B)]$
- $\pi_\emptyset[T(B) - \pi_B(R(A) \times S(A, B))]$
- $\pi_\emptyset[X(A) \times [R(A) - \pi_A(T(B) \times S(A, B))]]$
Outline

- Probabilistic Databases 101
- The Dichotomy
- The Interesting but Hard Queries
- The Easy Queries
- Leftovers
Hardness Proof Idea

Reduction from \(\#P \)-hard model counting problem for positive bipartite DNF:

- Given a non-hierarchical 1RA\(^{-}\) query \(Q \) and

- Any positive bipartite DNF formula \(\Psi \) over disjoint sets \(X \) and \(Y \) of random variables.

- \(\#\Psi \) can be computed using linearly many calls to an oracle for \(P(Q) \), where \(Q \) is evaluated on tuple-independent databases of sizes linear in the size of \(\Psi \).
A Simple Case

Input formula and query:

- $\Psi = x_1 y_1 \lor x_1 y_2 \lor x_2 y_1$ over sets $X = \{x_1, x_2\}$, $Y = \{y_1, y_2\}$
- $Q = \pi_\emptyset [R(A) \Join S(A, B) \Join T(B)]$

Construct a database D such that Ψ becomes the grounding of Q wrt D:

- Column Φ holds formulas over random variables.
 - We use \top for $true$ and \bot for $false$.
 - Variables also used as constants for A and B.
 - $S(x_i, y_j, \top)$: $x_i y_j$ is a clause in Ψ.
 - $R(x_i, x_i)$ and $T(y_j, y_j)$: x_i is a variable in X and y_j is a variable in Y.

<table>
<thead>
<tr>
<th>(R)</th>
<th>(T)</th>
<th>(S)</th>
<th>(R \Join S \Join T)</th>
<th>$\pi_\emptyset [R \Join S \Join T]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Φ</td>
<td>B Φ</td>
<td>A B Φ</td>
<td>A B Φ</td>
<td>\emptyset Φ</td>
</tr>
<tr>
<td>x_1 x_1</td>
<td>y_1 y_1</td>
<td>x_1 y_1 \top</td>
<td>x_1 y_1 $x_1 y_1$</td>
<td>(\emptyset) Ψ</td>
</tr>
<tr>
<td>x_2 x_2</td>
<td>y_2 y_2</td>
<td>x_1 y_2 \top</td>
<td>x_1 y_2 $x_1 y_2$</td>
<td>(\emptyset) Ψ</td>
</tr>
</tbody>
</table>
A Simple Case

Input formula and query:
- \(\Psi = x_1 y_1 \lor x_1 y_2 \lor x_2 y_1 \) over sets \(X = \{x_1, x_2\} \), \(Y = \{y_1, y_2\} \)
- \(Q = \pi_\emptyset \left[R(A) \Join S(A, B) \Join T(B) \right] \)

Construct a database \(D \) such that \(\Psi \) becomes the grounding of \(Q \) wrt \(D \):
- Column \(\Phi \) holds formulas over random variables.
 ▶ We use \(\top \) for true and \(\bot \) for false.
- Variables also used as constants for \(A \) and \(B \).
- \(S(x_i, y_j, \top) \): \(x_i y_j \) is a clause in \(\Psi \).
- \(R(x_i, x_i) \) and \(T(y_j, y_j) \): \(x_i \) is a variable in \(X \) and \(y_j \) is a variable in \(Y \).

<table>
<thead>
<tr>
<th></th>
<th>(R)</th>
<th></th>
<th>(T)</th>
<th></th>
<th>(S)</th>
<th></th>
<th>(R \Join S \Join T)</th>
<th>(\pi_\emptyset \left[R \Join S \Join T \right])</th>
<th>(\Phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(\Phi)</td>
<td>(B)</td>
<td>(\Phi)</td>
<td>(A)</td>
<td>(B)</td>
<td>(\Phi)</td>
<td>(A)</td>
<td>(B)</td>
<td>(\Phi)</td>
</tr>
<tr>
<td>(x_1)</td>
<td>(x_1)</td>
<td>(y_1)</td>
<td>(y_1)</td>
<td>(x_1)</td>
<td>(y_1)</td>
<td>(\top)</td>
<td>(x_1)</td>
<td>(y_1)</td>
<td>(x_1 y_1)</td>
</tr>
<tr>
<td>(x_2)</td>
<td>(x_2)</td>
<td>(y_2)</td>
<td>(y_2)</td>
<td>(x_1)</td>
<td>(y_2)</td>
<td>(\top)</td>
<td>(x_2)</td>
<td>(y_1)</td>
<td>(x_2 y_1)</td>
</tr>
</tbody>
</table>

