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Behavioural Equivalences

Fundamental question
Do two states of a systems behave the
same?

Behavioural equivalence is an equivalence re-
lation.

Robin Milner introduced

bisimilarity, the most

well-known behavioural

equivalence, in 1979.

Franck van Breugel (joint work with Qiyi Tang) Computing Probabilistic Bisimilarity Distances 3 / 59



Behavioural Equivalences

Fundamental question
Do two states of a systems behave the
same?

Behavioural equivalence is an equivalence re-
lation.

Robin Milner introduced

bisimilarity, the most

well-known behavioural

equivalence, in 1979.

Franck van Breugel (joint work with Qiyi Tang) Computing Probabilistic Bisimilarity Distances 3 / 59



Model of probabilistic system
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Labelled Markov chain

Andrey Markov pro-

duced the first results for

Markov chains in 1906.
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Transitions

τ ∈ S → Dist(S)

For each state s, the transitions of s are presented by a
probability distribution τ(s) on S.

u v

s
1
2

1
2

τ(s)(w) =


1
2 if w = u
1
2 if w = v
0 otherwise
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Probabilistic bisimulation

Definition
An equivalence relation R is a probabilistic
bisimulation if for all (s, t) ∈ R,

`(s) = `(t) and
(τ(s), τ(t)) ∈ R̄.

Definition
Probabilistic bisimilarity is the largest
probabilistic bisimulation.

Kim Larsen and Arne

Skou introduced

probabilistic bisimilarity

in 1989.
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Lifting

Definition
Let R ⊆ S × S be an equivalence relation. The lifting of R,
R̄ ⊆ Dist(S)× Dist(S), is defined by

(µ, ν) ∈ R̄ if µ([s]) = ν([s]) for all s ∈ S

Next, we will provide an alternative characterization of lifting.
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Coupling

Definition
A coupling of probability distributions µ and ν
on S is a probability distribution ω on S × S
with marginals µ and ν, that is, for all u,
v ∈ S, ∑

v∈S

ω(u, v) = µ(u)∑
u∈S

ω(u, v) = ν(v)

The set of couplings of µ and ν is denoted by
Ω(µ, ν).

Wolfgang Doeblin intro-

duced the notion of a

coupling in 1936 (pub-

lished in 1938).
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Coupling
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Alternative characterization of lifting

Theorem
Let R ⊆ S × S be an equivalence relation.

(µ, ν) ∈ R̄ iff ∃ω ∈ Ω(µ, ν) : support(ω) ⊆ R

Bengt Jonsson and

Kim Larsen pro-

vided the alternative

characterization in 1991.
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Coupling

There are infinitely many couplings (r ∈ [0, 1
2 ]).
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Coupling

Proposition

Ω(τ(s), τ(t)) is a convex polytope.

Proposition
A concave function on a convex polytope attains its minimum at
a vertex.

Proposition

The set V (Ω(τ(s), τ(t))) of vertices of Ω(τ(s), τ(t)) is finite.
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Coupling

There are two vertices (r ∈ {0, 1
2}).
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Alternative characterization of lifting

Theorem (TB 2016)
Let R ⊆ S × S be an equivalence relation.

(µ, ν) ∈ R̄ iff ∃ω ∈ V (Ω(µ, ν)) : support(ω) ⊆ R

Proof sketch
Order the states s1, . . . , sn such that equivalent states are
consecutive.
Apply the North-West corner method.
Prove some loop invariants (by means of Dafny).
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Behavioural pseudometric

Fundamental problem
Behavioural equivalences are not robust for
systems with real-valued data.

1
2

1
2

1 1

0.51 0.49

1 1

Alessandro Giacalone,

Chi-Chang Jou and

Scott Smolka observed

that probabilistic

bisimilarity, the most

well-known behavioural

equivalence for proba-

bilistic systems, is not

robust in 1990.
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Behavioural pseudometric

Fundamental problem
Behavioural equivalences are not robust for systems with
real-valued data.

Robust alternative
Instead of an equivalence relation

∼ : S × S → {true, false}

use a pseudometric

d : S × S → [0,1].
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Probabilistic bisimilarity
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Probabilistic bisimilarity

Let us represent the equivalence relation R with the following
distance function.

r(s, t) =

{
0 if (s, t) ∈ R
1 otherwise

Then the condition
support(ω) ⊆ R

is equivalent to ∑
u,v∈S

ω(u, v) r(u, v) = 0
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Quantitative generalization of probabilistic bisimilarity
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minimize
∑

u,v∈S

ω(u, v) d(u, v)
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Quantitative generalization of probabilistic bisimilarity

Definition
Probabilistic bisimilarity is the largest equivalence relation ∼
such that s ∼ t implies

`(s) = `(t) and
∃ω ∈ V (Ω(τ(s), τ(t))) : support(ω) ⊆ ∼.

Definition
The probabilistic bisimilarity pseudometric is the smallest
d : S × S → [0,1] such that

d(s, t) =


1 if `(s) 6= `(t)

min
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) d(u, v) otherwise
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Probabilistic bisimilarity pseudometric

Josee Desharnais, Vineet Gupta, Radha Jagadeesan and
Prakash Panangaden. Metrics for Labeled Markov Systems.
CONCUR 1999.

Theorem (DGJP 1999)

s ∼ t if and only if d(s, t) = 0.
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Kantorovich metric

Let µ, ν ∈ Dist(S) and d : S × S → [0,1].

max
f∈(S,d)---<[0,1]

∑
s∈S

f (s) (µ(s)− ν(s))

= min
ω∈Ω(µ,ν)

∑
u.v∈S

ω(u, v) d(u, v)

= min
ω∈V (Ω(µ,ν))

∑
u.v∈S

ω(u, v) d(u, v) Leonid Kantorovich first

published this metric in

1942.
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Algorithm

Question
How to compute the probabilistic bisimilarity distances for a
labelled Markov chain?
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Algorithm to compute the bisimilarity distances

Express d(s, t)< q in the first order
theory over the reals.
Use the binary search method to
approximate d(s, t).

