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High-dimensional Probabilistic Distributions in 
Machine Learning

§ Modelling high-dimensional probabilistic distributions is ubiquitous in 
machine learning.

Pr(                          ,  cat)>0.8?

Pr(                              ,  elephant  call)>0.6?

Pr(                            ,  right  turn)?

1 https://www.youtube.com
2 http://zackkanter.com/2015/01/23/how-ubers-autonomous-cars-will-destroy-10-million-jobs-by-2025
3 http://www.birds.cornell.edu/brp/elephant/cyclotis/language/infrasound.html
4 https://en.wikipedia.org/wiki/Parse_tree

Pr(                          )>0.9?
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Compact Representations
§ One of the most valuable insight for probabilistic inference is how to represent 

high dimensional probability distributions in a compact form.

§ Many ramifications:

Efficient Inference Algorithms

Machine Learning with better predictive power and generalization
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Compact Representations

§ Most compact representations are based on some form of  independence.

Exploited in Graphical models, Mean Field Approximations, Tree Reweighted 
Approximations, Hidden Markov Models, and many more…

	
  	
  	
  	
  	
  	
  	
  	
  𝑃 𝑥$ … , 𝑥', 𝑦$ … , 𝑦) ≈ 𝑃 𝑥$ … , 𝑥' ⋅ 𝑃 𝑦$ … , 𝑦) .
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Fourier Representation
§ We propose the Fourier representation of pseudo Boolean functions as a novel 

compact way of representing high dimensional probability distributions.

§ Fourier representations provide a natural and well motivated way of 
approximating high dimensional probability distributions. 
I) We show that for a general class of functions, most probability mass concentrates on low 

degree coefficients in their Fourier spectrum. 
II) Dropping higher degree coefficients leads to good approximations measured in the L2 

distance (contrast with existing approaches such as minibucket and variational
approaches). 

§ Strong results obtained by applying Fourier representations for probabilistic inference. 
Orders of magnitudes improvement for partition function compared to competing 
approaches. 
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Fourier Representation

𝒙 𝒚 𝝓(𝐱, 𝐲)
-­1 -­1 𝝓$
-­1 1 𝝓4
1 -­1 𝝓5
1 1 𝝓6

Table Representation

𝝓 𝐱, 𝐲 is  a  function  from   −1,1 4 to  R+;;
𝝓$,… ,𝝓6 are  real  numbers.

Throughout  this  talk,  we  use:
-­1  to  represent  false;;
+1  to  represent  true.

𝑥 𝑦

𝜙(𝑥, 𝑦)
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Fourier Representation

𝒙 𝒚 𝝓(𝐱, 𝐲)
-­1 -­1 𝝓$
-­1 1 𝝓4
1 -­1 𝝓5
1 1 𝝓6

𝜙 x, y =
1 − 𝑥
2 ⋅

1 − 𝑦
2 ⋅ 𝜙$ +

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 − 𝑥
2 ⋅

1 + 𝑦
2 ⋅ 𝜙4 +

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 + 𝑥
2 ⋅

1 − 𝑦
2 ⋅ 𝜙5 +

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 + 𝑥
2 ⋅

1 + 𝑦
2 ⋅ 𝜙6.

Table Representation Interpolation

𝝓 𝐱, 𝐲 is  a  function  from   −1,1 4 to  R+;;
𝝓$,… ,𝝓6 are  real  numbers.

Throughout  this  talk,  we  use:
-­1  to  represent  false;;
+1  to  represent  true.
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Fourier Representation

𝒙 𝒚 𝝓(𝐱, 𝐲)
-­1 -­1 𝝓𝟏
-­1 1 𝝓4
1 -­1 𝝓5
1 1 𝝓6

𝜙 x, y =
𝟏 − 𝒙
𝟐 ⋅

𝟏 − 𝒚
𝟐 ⋅ 𝜙$ +

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 − 𝑥
2 ⋅

1 + 𝑦
2 ⋅ 𝜙4 +

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 + 𝑥
2 ⋅

1 − 𝑦
2 ⋅ 𝜙5 +

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 + 𝑥
2 ⋅

1 + 𝑦
2 ⋅ 𝜙6.