This is the only minimal hard pattern for \textit{positive} \(1\text{RA}^- \) queries!
A Surprising Case

Input formula and query:

- \(\Psi = x_1y_1 \lor x_1y_2 \) over sets \(X = \{x_1\}, Y = \{y_1, y_2\} \)
- \(Q = \pi_\emptyset \left[R(A) - \pi_A \left(T(B) \ni S(A, B) \right) \right] \)

Construct a database \(D \) such that \(\Psi \) becomes the grounding of \(Q \) wrt \(D \):

- \(S(a, b, \top) \): Clause \(a \) has variable \(b \) in \(\Psi \).
- \(R(a, \top) \) and \(T(b, \neg b) \): \(a \) is a clause and \(b \) is a variable in \(\Psi \).

<table>
<thead>
<tr>
<th>(R)</th>
<th>(T)</th>
<th>(S)</th>
<th>(T \ni S)</th>
<th>(\pi_A(T \ni S))</th>
<th>(R - \pi_A(T \ni S))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \ \Phi)</td>
<td>(B \ \Phi)</td>
<td>(A \ B \ \Phi)</td>
<td>(A \ B \ \Phi)</td>
<td>(A \ \Phi)</td>
<td>(A \ \Phi)</td>
</tr>
<tr>
<td>1 (\top)</td>
<td>(x_1 \ \neg x_1)</td>
<td>1 (x_1 \ \top)</td>
<td>1 (x_1 \ \neg x_1)</td>
<td>1 (\neg x_1 \lor \neg y_1)</td>
<td>1 (x_1y_1)</td>
</tr>
<tr>
<td>2 (\top)</td>
<td>(y_1 \ \neg y_1)</td>
<td>1 (y_1 \ \top)</td>
<td>1 (y_1 \ \neg y_1)</td>
<td>2 (\neg x_1 \lor \neg y_2)</td>
<td>2 (x_1y_2)</td>
</tr>
<tr>
<td>(y_2 \ \neg y_2)</td>
<td>2 (x_1 \ \top)</td>
<td>2 (x_1 \ \neg x_1)</td>
<td>2 (y_2 \ \neg y_2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Surprising Case

Input formula and query:

- $\Psi = x_1 y_1 \lor x_1 y_2$ over sets $X = \{x_1\}, Y = \{y_1, y_2\}$
- $Q = \pi_{\emptyset} \left[R(A) - \pi_A (T(B) \Join S(A, B)) \right]$

Construct a database D such that Ψ becomes the grounding of Q wrt D:

- $S(a, b, \top)$: Clause a has variable b in Ψ.
- $R(a, \top)$ and $T(b, \neg b)$: a is a clause and b is a variable in Ψ.

This query is already hard when T is the only probabilistic input relation!
A More Involved Case

Input formula and query:

- \(\Psi = x_1y_1 \lor x_1y_2 \lor x_2y_1 \) over sets \(X = \{x_1, x_2\}, Y = \{y_1, y_2\} \)
- \(Q = \pi_\emptyset \left[S(A, B) - R(A) \times T(B) \right] \)

We need a different reduction gadget:

- Use additional random variables \(Z = \{z_1, \ldots, z_{|E|}\} \), one per clause in \(\Psi = \psi_1 \lor \cdots \lor \psi_{|E|} \).
- Construct a database \(D \) such that the grounding of \(Q \) wrt \(D \) is \(\neg \Upsilon = \neg \left[\bigvee_{i=1}^{|E|} \neg z_i \neg \psi_i \right] = \bigwedge_{i=1}^{|E|} (z_i \lor \psi_i) \).

