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High-dimensional Probabilistic Distributions in ...
Machine Learning 8 [

= Modelling high-dimensional probabilistic distributions i1s ubiquitous in
machine learning.
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Compact Representations

= One of the most valuable insight for probabilistic inference 1s how to represent
high dimensional probability distributions in a compact form.

= Many ramifications:
Efficient Inference Algorithms

Machine Learning with better predictive power and generalization



Compact Representations

= Most compact representations are based on some form of independence.

Exploited in Graphical models, Mean Field Approximations, Tree Reweighted
Approximations, Hidden Markov Models, and many more...

P(Xq i) Xy, V1 oo, V) = P(X1 oo, X)) - P(V1 o0, V).



Fourier Representation

= We propose the Fourier representation of pseudo Boolean functions as a novel
compact way of representing high dimensional probability distributions.

= Fourier representations provide a natural and well motivated way of
approximating high dimensional probability distributions.

I) We show that for a general class of functions, most probability mass concentrates on low
degree coefficients in their Fourier spectrum.

1) Dropping higher degree coefficients leads to good approximations measured in the L2
distance (contrast with existing approaches such as minibucket and variational
approaches).

= Strong results obtained by applying Fourier representations for probabilistic inference.
Orders of magnitudes improvement for partition function compared to competing
approaches.



Fourier Representation

Table Representation
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@(x,y) is a function from {—1,1}2 to R+;
¢, ..., P, are real numbers.

Throughout this talk, we use:
-1 to represent false;
+1 to represent true.



) Fourier Representation

Table Representation Interpolation
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@(x,y) is a function from {—1,1}* to R+;
¢4, ..., ¢, are real numbers.

Throughout this talk, we use:
-1 to represent false;
+1 to represent true.



) Fourier Representation

Table Representation
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@(x,y) is a function from {—1,1}2 to R+;
¢, ..., P, are real numbers.

Throughout this talk, we use:
-1 to represent false;
+1 to represent true.
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Blue part evaluates to 1
Green parts evaluate to 0.



) Fourier Representation

Table Representation Interpolation
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) Fourier Representation

Table Representation Interpolation
1—x 1-—
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Formal Definition

Thm 1: (Hadamard-Fourier Transformation) Every weighted function f:{—1,1}"* > R
can be uniquely expressed as a multilinear polynomial.:

FO=) o] |xi= ) F®xm®.
scin]

Scn] IES

Where each cg € R. [n] is the power set of {1, ...,n}. This polynomial is referred to as
the Hadamard-Fourier expansion of f .

Following standard notation:
[liesx; 4mm xs(x) (Basis Function, also parity functions).

cs 4um S (coefficients)
F(S) is a degree-k coefficient iff |S| = k.
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Formal Definition

Thm 1: (Hadamard-Fourier Transformation) Every weighted function f:{—1,1}"* > R

can be uniquely expressed as a multilinear polynomial: . .
Basis Function

flx) = Cg l_[ x;|= Z (S (also Parity functions)
sc] |ies Sc[n] Coefficients

Where each cg € R. [n] is the power set of {1, ...,n}. This polynomial is referred to as
the Hadamard-Fourier expansion of f .

Following standard notation:
[liesx; 4mm xs(x) (Basis Function, also parity functions).

Cg - f(S) (coefficients)
F(S) is a degree-k coefficient iff |S| = k.
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) Example Fourier Representation

Degree 1 term

~—

|

Coefficients Basis Functions,

(real numbers) (Also parity functions,
e.g., the product "xy" evaluates to -1 iff
an odd number of variables is set to "'-1”)

/

Degree 2 term

" 4
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Why Fourier Representation?

Value Representation
n binary variables - table of length 2™

I

Fourier Representation

Fo =) ) xs(0).
Scin]

_1’ _1’ “._1’_1 f(-l,-l,...,-l,-l) eXpreSSiOH with Zn terms
A1, 14 f-1-1,...-141)
-1, 1 f(-1-1,...+1,-1) ,

Why Fourier?

Good properties for many distributions.
a) Often only a few lower-order terms needed
b) Can also truncate and get good

+1,+1,...,+1,+1 f(+1,+1,...,+1,+1) approximation (L2 norm)
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Weight Concentration 1e

Continuous Case: signals decompose into
components with different frequencies. High

frequency components are often close to zero for
a wide class of functions.

Component Sum Wave
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High Freq Comps are smaller

Weight Concentration

Continuous Case: signals decompose into

components with different frequencies. High
frequency components are often close to zero for

a wide class of functions.

Component
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From Berg and Stork

Sum Wave

Discrete Case: decompose the function into the sum
of parity functions. Weights are concentrated on

low degree Fourier coefficients.