Table Representation Interpolation

Blue part evaluates to 1
Green parts evaluate to 0.

𝝓 𝐱, 𝐲 is  a  function  from   −1,1 4 to  R+;;
𝝓$,… ,𝝓6 are  real  numbers.

Throughout  this  talk,  we  use:
-­1  to  represent  false;;
+1  to  represent  true.
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Fourier Representation

𝒙 𝒚 𝝓(𝐱, 𝐲)
-­1 -­1 𝝓$
-­1 1 𝝓4
1 -­1 𝝓5
1 1 𝝓6

𝜙 x, y =
1 − 𝑥
2 ⋅

1 − 𝑦
2 ⋅ 𝜙$ +

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 − 𝑥
2 ⋅

1 + 𝑦
2 ⋅ 𝜙4 +

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 + 𝑥
2 ⋅

1 − 𝑦
2 ⋅ 𝜙5 +

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 + 𝑥
2 ⋅

1 + 𝑦
2 ⋅ 𝜙6.

𝜙 x, y = 1
4B 	
  	
  	
  𝜙$	
  +	
  𝜙4 + 𝜙5 + 𝜙6 	
  	
  	
  + 1 4B −𝜙$ − 𝜙4 + 𝜙5 + 𝜙6 	
  𝑥 +

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1 4B −𝜙$ + 𝜙4 − 𝜙5 + 𝜙6 𝑦 + 1 4B 	
  	
  	
  𝜙$ − 𝜙4 − 𝜙5 + 𝜙6 	
  𝑥𝑦.

Table Representation Interpolation

Rearranging Terms
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Fourier Representation

𝒙 𝒚 𝝓(𝐱, 𝐲)
-­1 -­1 𝝓$
-­1 1 𝝓4
1 -­1 𝝓5
1 1 𝝓6

𝜙 x, y =
1 − 𝑥
2 ⋅

1 − 𝑦
2 ⋅ 𝜙$ +

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 − 𝑥
2 ⋅

1 + 𝑦
2 ⋅ 𝜙4 +

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 + 𝑥
2 ⋅

1 − 𝑦
2 ⋅ 𝜙5 +

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 + 𝑥
2 ⋅

1 + 𝑦
2 ⋅ 𝜙6.

𝜙 𝒙, 𝒚 = 1
4B 	
  	
  	
  𝜙$	
  +	
  𝜙4 + 𝜙5 + 𝜙6 	
  	
  	
  + 1 4B −𝜙$ − 𝜙4 + 𝜙5 + 𝜙6 	
  𝒙 +

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1 4B −𝜙$ + 𝜙4 − 𝜙5 + 𝜙6 𝒚 + 1 4B 	
  	
  	
  𝜙$ − 𝜙4 − 𝜙5 + 𝜙6 	
  𝒙𝒚

Table Representation Interpolation

Rearranging Terms

Fourier 
Representation
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Formal Definition

Thm 1: (Hadamard-Fourier Transformation) Every weighted function 𝑓: −1,1 ) → 𝑹
can be uniquely expressed as a multilinear polynomial:

𝑓 𝒙 = G 𝑐IJ𝑥K

�

K∈I

�

I⊆[)]

= G 𝑓(𝑆)R	
  𝜒I(𝒙)
�

I⊆[)]

.

Where each 𝑐I ∈ 𝑹. [𝑛] is the power set of 1,… , 𝑛 .	
  This polynomial is referred to as 
the Hadamard-Fourier expansion of 𝑓. 

Following standard notation:
∏ 𝑥K�
K∈I 𝜒I(𝒙) (Basis Function, also parity functions).
𝑐I 𝑓(𝑆)R (coefficients)

𝑓(𝑆)R is a degree-𝑘 coefficient iff 𝑆 = 𝑘.
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Formal Definition

Thm 1: (Hadamard-Fourier Transformation) Every weighted function 𝑓: −1,1 ) → 𝑹
can be uniquely expressed as a multilinear polynomial:

𝑓 𝒙 = G 𝑐IJ𝑥K

�

K∈I

�

I⊆[)]

= G 𝑓(𝑆)R	
  𝜒I(𝒙)
�

I⊆[)]

.

