
Model checking and strategy synthesis
for mobile autonomy:

from theory to practice

Marta Kwiatkowska

Department of Computer Science, University of Oxford

Uncertainty in Computation, Simons Institute, 4th October 2016

2

Mobile autonomy is here

Credits: That’s Really Possible, Google

3

Are we safe?

• Embedded software at the heart of the device

• What if…

… something goes wrong in self-driving software?

• Imagined or real?

4

5

Software everywhere

• Users expect: predictability & high integrity in presence of

− component failure, environmental uncertainty, …

− can be quantified probabilistically

• Quantitative properties

− safety, reliability, performance, efficiency, …

− “the probability of an airbag failing to deploy within 0.02s”

• Quantitative verification to the rescue

− temporal logic specifications

− formal verification

6

Quantitative verification

• Employ (quantitative) formal models

− can be derived or extracted from code

− can also be used at runtime

• Specify goals/objectives/properties in temporal logic:

− reliability, energy efficiency, resource usage, …

− (reliability) “alert signal will be delivered with high probability
in 10ms”, for in-car communication

− (energy) “maximum expected energy consumption in 1 hr is at
most 10mA”, for an autonomous robot

• Focus on automated, tool-supported methodologies

− model-based design

− automated verification via model checking

− strategy synthesis from (temporal logic) specifications

7

Quantitative/probabilistic verification

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Strategy

System
require-
ments

P<0.01 [F≤t crash]

Probabilistic
model checker

e.g. PRISM

Automatic verification and strategy synthesis from
quantitative properties for probabilistic models

0.5

0.1

0.4

8

Historical perspective

• First algorithms proposed in 1980s

− algorithms [Vardi, Courcoubetis, Yannakakis, …]

− [Hansson, Jonsson, de Alfaro] & first implementations

• 2000: general purpose tools released

− PRISM: efficient extensions of symbolic model checking
[Kwiatkowska, Norman, Parker, …]

− ETMCC: model checking for continuous-time Markov chains [Baier,

Hermanns, Haverkort, Katoen, …]

• Now mature area, of industrial relevance

− successfully used by non-experts for many application domains,
but full automation and good tool support essential

• distributed algorithms, communication protocols, security protocols,
biological systems, quantum cryptography, planning, …

− genuine flaws found and corrected in real-world systems

− www.prismmodelchecker.org

9

But which modelling abstraction?

• Several probabilistic models supported…

• Markov chains (DTMCs and CTMCs)

− discrete states + discrete or exponential probability

− for: component failures, unreliable communication media, …

• Markov decision processes (MDPs)

− probability + decisions (nondeterministic choices)

− for: distributed coordination, motion planning in robotics, …

• Probabilistic timed automata (PTAs)

− probability + decisions+ real-time passage

− for: wireless comm. protocols, embedded control systems, …

• Towards stochastic cont.space/hybrid systems (LMPs, SHSs)

− probability + decisions + continuous flows

− for: control of physical processes, motion in space, …

10

The challenge of mobile autonomy

• Autonomous systems

− are reactive, continuously interact with their environment

• including other components or human users, adversarial

− have goals/objectives

• often quantitative, may conflict

− take decisions based on current state and external events

• Natural to adopt a game-theoretic view

− need to account for the uncontrollable behaviour of
components, possibly with differing/opposing goals

− in addition to controllable events

• Many occurrences in practice

− e.g. decision making in economics, power distribution
networks, controller synthesis, motion planning, security,
distributed consensus, energy management, sensor network
co-ordination, …

11

What makes a game?

• Players with moves (turn-based or concurrent)

• Strategy for each player

− plans for how to choose moves, based on information available

• Value (or payoff) for each player

• Winning

− corresponds to optimising the value no matter how the others
play the game

• Main question: is there a winning strategy?

12

Playing games with the Google car…

“This is a classic
example of the
negotiation that’s a
normal part of driving
– we’re all trying to
predict each other’s
movements. In this
case, we clearly bear
some responsibility,
because if our car
hadn’t moved there
wouldn’t have been a
collision”.