Babita Sharma, Franck van Breugel and
James Worrell. Approximating a Behavioural
Pseudometric without Discount for Probabilis-
tic Systems. FoSSaCS 2007.

Alfred Tarski showed that

the first order theory over

the reals is decidable in

1948.
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Algorithm to compute the bisimilarity distances

Express d(s, t) as a linear program.
Use the ellipsoid method to compute
d(s, t).

As separation algorithm, to solve a
minimum cost flow problem, use the
network simplex algorithm.

Di Chen, Franck van Breugel and James Wor-
rell. On the Complexity of Computing Proba-
bilistic Bisimilarity. FoSSaCS 2012.

Leonid Khachiyan

proved the polynomial-

time solvability of linear

programs in 1979.
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Algorithm to compute the bisimilarity distances

Giorgio Bacci, Giovanni Bacci, Kim Larsen and Radu Mardare.
On-the-Fly Exact Computation of Bisimilarity Distances. TACAS
2013.

B2LM algorithm = basic algorithm︸ ︷︷ ︸
this talk

+ optimization︸ ︷︷ ︸
on-the-fly
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Simple stochastic game (SSG)

0 1

avg avg avg avg

maxmax maxmax

minmin

Anne Condon was the

first to study simple

stochastic games from

a computational point of

view in 1992.
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Values of a SSG

Definition
The value of a vertex is the probability that the max player wins
the game (reaches 1) provided that both players use optimal
strategies (the min player tries not to reach 1).

0 1

avg avg avg avg

maxmax maxmax

minmin
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From LMCs to SSGs

For each labelled Markov chain we construct
a corresponding simple stochastic game such
that

LMC SSG
distance value
algorithm simple policy iteration

Ronald Howard intro-

duced policy iteration in

1958.
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From LMCs to SSGs

With every pair of states (s, t) of the LMC we associate a vertex
of the SSG.

If `(s) 6= `(t) then d(s, t) = 1.

1

If s ∼ t then d(s, t) = 0.

0
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From LMCs to SSGs

Otherwise,

d(s, t) = min
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) d(u, v)

st

ω1 · · · ωn

u1v1 · · · umvm
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From LMCs to SSGs

Otherwise,

d(s, t) = min
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) d(u, v)

st

ω1 · · · ωn

u1v1 · · · umvm

ω1(u1, v1)
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Correctness of simple policy iteration

Simple policy iteration

choose a random initial policy
while exists a vertex which is not locally optimal

adjust the policy at that vertex

Theorem (Condon 1992)
Simple policy iteration computes the value function if the simple
stochastic game terminates with probability one (no matter
which strategy the players use).

Proposition
If we do not map a pair of probabilistic bisimilar states to a zero
sink, then the resulting simple stochastic game may not
terminate with probability one.
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Correctness of simple policy iteration

The labelled Markov chain

s1s1 s2s2

s0

t1t1 t2t2

t0

is mapped to the simple stochastic game

3× 0 +6× 1

Proposition
This simple stochastic game terminates with probability one.
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Correctness of simple policy iteration

If we do not map a pair of probabilistic bisimilar states to a zero
sink, the labelled Markov chain

s1s1 s2s2

s0

t1t1 t2t2

t0

is mapped to the simple stochastic game

1

1• •

Proposition
This simple stochastic game does not terminate with probability
one.
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B2LM algorithm is exponential

Simple policy iteration

choose a random initial policy
while exists a vertex which is not locally optimal

adjust the policy at that vertex

Theorem
For each n ∈ N, there exists a labelled Markov chain of size
O(n) such that simple policy iteration takes Ω(2n) iterations.

Proof idea: Implement an “n-bit counter.”
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B2LM algorithm is exponential

We start with the following labelled Markov chain.

1 1

1

1 1
4

3
4

1 1

1
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B2LM algorithm is exponential

The labelled Markov chain corresponds to the following simple
stochastic game.

1

1

1

1

1 0

1

1

1

0 01
4

1
4
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B2LM algorithm is exponential
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B2LM algorithm is exponential
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B2LM algorithm is exponential
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B2LM algorithm is exponential
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B2LM algorithm is exponential
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B2LM algorithm is exponential
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B2LM algorithm is exponential
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B2LM algorithm is exponential
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B2LM algorithm is exponential
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B2LM algorithm is exponential
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B2LM algorithm is exponential
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B2LM algorithm is exponential
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B2LM algorithm is exponential
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Performance comparison

Aron Itai and Michael Rodeh. Symmetry breaking in distributed
networks. Information and Computation, 88(1):60–87, 1990.

SBW: –
CBW: more than 10 hours for N = 3 and K = 2
B2LM:

without bisimilarity with bisimilarity

N K µ σ µ σ

3 2 4.02 0.15 2.70 0.08

4 2 478.67 1.49 399.833 0.82

3 3 1151.10 0.36 753.73 0.58

5 2 62126.78 1264.50 58862.35 1512.58
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Conclusion

The basic B2LM algorithm is simple policy iteration.
To define the simple stochastic game we need to decide
probabilistic bisimilarity.

In the worst case, the (basic) B2LM algorithm is
exponential.
In practice, the (basic) B2LM algorithm performs much
better than all other algorithms.
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Related and future work

Use general policy iteration to compute the probabilistic
bisimilarity distances for labelled Markov chains.
Use (simple/general) policy iteration to compute the
probabilistic bisimilarity distances for probabilistic
automata.
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