Where each 𝑐I ∈ 𝑹. [𝑛] is the power set of 1,… , 𝑛 .	
  This polynomial is referred to as 
the Hadamard-Fourier expansion of 𝑓. 

Following standard notation:
∏ 𝑥K�
K∈I 𝜒I(𝒙) (Basis Function, also parity functions).
𝑐I 𝑓(𝑆)R (coefficients)

𝑓(𝑆)R is a degree-𝑘 coefficient iff 𝑆 = 𝑘.

Basis Function 
(also Parity functions)
Coefficients
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Example Fourier Representation

𝝓 𝒙, 𝒚 = 1
4B 	
  	
  	
  𝜙$	
  +	
  𝜙4 + 𝜙5 + 𝜙6 	
  	
  	
  + 1 4B −𝜙$ − 𝜙4 + 𝜙5 + 𝜙6 	
  𝒙 +

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1 4B −𝜙$ + 𝜙4 − 𝜙5 + 𝜙6 𝒚 + 1 4B 	
  	
  	
  𝜙$ − 𝜙4 − 𝜙5 + 𝜙6 	
  𝒙𝒚

Coefficients
(real numbers)

Basis Functions, 
(Also parity functions, 
e.g., the product "xy" evaluates to -1 iff
an odd number of variables is set to "-1”)

Degree 1  term

Degree 2 term
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Why Fourier Representation?

𝒙 𝒇(𝒙)
-1, -1, …-1,-1 f(-1,-1,…,-1,-1)

-1,-1,…,-1,+1 f(-1,-1,…,-1,+1)

-1,-1,…,+1,-1 f(-1,-1,…,+1,-1)

… …

… …

… …

+1,+1,…,+1,+1 f(+1,+1,…,+1,+1)

Value Representation 
𝒏 binary variables à table of length 𝟐𝒏

Fourier Representation 

𝑓 𝒙 = G 𝑓(𝑆)R	
  𝜒I(𝒙)
�

I⊆[)]

.

expression with 𝟐𝒏 terms

Why Fourier?
Good  properties  for  many  distributions.
a) Often  only  a  few  lower-­order  terms  needed  
b) Can  also  truncate  and  get  good  

approximation  (L2  norm)
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Weight Concentration
Continuous Case: signals decompose into 
components with different frequencies. High 
frequency components are often close to zero for 
a wide class of functions.

H
ig

h 
Fr

eq
C

om
ps

 a
re

 sm
al

le
r

From Berg and Stork
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Weight Concentration
Continuous Case: signals decompose into 
components with different frequencies. High 
frequency components are often close to zero for 
a wide class of functions.

H
ig

h 
Fr

eq
C

om
ps

 a
re

 sm
al

le
r

Discrete Case: decompose the function into the sum 
of parity functions. Weights are concentrated on 
low degree Fourier coefficients.

From Berg and Stork

Degree 1 
coefficients:

Degree 2
coefficients:

Degree 3 
coefficients:



Weight Concentration on Lower-Order Terms
§ Let 𝑓 𝒙 = ∑ 𝑓(𝑆)R	
  𝜒I(𝒙)�

I⊆[)] be the Fourier 
expansion of function 𝑓.
Thm: 𝑓(𝑆)R = 𝐄𝒙: [$,$ \ 𝑓(𝒙)	
  𝜒I(𝒙)

=

I.e., Fourier coefficient 𝒇(𝑺)R is the difference 
between the sum of the values of 𝒇(𝒙)	
  where 
𝝌𝑺(𝒙) evaluate to +1 against those where 𝝌𝑺(𝒙)
evaluate to -1.
§ In most functions, high order correlations are 

rare. Therefore, the weight difference of the 
Fourier coefficients corresponding to long parity 
functions are usually very small. 