13

This lecture…

• Puts forward stochastic multi-player games (SMGs)

− as an appropriate modelling abstraction for competitive
behaviour, in adversarial environments

− stochasticity to model e.g. failure, sensor uncertainty

• Property specification: rPATL

− single-objective properties

− verification

− strategy synthesis

• Extensions

− multi-objective properties, Pareto sets

− compositional strategy synthesis

• Tool support: PRISM-games 2.0

• Future challenges

Model Checking and Strategy Synthesis for Stochastic Games: From Theory to Practice.
In Proc. 43rd ICALP . To appear, 2016.

14

Stochastic multi-player games (SMGs)

• A stochastic game involves

− multiple players (competitive or collaborative behaviour)

− nondeterminism (decisions, control, environment)

− probability (failures, noisy sensors, randomisation)

• Here consider only games that are

− turn-based, discrete time, zero sum, complete observation

− timed/continuous extensions exist, but tool support lacking

• Widely studied, esp. algorithmic complexity, many applications

− autonomous traffic (risk averse vs risk taking)

− distributed coordination (selfish agents vs unselfish)

− controller synthesis (system vs. environment)

− security (defender vs. attacker)

15

Stochastic multi-player games

• Stochastic multi-player game (SMGs)

− multiple players + nondeterminism + probability

− generalisation of MDPs: each state controlled by unique player

• A (turn-based) SMG is a tuple (Π, S, ⟨Si⟩i∈Π, A, ∆, L):

− Π is a set of n players

− S is a (finite) set of states

− ⟨Si⟩i∈Π is a partition of S

− A is a set of action labels

− ∆ : S × A → Dist(S) is a (partial)

transition probability function

− L : S → 2AP is a labelling with

atomic propositions from AP

• NB tool does not support concurrent
games

b

a ¼

¼
¼

½

¼

✓

1

1
½

1
a

b

1

a

b

16

Rewards

• Annotate SMGs with rewards (or costs)

− real-valued quantities assigned to states and/or transitions

• Wide range of possible uses:

− elapsed time, power consumption, number of messages
successfully delivered, net profit, …

• We work with:

− state rewards: r : S → ���

− action rewards: r : A → ���

• Form basis for a variety of quantitative objectives

− expected cumulative (total) reward (denoted C)

− mean-payoff (limit-average) reward (denoted S)

− ratio reward

− (and many more not considered here)

17

Paths, strategies + probabilities

• A path is an (infinite) sequence of connected states in SMG

− i.e. s0a0s1a1… such that ai∈A(si) and ∆(si,ai)(si+1)>0 for all i

− represents a system execution (i.e. one possible behaviour)

− to reason formally, need a probability space over paths

• A strategy for player i ∈ Π resolves choices in Si states

− based on history of execution so far

− i.e. a function σi : (SA)*Si → Dist(A)

− Σi denotes the set of all strategies for player i

− deterministic if σi always gives a Dirac distribution

− memoryless if σi (s0a0…sk) depends only on sk

− also finite-memory, infinite memory, …

− history based or explicit memory representation

• A strategy profile is tuple σ=(σ1,…,σn)

− combining strategies for all n players

18

Paths, strategies + probabilities…

• For a strategy profile σ:

− the game’s behaviour is fully probabilistic

− essentially an (infinite-state) Markov chain

− yields a probability measure Prs
σ

over set of all paths Paths from s

• Allows us to reason about the probability of events

− under a specific strategy profile σ

− e.g. any (ω-)regular property over states/actions

• Also allows us to define expectation of random variables

− i.e. measurable functions X : Paths → ℝ≥0

− Es
σ [X] = ∫Paths

X dPrs
σ

− used to define expected costs/rewards…

s1 s2s

19

Property specification: rPATL

• Temporal logic rPATL:

− reward probabilistic alternating temporal logic

• CTL, extended with:

− coalition operator ⟨⟨C⟩⟩ of ATL (Alternating Temporal Logic)

− probabilistic operator P of PCTL, where P⋈q[ψ] means “the
probability of ensuring ψ satisfies ⋈ q”