<table>
<thead>
<tr>
<th>(R)</th>
<th>(T)</th>
<th>(S)</th>
<th>(S - R \times T)</th>
<th>(\pi_\emptyset [S - R \times T])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \Phi)</td>
<td>(B \Phi)</td>
<td>(A \Phi)</td>
<td>(A \Phi)</td>
<td>(\Phi)</td>
</tr>
<tr>
<td>(x_1 \ x_1)</td>
<td>(y_1 \ x_1)</td>
<td>(x_1 \ y_1 \ \neg z_1)</td>
<td>(x_1 \ y_1 \ \neg z_2)</td>
<td>(x_1 \ y_1 \ \neg z_3)</td>
</tr>
<tr>
<td>(x_2 \ x_2)</td>
<td>(y_2 \ y_2)</td>
<td>(x_1 \ y_2 \ \neg z_2)</td>
<td>(x_1 \ y_2 \ \neg z_3)</td>
<td>(x_1 \ y_2 \ \neg z_1)</td>
</tr>
</tbody>
</table>

- Compute \(\#\Psi \) using linearly many calls to the oracle for \(P_Q = 1 - P(\Upsilon) \).
The Small Print (1/2)

- \(\Psi = \bigvee_{(i,j) \in E} x_i y_j = \psi_1 \lor \cdots \lor \psi_{|E|} \) over disjoint variable sets \(X \) and \(Y \)

- Let \(\Theta \) be the set of assignments of variables \(X \cup Y \) that satisfy \(\Psi \):

\[
\#\Psi = \sum_{\theta \in \Theta : \theta \models \Psi} 1.
\]

- Partition \(\Theta \) into disjoint sets \(\Theta_0 \cup \cdots \cup \Theta_{|E|} \), such that \(\theta \in \Theta_i \) if and only if \(\theta \) satisfies exactly \(i \) clauses of \(\Psi \):

\[
\#\Psi = \sum_{\theta \in \Theta_1 : \theta \models \Psi} 1 + \cdots + \sum_{\theta \in \Theta_{|E|} : \theta \models \Psi} 1 = |\Theta_1| + \cdots + |\Theta_{|E|}|.
\]

- \(|\Theta_1|, \ldots, |\Theta_{|E|}| \) can be computed using an oracle for \(P_\Upsilon \):

\[
\Upsilon = \bigvee_{i=1}^{|E|} \neg z_i \land \neg \psi_i \quad \text{or, equivalently} \quad \neg \Upsilon = \bigwedge_{i=1}^{|E|} (z_i \lor \psi_i)
\]
Express the probability of \(-\Upsilon = \bigwedge_{i=1}^{|E|}(z_i \lor \psi_i) \) as a function of \(|\Theta_1|, \ldots, |\Theta_{|E|}|\):

- Fix the probabilities of variables in \(X \cup Y \) to \(1/2\) and of variables in \(Z \) to \(p_z\). Then:

\[
P_{-\Upsilon} = \sum_{k=0}^{|E|} P\left(-\Upsilon \bigg| \text{exactly } k \text{ clauses of } \Psi \text{ are satisfied} \right) \cdot P\left(\text{exactly } k \text{ clauses of } \Psi \text{ are satisfied} \right)
\]

\[
= \frac{1}{2}^{|X|+|Y|} \sum_{k=0}^{|E|} p_z^{|E|-k} |\Theta_k|
\]

- This is a polynomial in \(p_z\) of degree \(|E|\), with coefficients \(|\Theta_0|, \ldots, |\Theta_{|E|}|\).

- The coefficients can be derived from \(|E| + 1\) pairs \((p_z, P_{\Upsilon})\) using Lagrange’s polynomial interpolation formula.

- \(|E| + 1\) oracle calls to \(P_{\Upsilon}\) suffice to determine \(\#\Psi = \sum_{i=0}^{|E|} |\Theta_i|\).
Hard Query Patterns

There are 48 (!) minimal non-hierarchical query patterns.

- Binary trees with leaves A, AB, and B and inner nodes \otimes or \neg.
 - Some are symmetric and need not be considered separately:
 A and B can be exchanged, joins are commutative and associative.
 - Still, many cases left to consider due to the difference operator.

- There is a database construction scheme for each pattern.
- Each non-hierarchical query Q matches a pattern $P_{x,y}$.

\[
\begin{array}{cccc}
P_{1.1} & \otimes & P_{1.2} & \otimes \\
\otimes & AB & \neg & AB \\
A & B & A & B \\
\end{array}
\]

\[
\begin{array}{cccc}
P_{1.3} & \otimes & P_{1.4} & \neg \\
\neg & AB & \neg & AB \\
A & B & A & B \\
\end{array}
\]

\[
\begin{array}{cccc}
P_{5.1} & \otimes & P_{5.2} & \otimes \\
\otimes & AB & \neg & AB \\
B & AB & B & AB \\
\end{array}
\]

\[
\begin{array}{cccc}
P_{5.3} & \neg & P_{5.4} & \neg \\
\neg & AB & \neg & AB \\
B & AB & B & AB \\
\end{array}
\]

\[
\begin{array}{cccc}
\ldots & \ldots & \ldots & \ldots \\
\end{array}
\]
There are 48 (!) minimal non-hierarchical query patterns.