	
  𝜒I 𝒙 = +1 𝑓(𝒙($))	
  

𝑓(𝒙(4))	
  

𝑓(𝒙(5))	
  

𝑓(𝒙(6))	
  
	
  𝜒I 𝒙 = −1

𝑓(𝒙(_))	
  

𝑓(𝒙(`))	
  

𝑓(𝒙(a))	
  

𝑓(𝒙(b))	
  

𝑓(𝒙(c))	
  

𝟏
𝟐𝒏 G 𝒇(𝒙)

�

𝒙:𝝌𝑺 𝒙 de𝟏

−
1
2) G 𝑓 𝒙

�

𝒙:fg 𝒙 d[$

.

Separation  defined  by
a  Fourier  basis  function
(parity  function)

Long  parity  constraints  cut  space  roughly
evenly.  Gives  near  zero  Fourier  coefficient.
(Aside:  Long  is  useful  for  counting!  (Ermon))

Fourier  exposes  small  group
of  variable  interactions.
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Approximation with Bounded Degree

Defn 1: The Fourier spectrum of 𝑓 is 𝝐-concentrated on degree up to 𝒌 if and 
only if the squared sum of coefficients whose degrees are larger than 𝑘	
  (tail 
weight) is bounded by 𝜖, i.e.,𝑊lm 𝑓 = ∑ 𝑓 𝑆R4�

I⊆ ) , I lm < 𝜖.

Degree    0        1    …                    k+1

Sq
ua
re
d  
Su
m
  o
f  

Fo
ur
ie
r  c
oe
fs
by
  

de
gr
ee

Sum  over  terms  on  
the  right  of  the  solid  
line  is  bounded  by  𝜖.
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Tail Bound Leads to Good Approximation

Key property: When 𝐅𝐨𝐮𝐫𝐢𝐞𝐫	
  𝐬𝐩𝐞𝐜𝐭𝐫𝐮𝐦	
  𝐢𝐬	
  𝝐-concentrated, we can drop 
higher-order terms and get a good guaranteed bound on the accuracy of 
the approximation in terms of the L2 distance. 
We will use this during probabilistic inference.

Formal: Suppose 𝑓 = ∑ 𝑓(𝑆)R	
  𝜒I(𝒙)�
I⊆[)] is 𝜖-concentrated on degree up to 𝑘,  

then 𝑓 can be approximated by its Fourier coefficients up to degree 𝑘: 𝑓zm =
∑ 𝑓(𝑆)R	
  𝜒I(𝒙)�
I⊆ ) , I zm , with the difference in L2 distance bounded by: 

𝐄𝒙: [$,$ \ 𝑓 − 𝑓zm 4 = G 𝑓 𝑆R4
�

I⊆ ) , I lm

< 𝜖.



Many distributions have bounded degree Fourier spectrum

Formally:
Defn : Suppose 𝑓 𝒙 : −1,1 { → 𝐑e is a weighted function, we say 𝑓 𝒙 has 
bounded width 𝒘 iff the number of variables in the domain of 𝑓 is no more 
than 𝑤. We say 𝑓 𝒙 is contractive with gap 𝟏 − 𝜼	
  (0 ≤ 𝜂 < 1) iff (1) 𝑓 𝒙 ≤
1; (2) max

𝐱
	
  𝑓 𝒙 = 1; (3) if 𝑓 𝒙𝟎 < 1, then 𝑓 𝒙𝟎 ≤ 𝜂.

Key Thm: (Xue et al. 2016) Suppose 𝑓 𝒙 = ∏ 𝑓K(𝒙𝒊)'
Kd$ , in which every 𝑓K is a 

contractive function with width 𝑤 and gap 1 − 𝜂, then 𝑓’s Fourier spectrum is 𝜖-
concentrated on degree up to 𝑂(𝑤	
  log $

� log� 𝜖) when 𝜂 > 0 and 𝑂(𝑤	
  log $
� )

when 𝜂 = 0.

Prove  by  extending  Hastad’s Switching  Lemma  for  CNF/DNF  to  the  
weighted  case.  Clever  use  of  “random  restrictions.”

𝜂

1



21

Variable Elimination in the Fourier Domain

§ Inference in Probabilistic Graphical Models
Compute the probability of evidence, the partition function, etc…

𝑍 = ∑ 𝑓(𝒙)�
��,…,�� = ∑ ∏ 𝜓K(𝒙I�)

�
Kd$

�
��,…,�� .