− reward operator R of PRISM, where R⋈q [ρ] means “the
expected value of ρ satisfies ⋈ q”

• Example:

− ⟨⟨{1,2}⟩⟩ P<0.01 [F
≤10 error]

− “players 1 and 2 have a strategy to ensure that the probability
of an error occurring within 10 steps is less than 0.1,
regardless of the strategies of other players”

20

rPATL properties

• Syntax:

φ ::= ⟨⟨C⟩⟩P⋈q[ψ] | ⟨⟨C⟩⟩Rr
⋈q[ρ] | ⟨⟨C⟩⟩Rr/c

⋈q[ρ]

ψ ::= F a

ρ ::= C | S

• where:

− a∈AP is an atomic proposition, C⊆Π is a coalition of players,

⋈∈{≤,<,>,≥}, q∈ ℝ≥0, r and c are reward structures

• ⟨⟨C⟩⟩P≥1[F “end”]

− “players in coalition C have a collective strategy to ensure that
the game reaches an “end”-state almost surely, regardless of
the strategies of other players”

“ratio”

“cumulative”

“longrun average”

“reachability”

21

“ratio”

rPATL reward properties

• Syntax:

φ ::= ⟨⟨C⟩⟩P⋈q[ψ] | ⟨⟨C⟩⟩Rr
⋈q[ρ] | ⟨⟨C⟩⟩Rr/c

⋈q[ρ]

ψ ::= F a

ρ ::= C | S

• ⟨⟨C⟩⟩Rfuel
<q [C]

− “players in coalition C have a strategy to ensure that the
expected total fuel consumption is less than q, regardless of
the strategies of other players”

• ⟨⟨C⟩⟩Rfuel/time
≤q [S]

− “players in coalition C have a strategy to ensure that the
expected longrun fuel consumption per time unit is at most q,
regardless of the strategies of other players”

“cumulative”

“longrun average”

“reachability”

22

rPATL semantics

• Semantics for most operators is standard

• Just focus on P and R operators…

− use reduction to a stochastic 2-player game

• Coalition game GC for SMG G and coalition C⊆Π

− 2-player SMG where C and Π\C collapse to players 1 and 2

• ⟨⟨C⟩⟩P⋈q[ψ] is true in state s of G iff:

− in coalition game GC:

− ∃σ1∈Σ1 such that ∀σ2∈Σ2 . Prs
σ1,σ2 (ψ) ⋈ q

• Semantics for R operator defined similarly…

23

Examples

b

a ¼

¼
¼

½

¼

✓

1

1
½

1
a

b

1

a

b

⟨⟨ ⟩⟩P≥¼[F ✓]

true in initial state

⟨⟨ ⟩⟩P≥⅓ [F ✓]

⟨⟨ , ⟩⟩P≥⅓ [F ✓]

24

Examples

b

a ¼

¼
¼

½

¼

✓

1

1
½

1
a

b

1

a

b

⟨⟨ ⟩⟩P≥¼[F ✓]

true in initial state

⟨⟨ ⟩⟩P≥⅓ [F ✓]

⟨⟨ , ⟩⟩P≥⅓ [F ✓]

false in initial state

25

Examples

b

a ¼

¼
¼

½

¼

✓

1

1
½

1
a

b

1

a

b

⟨⟨ ⟩⟩P≥¼[F ✓]

true in initial state

⟨⟨ ⟩⟩P≥⅓ [F ✓]

false in initial state

⟨⟨ , ⟩⟩P≥⅓ [F ✓]

true in initial state

26

Verification and strategy synthesis

• The verification problem is:

− Given a game G and rPATL property φ, does G satisfy φ?

• e.g. ⟨⟨C⟩⟩P⋈q[ψ] is true in state s of G iff:

− in coalition game GC:

− ∃σ1∈Σ1 such that ∀σ2∈Σ2 . Prs
σ1,σ2 (ψ) ⋈ q

• The synthesis problem is:

− Given a game G and a coalition property φ, find, if it exists, a
coalition strategy σ that is a witness to G satisfying φ

• Reduce to computing optimal values and winning strategies
in 2-player games

− e.g. ⟨⟨C⟩⟩P≥q[ψ] ⇔ supσ1∈Σ1
infσ2∈Σ2

Prs
σ1,σ2 (ψ) ≥q

− complexity NP ∩ coNP (this fragment), cf P for MDPs

27

Verification and strategy synthesis

• The verification problem is:

− Given a game G and rPATL property φ, does G satisfy φ?