- Binary trees with leaves A, AB, and B and inner nodes \otimes or \ominus.
 - Some are symmetric and need not be considered separately: A and B can be exchanged, joins are commutative and associative.
 - Still, many cases left to consider due to the difference operator.

There is a database construction scheme for each pattern.

Each non-hierarchical query Q matches a pattern $P_{x,y}$.

In the absence of negation, $P_{1.1}$ is the only hard pattern to consider!
Non-hierarchical Queries Match Minimal Hard Patterns

Each non-hierarchical query Q matches a pattern $P_{x,y}$:

- There is a total mapping from $P_{x,y}$ to Q's parse tree that
 - is identity on inner nodes \land and \rightarrow,
 - preserves ancestor-descendant relationships,
 - maps leaves to relations: A to $R(A)$; AB to $S(A, B)$; and B to $T(B)$.

- The match “preserves” the grounding of the query pattern:
 Q and $P_{x,y}$ have the same grounding for any database using our construction scheme.
Outline

Probabilistic Databases 101

The Dichotomy

The Interesting but Hard Queries

The Easy Queries

Leftovers
Evaluation of Hierarchical 1RA\(^-\) Queries

Approach based on knowledge compilation

- For any database \(D \), the probability \(P_{Q(D)} \) of a 1RA\(^-\) query \(Q \) is the probability \(P_\Psi \) of \(Q \)'s grounding \(\Psi \).
- Compile \(\Psi \) into \(\text{OBDD}(\Psi) \) in polynomial time.
- Compute probability of \(\text{OBDD}(\Psi) \) in time linear in its size.
Evaluation of Hierarchical 1RA^- Queries

Approach based on knowledge compilation

- For any database D, the probability $P_{Q(D)}$ of a 1RA^- query Q is the probability P_Ψ of Q’s grounding Ψ.
- Compile Ψ into OBDD(Ψ) in polynomial time.
- Compute probability of OBDD(Ψ) in time linear in its size.

Distinction from existing tractability results [O. & Huang 2008]:

- 1RA^- without negation: Grounding formulas are read-once.
 - Read-once formulas admit linear-size OBBDs.

- 1RA^-: Grounding formulas are not read-once.
 - They admit OBBDs of sizes linear in the database size but exponential in the query size.
The Inner Workings

From hierarchical 1RA\(^{-}\) to RC-hierarchical \(\exists\)-consistent RC\(^{3}\):

- Translate query \(Q\) into an equivalent disjunction of disjunction-free existential relational calculus queries \(Q_1 \lor \cdots \lor Q_k\).
 - \(k\) can be very large for queries with projection under difference!

- **RC-hierarchical**: For each \(\exists X (Q')\), every relation symbol in \(Q'\) has variable \(X\).
 - Each of the disjuncts yields a poly-size OBDD.

- **\(\exists\)-consistent**: The nesting order of the quantifiers is the same in \(Q_1, \cdots, Q_k\).
 - All OBDDs have compatible variable orders and their disjunction is a poly-size OBDD.

- The OBDD width grows exponentially with \(k\), its height stays linear in the size of the database.
 - Width = maximum number of edges crossing the section between any two consecutive levels.
Consider the following query and tuple-independent database:

\[
Q = \pi_\emptyset \left[(R(A) \times T(B)) - (U(A) \times V(B)) \right]
\]

<table>
<thead>
<tr>
<th></th>
<th>(R) (A \Phi)</th>
<th>(T) (B \Phi)</th>
<th>(U) (A \Phi)</th>
<th>(V) (B \Phi)</th>
<th>(R \times T) (A) (B) (\Phi)</th>
<th>(R \times T - U \times V) (A) (B) (\Phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 (r_1)</td>
<td>1 (t_1)</td>
<td>1 (u_1)</td>
<td>1 (v_1)</td>
<td>1 1 (r_1 t_1)</td>
<td>1 1 (r_1 t_1 \neg (u_1 v_1))</td>
</tr>
<tr>
<td></td>
<td>2 (r_2)</td>
<td>2 (t_2)</td>
<td>2 (u_2)</td>
<td>2 (v_2)</td>
<td>1 2 (r_1 t_2)</td>
<td>1 2 (r_1 t_2 \neg (u_1 v_2))</td>
</tr>
</tbody>
</table>