Degree 1

coefficients:

Degree 2

coefficients:

Degree 3

coefficients:
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Weight Concentration on Lower-Order Terms

Fourier exposes small group
of variable interactions.

xs(x) = +1

4

f

Xs(x) = —1
f(x(s))

B/ (x)
]
f(x)) ]

f(xs)
f(x9))

(X)) I

f(x))
f(x2))

4

f(x(3))

Separation defined by
a Fourier basis function
(parity function)

= Let f(x) = Xscpmy f(S) Xs(x) be the Fourier
expansion of function f.

Thm: f(S) = Ex..1,10 (f (%) xs(x))

= ) @ Y @

x:ys(x)=+1 x:ys(x)=—1

I.e., Fourier coefficient f(S) is the difference
between the sum of the values of f(x) where

Xs(x) evaluate to +1 against those where y¢(x)
evaluate to -1.

= In most functions, high order correlations are
rare. Therefore, the weight difference of the
Fourier coefficients corresponding to long parity
functions are usually very small.

Long parity constraints cut space roughly
evenly. Gives near zero Fourier coefficient.

(Aside: Long is useful for counting! (Ermon))



Approximation with Bounded Degree

Defn 1: The Fourier spectrum of f is e-concentrated on degree up to k 1f and
only if the squared sum of coefficients whose degrees are larger than k (tail

weight) is bounded by €, i.e.,Wsy[f] = Xscpy s>k f(S)* < €.

Sum over terms on
the right of the solid
line is bounded by e.

Squared Sum of
Fourier coefs by

degree

Degree 0 1 ... k+1
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) Tail Bound Leads to Good Approximation

Key property: When Fourier spectrum is e-concentrated, we can drop
higher-order terms and get a good guaranteed bound on the accuracy of
the approximation in terms of the L2 distance.

We will use this during probabilistic inference.

Formal: Suppose f = Xgcny f(S) Xs(x) is €-concentrated on degree up to k,

then f can be approximated by its Fourier coefficients up to degree k: f< =
D sclnl.|s|<k f (S ) xs(x), with the difference in L2 distance bounded by:

Ey.(- 11}“((f f<k) ) = Z f(S)Z < E.

Scn]|S|>k
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Many distributions have bounded degree Fourier spectrum

Formally:

Defn : Suppose f(x):{—1,1}" - R* is a weighted function, we say f(x) has
bounded width w iff the number of variables in the domain of f 1s no more
than w. We say f(x) is contractive withgap 1 —n (0 <n < 1) iff (1) f(x) <
1; (2) max f(x) =1;3)if f(xg) < 1, then f(xg) < 1.

Key Thm: (Xue et al. 2016) Suppose f(x) = [1%, fi(x;), in which every f; is a
contractive function with width w and gap 1 — 1, then f’s Fourier spectrum i1s e-
concentrated on degree up to O (w log (g) log, €) whenn > 0 and O(w log (%))
whenn = 0.

Prove by extending Hastad’s Switching Lemma for CNF/DNF to the
weighted case. Clever use of “random restrictions.”



Variable Elimination in the Fourier Domain

= Inference 1n Probabilistic Graphical Models
Compute the probability of evidence, the partition function, etc...

Z =Yy (0 =T, [T Wi (xs).

= Variable Elimination
Eliminate (sum out) variables based on a fixed variable order.
Simple algorithm in Probabilistic Inference (Inference 101)

= Represent intermediate result in Fourier domain. Keep a fixed number of
coefficients.

= With weight concentration theory, the truncated Fourier representation
approximates the original probability table with small L2 loss.

21



=5 Example of the Variable Elimination process ;/j. <"
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= Compute the problem:
> FABFB OF(A,OF (€D (D,E)
A,B,C,D,E
= Fix a variable elimination order: 4,B,C, D, E.
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== Example of the Variable Elimination process /jc "

= Compute the problem:

> FABFB,OF(AOf (€D (D,E)

AB,C,D,E

= Fix a variable elimination order: 4,B,C, D, E.

= Eliminate A:

Z (Z f(4,B)f (4, C)>f(3, C)f(C,D)f (D,E)
A

B,C,D.E \

g(B,C)
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= Compute the problem:

> FABFB,OF(AOf (€D (D,E)

AB,C,D,E

= Fix a variable elimination order: 4,B,C, D, E.

= Eliminate A:
Y 9(B,O)f (B,OF(C,DIf (D, E)
B,C,D,E
= Then eliminating B,C,D, E.

= Involve sum and multiplication operator.

24



Truncate Fourier Rep with L2 Guarantee

= Conduct variable elimination in the Fourier domain. The size of the
intermediate probability tables are exponential in the treewidth.

= When the probability table becomes too large, keep a fixed number of
Fourier coefficients based on:

(i) lowest degree;

(ii) maximal absolute values.

= Because of weight concentration result on the Fourier representation,
removing high degree coefficients preserves approximation guarantee in
L2-distance.