• The synthesis problem is:

− Given a game G and a coalition property φ, find, if it exists, a
coalition strategy σ that is a witness to G satisfying φ

• Reduce to computing optimal values and winning strategies
in 2-player games

− typically employ value iteration to specified convergence

− both players have optimal strategies

− memoryless deterministic strategies suffice

− (epsilon-optimal) strategies can be typically extracted from
optimal values in linear time

28

Value iteration

• E.g. ⟨⟨C⟩⟩P≥q[F φ] : max/min reachability probabilities

− compute supσ1∈Σ1
infσ2∈Σ2

Prs
σ1,σ2 (F φ) for all states s

− deterministic memoryless strategies suffice

• Value is:

− 1 if s ∈ Sat(φ), and otherwise least fixed point of:

• Computation:

− start from zero, propagate probabilities backwards

− guaranteed to converge

• Expected rewards: ⟨⟨C⟩⟩Rr
≥q[F φ] and ⟨⟨C⟩⟩Rr/c

≥q[F φ] are
computed similarly adding the state-rewards at each step

29

Multi-objective properties

• May need to explore trade-offs, if conflicting objectives

− e.g. between performance and resource usage: maximise
probability of success and minimise energy usage

• Consider conjunctions of objectives (for stopping games),
also known as multidimensional

− expected total rewards, mean-payoffs or ratios

− almost sure mean-payoffs/ratios

• Example

− “the expected longrun average fuel consumption and profit are
simultaneously at least v1and v2, respectively ”

⟨⟨C⟩⟩ (Rfuel
≥v1 [S] & Rprofit

≥v2 [S])

• NB Boolean combinations may be needed for implication

⟨⟨C⟩⟩ (Rfuel/time
≥v1 [S] ⇒ Rprofit

≥v2 [S])

30

Example of Pareto optimality

• Consider the simpler scenario of MDPs (1½ player games)

• Pareto optimum for conjunction of two objectives

− probability of reaching D is greater than 0.2 and

− probability of reaching E is greater than 0.6

• Randomised strategies may be needed…

ca

s0

s3s2

b

0.4

0.6

0.5 0.5
0.8

0.2

s5ED

s1

s4

0.5
0.6

D

E0.80.5
0

0

all (randomised) strategies

Pareto curve

strategy

31

Multi-objective properties

• For MDPs, optimal strategies exist but randomised strategies
may be needed

• For stochastic games:

− optimal strategies may not exist

− infinite memory may be required

• Therefore

− work with restricted games (e.g. stopping)

− use stochastic memory update representation [Brazdil et al, 2014]

• exponentially more succinct than deterministic update

• equivalent power if infinite memory allowed

• Decision procedure

− complexity is NP ∩ coNP

− compute epsilon-approximations of Pareto sets and epsilon-
optimal strategies, fixed point reached in finitely many steps

32

Multidimentional Pareto set

Pareto set approximation for a mixed multi-objective property

33

Computation of Pareto sets

• Multi-objective strategy synthesis

− value iteration over
polytopic sets

− maintains a vector of
such sets for each
state, one for each
dimension

• Pareto sets

− optimal achievable
trade-offs between
objectives

• Visualisation of
high-dimensional
Pareto sets

− projection

− slicing

34

Compositional strategy synthesis

• Componentised games

− improve scalability of analysis, avoid product state space

− devise a composition operator for SMGs

• Assume-guarantee synthesis:

− need a strategy for the full system satisfying a global property

− synthesise one strategy per component, for local properties

− use assume-guarantee rules to compose local strategies

• Example: local strategies for G1 |=φA and G2 |=φA =>φB

compose to a global strategy for G1|| G2 |=φB

• For any player 1 strategy, each game Gi becomes MDP Mi

− can leverage matching compositional assume-guarantee rules
for MDPs, e.g. [Etessami et al 2017][Kwiatkowska et al, 2013]