Variables entangle in \(\Psi \) beyond read-once factorization. This is the pivotal intricacy introduced by the difference operator.
Query Evaluation Example (1/3)

Consider the following query and tuple-independent database:

\[Q = \pi_\emptyset \left[(R(A) \times T(B)) - (U(A) \times V(B)) \right] \]

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>T</th>
<th>U</th>
<th>V</th>
<th>R \times T</th>
<th>R \times T - U \times V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A \Phi</td>
<td>B \Phi</td>
<td>A \Phi</td>
<td>B \Phi</td>
<td>A B \Phi</td>
<td>A B \Phi</td>
</tr>
<tr>
<td>1</td>
<td>1 r_1</td>
<td>1 t_1</td>
<td>1 u_1</td>
<td>1 v_1</td>
<td>1 1 r_1 t_1</td>
<td>1 1 r_1 t_1 (u_1 v_1)</td>
</tr>
<tr>
<td>2</td>
<td>2 r_2</td>
<td>2 t_2</td>
<td>2 u_2</td>
<td>2 v_2</td>
<td>1 2 r_1 t_2</td>
<td>1 2 r_1 t_2 (u_1 v_2)</td>
</tr>
</tbody>
</table>

The grounding of \(Q \) is:

\[\Psi = r_1 [t_1 (\neg u_1 \lor \neg v_1) \lor t_2 (\neg u_1 \lor \neg v_2)] \lor r_2 [t_1 (\neg u_2 \lor \neg v_1) \lor t_2 (\neg u_2 \lor \neg v_2)] . \]

- Variables entangle in \(\Psi \) beyond read-once factorization.
- This is the pivotal intricacy introduced by the difference operator.
Query Evaluation Example (2/3)

Translate \(Q = \pi_0 \left[(R(A) \times T(B)) - (U(A) \times V(B)) \right] \) into RC\(^3\):

\[
Q_{RC} = \exists_A (R(A) \land \neg U(A)) \land \exists_B T(B) \lor \exists_A R(A) \land \exists_B (T(B) \land \neg V(B)).
\]

- Both \(Q_1 \) and \(Q_2 \) are RC-hierarchical.
- \(Q_1 \lor Q_2 \) is \(\exists \)-consistent: Same order \(\exists_A \exists_B \) for \(Q_1 \) and \(Q_2 \).

Query grounding:

\[
\Psi = (r_1 \neg u_1 \lor r_2 \neg u_2) \land (t_1 \lor t_2) \lor (r_1 \lor r_2) \land (t_1 \neg v_1 \lor t_2 \neg v_2).
\]

- Both \(\Psi_1 \) and \(\Psi_2 \) admit linear-size OBDDs.
- The two OBDDs have compatible orders and their disjunction is an OBDD whose width is the product of the widths of the two OBDDs.
Compile grounding formula into OBDD:

\[\Psi = (r_1 \neg u_1 \lor r_2 \neg u_2) \land (t_1 \lor t_2) \lor (r_1 \lor r_2) \land (t_1 \neg v_1 \lor t_2 \neg v_2) \].
Outline

Probabilistic Databases 101

The Dichotomy

The Interesting but Hard Queries

The Easy Queries

Leftovers
Dichotomies Beyond 1RA^-

Some known dichotomies

- Non-repeating CQ, UCQ
 [Dalvi & Suciu 2004, 2010]
- Quantified queries, ranking queries
 [O.& team 2011, 2012]

Non-repeating relational algebra $= 1\text{RA}^- + \text{union}$.

- Hierarchical property not enough, consistency also needed.
- $\pi_\emptyset[(R(A) \Join S_1(A, B) \cup T(B) \Join S_2(A, B)) - S(A, B)]$ is hard, though it is equivalent to a union of two hierarchical 1RA^- queries.

Non-repeating relational calculus

- $S(x, y) \land \neg R(x)$ is tractable,
 $S(x, y) \land (R(x) \lor T(y))$ is hard.
 - Both are non-repeating, yet not expressible in 1RA^-.
- Possible (though expensive) approach:
 - Translate to $\exists \text{RC}$ and check $\exists \text{RC}$-hierarchical and \exists-consistency.

Full relational algebra (or full relational calculus)

- It is undecidable whether the union of two equivalent relational algebra queries, one hard and one tractable, is tractable.
Thank you!