= [f the tail weights are bounded by €, then the average difference between the approximated
function and the original one in L2-distance 1s also bounded by €.

25



Results on UAI Inference Challenge

¢ oﬂ\putation 2l g
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Category #ins ||Minibucket ¥ Fourier (max coef) Fourier (min deg) BP MCMC HAK
bn20-30-* 18 3.91 1.21-1072 1.36 - 1072 0.94-1072 0.34 83.1074
grids2/50-* 72 5.12 3.67-10°° 7.81-107° 1.53-1072 - 1.53-1072
grids2/75-* 103 18.34 5.41-10~4 6.87-104 2.94.1072 - 2.94.1072
grids2/90-* 105 26.16 2.23.1073 5.71-1073 5.59 - 1072 - 5.22-1072

blockmap_05%* 48 ||1.25-107° 4.34-1079° 4.34-107° 0.11 - 8.73-107°

students_03* 16 []2.85-1076 1.67-10°7 1.67-10°7 2.20 - 3.17-1076
mastermind_03* | 48 7.83 0.47 0.36 27.69 - 4.35-10°
mastermind_04* | 32 12.30 363-10°7 3.63-1077 20.59 — 4.03-10—°
mastermind_05* | 16 4.06 2.56-10""7 2.56-107 22.47 - 3.02-107°
mastermind_06* | 16 22.34 3.89.10°7 3.89.107 17.18 - 45.107°
mastermind_10* | 16 275.82 5.63 2.98 / 26.32 - 0.14

Table 2. The comparsion of various inference algorithms on several categories in UAI 2010 Inference Challenge. The median differences

in log partition function | log,, Zapprox — log,, Ztrue| averaged over benchmarks in each category are shown. Fourier VE algorithms
outperform Belief Propagation, MCMC and Minibucket Algorithm. #ins is the number of instances in each category.

Both based on variable elimination, Minibucket
approximate messages assuming independence.

* Both Fourier and Minibucket retain a message size
of one million.

« Ground truth computed by Ace in 2h & 8G memory.
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Results on UAI Inference Challenge
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Category #ins | Minibucket fFourier (max coef) Fourier (min deg) BP MCMC HAK
bn20-30-* 18 3.91 1.21-1072 1.36 - 1072 0.94-1072 0.34 83.1074
grids2/50-* 72 5.12 3.67-10°° 7.81-107° 1.53-1072 - 1.53-1072
grids2/75-* 103 18.34 5.41-10~4 6.87-104 2.94.1072 - 2.94.1072
grids2/90-* 105 26.16 2.23.1073 5.71-1073 5.59 - 1072 - 5.22-1072
blockmap_05%* 48 | 1.25-107° 4.34-1079° 4.34-1079 0.11 - 8.73-107°
students_03* 16 | 2.85-1076 1.67-10°7 1.67-10°7 2.20 - 3.17-1076
mastermind_03* | 48 7.83 0.47 0.36 27.69 - 4.35-10°
mastermind_04* | 32 12.30 363-10°7 3.63-1077 20.59 — 4.03-10—°
mastermind_05* | 16 4.06 2.56-10""7 2.56-107 22.47 - 3.02-107°
mastermind_06* 16 22.34 3.89.1077 3.89.107 17.18 — 45.107°

mastermind_10* | 16 275.82 \ 5.63 2.98 26.32 - 0.14

Table 2. The comparsion of various inference algorithms on several categories in UAI 2010 Inference Challenge. The median differences

in log partition function | log,, Zapprox — log,, Ztrue| averaged over benchmarks in each category are shown. Fourier VE algorithms
outperform Belief Propagation, MCMC and Minibucket Algorithm. #ins is the number of instances in each category.

BP 1s belief propagation, a variational method. MCMC
1s based on sampling. 27




Results on UAI Inference Challenge

/ N\ )

Category #ins | Minibucket fFourier (max coef) Fourier (min deg) BP MCMC HAK
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¢ omputation 2l g

Table 2. The comparsion of various inference algorithms on several categories in UAI 2010 Inference Challenge. The median differences

in log partition function | log,, Zapprox — log,, Ztrue| averaged over benchmarks in each category are shown. Fourier VE algorithms
outperform Belief Propagation, MCMC and Minibucket Algorithm. #ins is the number of instances in each category.

HAK 1s an award winning solver, based on a portfolio
of several state-of-the-art solvers.
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Conclusion

= We explore the Fourier Representation, a novel compact representation of
high-dimensional probability distributions.

= The Fourier Representation provides a natural and well motivated way of
approximating probability distributions.
= Most probability mass concentrates on low degree coefficients.

= Drop high degree coefficients leads to good approximation guarantee in L.2-norm, novel
bound contrasting with existing methods such as minibucket and variational approaches.

= Strong empirical results when applied to probabilistic inference.
= Orders of magnitudes better than competing methods.
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