35

Compositional strategy synthesis

• Extension of rPATL: Boolean combinations of objectives

− expected total rewards (for stopping games)

− expected mean-payoffs or ratios (controllable multi-chain)

− conjunctions of almost sure mean-payoffs/ratios (all games)

• Example

− “Player 1 can guarantee that, whenever the expected ratio of
longrun average values for "r1" and "c" is at most v1, then the
ratio for "r2" and "c" is at least v2

− ⟨⟨1⟩⟩ (R{"r1"/"c"}<=v1 [S] => R{"r2"/"c"}>=v2 [S])

• Employ strategy synthesis on component games:

− multi-objective properties to use in local and global properties

− admit also longrun properties (e.g. ratios of rewards)

− need to consider fairness requirements

36

Compositional strategy synthesis

• Based on assume-guarantee contracts over component
interfaces

• Synthesise local strategies for components, then compose
into a global strategy using assume-guarantee rules

• Under-approximation of Pareto sets

37

Tool support: PRISM-games 2.0

• Model checker for stochastic games

− integrated into PRISM model checker

− using new explicit-state model checking engine

• SMGs added to PRISM modelling language

− guarded command language, based on reactive modules

− finite data types, parallel composition, proc. algebra op.s, …

• rPATL added to PRISM property specification language

− implemented value iteration based model checking

• Supports strategy synthesis

− single and multiple objectives, Pareto curve

− total expected reward, longrun average, ratio rewards

− compositional strategy synthesis

• Available now:

− http://www.prismmodelchecker.org/games/

38

Case studies

• Evaluated on several case studies:

− team formation protocol [CLIMA’11]

− futures market investor model [McIver & Morgan]

− collective decision making for sensor networks [TACAS’12]

− energy management in microgrids [TACAS’12]

− reputation protocol for user-centric networks [SR’13]

− DNS bandwidth amplification attack [Deshpande et al]

− self-adaptive software architectures [Camara, Garlan et al]

− attack-defence scenarios in RFID goods man. [Aslanyan et al]

• Case studies using PRISM-games 2.0 functionality:

− autonomous urban driving (multi-objective) [QEST’13]

− UAV path planning with operator (multi-objective) [ICCPS’15]

− aircraft electric power control (compositional) [TACAS’15]

− temperature control (compositional) [Wiltsche PhD]

PRISM-games 2.0: A Tool for Multi-Objective Strategy Synthesis for Stochastic Games.
Kwiatkowska et al., In Proc TACAS 2016

39

Summary so far…

• What we have shown

− games can model a wide range of competitive and cooperative
scenarios relevant for mobile autonomy

− variety of quantitative objectives

− multi-objective properties

− compositional synthesis via assume-guarantee rules

− implementation: explicit engine, Parma polyhedra library,
value iteration

− many applications

• But are games sufficient?

− i.e. is the modelling abstraction satisfactory for the problem at
hand?

− can quantitative verification help?

40

It’s not that simple…

• Games will not suffice – need multi-modal communication,
cognitive reasoning, social norms, trust, ethics, …

41

Perception software

Credits: Oxford Robotics Institute

42

Things that can go wrong…

• …in perception software

- sensor failure

- object detection
failure

• Machine learning
software

- not clear how it
works

- does not offer
guarantees

- Yet end-to-end
solutions are being
considered…

43

Conclusion

• Demonstrated progress towards ensuring safety and
efficiency for mobile autonomy based on the games
abstraction, with tool support

• But many challenges remain

− how to handle partial observability?

− can we verify perception software?

− combine with Nash equilibria?

− integrate with mechanism design?

• Need social aspects and ethics

− extend with cognitive reasoning?

− model human-like trust?

• Can we develop quantitative verification and synthesis?