§ Variable Elimination
Eliminate (sum out) variables based on a fixed variable order.
Simple algorithm in Probabilistic Inference (Inference 101)

§ Represent intermediate result in Fourier domain. Keep a fixed number of 
coefficients.

§ With weight concentration theory, the truncated Fourier representation 
approximates the original probability table with small L2 loss.
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Example of the Variable Elimination process

§ Compute the problem:

G 𝑓 𝐴,𝐵 𝑓 𝐵, 𝐶 𝑓 𝐴, 𝐶 𝑓 𝐶, 𝐷 𝑓(𝐷, 𝐸)
�

�,�,�,�,�

§ Fix a variable elimination order: 𝐴, 𝐵, 𝐶, 𝐷, 𝐸.

A

B

C

D

E

f(A,B)

f(B,C)

f(A,C)

f(C,D)

f(D,E)
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§ Compute the problem:

G 𝑓 𝐴,𝐵 𝑓 𝐵, 𝐶 𝑓 𝐴, 𝐶 𝑓 𝐶, 𝐷 𝑓(𝐷, 𝐸)
�

�,�,�,�,�

§ Fix a variable elimination order: 𝐴, 𝐵, 𝐶, 𝐷, 𝐸.
§ Eliminate 𝐴:

G G𝑓 𝐴,𝐵 𝑓 𝐴, 𝐶
�

�

𝑓 𝐵, 𝐶 𝑓 𝐶, 𝐷 𝑓(𝐷, 𝐸)
�

�,�,�,�

A

B

C

D

E

f(A,B)

f(B,C)

f(A,C)

f(C,D)

f(D,E)

𝑔(𝐵, 𝐶)

Example of the Variable Elimination process
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§ Compute the problem:

G 𝑓 𝐴,𝐵 𝑓 𝐵, 𝐶 𝑓 𝐴, 𝐶 𝑓 𝐶, 𝐷 𝑓(𝐷, 𝐸)
�

�,�,�,�,�

§ Fix a variable elimination order: 𝐴, 𝐵, 𝐶, 𝐷, 𝐸.
§ Eliminate 𝐴:

G 𝑔(𝐵, 𝐶)𝑓 𝐵, 𝐶 𝑓 𝐶, 𝐷 𝑓(𝐷, 𝐸)
�

�,�,�,�

§ Then eliminating 𝐵, 𝐶, 𝐷, 𝐸.
§ Involve sum and multiplication operator.

A

B

C

D

E

f(A,B)

f(B,C)

f(A,C)

f(C,D)

f(D,E)

Example of the Variable Elimination process
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Truncate Fourier Rep with L2 Guarantee

§ Conduct variable elimination in the Fourier domain. The size of the 
intermediate probability tables are exponential in the treewidth.

§ When the probability table becomes too large, keep a fixed number of 
Fourier coefficients based on:

(i) lowest degree; 
(ii) maximal absolute values.

§ Because of weight concentration result on the Fourier representation, 
removing high degree coefficients preserves approximation guarantee in 
L2-distance.

§ If the tail weights are bounded by 𝜖, then the average difference between the approximated 
function and the original one in L2-distance is also bounded by 𝜖.
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Results on UAI Inference Challenge

Both based on variable elimination, Minibucket
approximate messages assuming independence.

• Both  Fourier  and  Minibucket retain  a  message  size  
of  one  million.

• Ground  truth  computed  by  Ace  in  2h  &  8G  memory.
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Results on UAI Inference Challenge

BP is belief propagation, a variational method. MCMC 
is based on sampling.
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Results on UAI Inference Challenge

HAK is an award winning solver, based on a portfolio 
of several state-of-the-art solvers.
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Conclusion
§ We explore the Fourier Representation, a novel compact representation of 

high-dimensional probability distributions.

§ The Fourier Representation provides a natural and well motivated way of 
approximating probability distributions. 
§ Most probability mass concentrates on low degree coefficients. 
§ Drop high degree coefficients leads to good approximation guarantee in L2-norm, novel 

bound contrasting with existing methods such as minibucket and variational approaches.

§ Strong empirical results when applied to probabilistic inference.
§ Orders of magnitudes better than competing methods. 