44

Acknowledgements

• My group and collaborators in this work

• Project funding

− ERC Advanced Grant

− EPSRC Mobile Autonomy Programme Grant

− Oxford Martin School, Institute for the Future of Computing

• See also

− www.veriware.org

− PRISM www.prismmodelchecker.org

45

Case study: Energy management

• Energy management protocol for Microgrid

− Microgrid: local energy management

− randomised demand management protocol
[Hildmann/Saffre'11]

− probability: randomisation, demand model, …

• Existing analysis

− simulation-based

− assumes all clients are unselfish

• Our analysis

− stochastic multi-player game

− clients can cheat (and cooperate)

− exposes protocol weakness

− propose/verify simple fix

All follow alg.

No use of alg.

Deviations of

varying size

Automatic Verification of Competitive Stochastic Systems, Chen et al., In Proc TACAS 2012

46

Case study: Autonomous urban driving

• Inspired by DARPA challenge

− represent map data as a stochastic
game, with environment active,
able to select hazards

− express goals as conjunctions of
probabilistic and reward properties

− e.g. “maximise probability of
avoiding hazards and minimise time
to reach destination”

• Solution (PRISM-games 2.0)

− synthesise a probabilistic strategy
to achieve the multi-objective goal

− enable the exploration of trade-offs between subgoals

− applied to synthesise driving strategies for English villages

Synthesis for Multi-Objective Stochastic Games: An Application to Autonomous Urban
Driving, Chen et al., In Proc QEST 2013

47

Case study: UAV path planning

• Human operator

− sensor tasks

− high-level commands for
piloting

• UAV autonomy

− low-level piloting function

• Quantitative mission objectives

− road network surveillance with
the minimal time, fuel, or
restricted operating zone visits

• Analysis of trade-offs

− consider operator fatigue and
workload

− multi-objective, MDP and SMG
models

Controller Synthesis for Autonomous Systems Interacting with Human Operators. L. Feng
et al, In Proc. ICCPS 2015, ACM

48

Case study: Aircraft power distribution

• Consider Honeywell high-voltage AC (HVAC) subsystem

− power routed from generators to
buses through switches

− represent as a stochastic game,
modelling competition for buses,
with stochasticity used to model
failures

− specify control objectives in LTL
using longrun average

− e.g. “maximise uptime of the buses
and minimise failure rate”

• Solution (PRISM-games 2.0)

− compositional strategy synthesis

− enable the exploration of trade-offs between uptime of buses
and failure rate

Compositional Controller Synthesis for Stochastic Games, Basset et al., In Proc
CONCUR 2014

49

Personalised wearable/implantable devices

• Hybrid model-based framework

− timed automata model for pacemaker
software

− hybrid heart models in Simulink, adopt
synthetic ECG model (non-linear ODE)

• Properties

− (basic safety) maintain
60-100 beats per minute

− (advanced) detailed analysis
energy usage, plotted against
timing parameters of the
pacemaker

− parameter synthesis: find values
for timing delays that optimise
energy usage

Synthesising robust and optimal parameters for cardiac pacemakers using symbolic and
evolutionary computation techniques. Kwiatkowska, Mereacre, Paoletti and Patane, HSB’16

50

DNA computation

• Cardelli’s DNA transducer gate

− inputs/outputs single strands

− two transducers connected

• PRISM identifies a bug: 5-step trace to a
“bad” deadlock state

− previously found manually [Cardelli’10]

− detection now fully automated

• Bug is easily fixed

− (and verified)

Counterexample:
(1,1,1,1,1,1,1,1,1,0)
(0,1,1,0,1,1,1,1,1,1,1,0)
(0,0,1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0)

reactive gates

Design and Analysis of DNA Strand Displacement Devices using Probabilistic Model
Checking, Lakin et al, Journal of the Royal Society Interface, 9(72), 1470-1485, 2012

51

DNA origami tiles

• DNA origami tiles: molecular breadboard [Turberfield lab]

50nm

Aim to understand how to control the folding pathways

• formulate an abstract Markov chain model

• obtain model predictions using Gillespie simulation

• perform a range of experiments, consistent with preditions

Guiding the folding pathway of DNA origami. Dunne, Dannenberg, Ouldridge, Kwiatkowska,
Turberfield & Bath, Nature 525, pages 82–86, 2015.

50nm

