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Mobile autonomy is here

Credits: That’s Really Possible, Google
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Are we safe?

• Embedded software at the heart of the device

• What if…

… something goes wrong in self-driving software? 

• Imagined or real?
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Software everywhere

• Users expect: predictability & high integrity in presence of 

− component failure, environmental uncertainty, …

− can be quantified probabilistically

• Quantitative properties

− safety, reliability, performance, efficiency, …

− “the probability of an airbag failing to deploy within 0.02s”

• Quantitative verification to the rescue

− temporal logic specifications

− formal verification
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Quantitative verification

• Employ (quantitative) formal models

− can be derived or extracted from code

− can also be used at runtime

• Specify goals/objectives/properties in temporal logic:

− reliability, energy efficiency, resource usage, …

− (reliability) “alert signal will be delivered with high probability 
in 10ms”, for in-car communication

− (energy) “maximum expected energy consumption in 1 hr is at 
most 10mA”, for an autonomous robot

• Focus on automated, tool-supported methodologies

− model-based design

− automated verification via model checking

− strategy synthesis from (temporal logic) specifications
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Quantitative/probabilistic verification

Probabilistic model
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e.g. PCTL, CSL, LTL
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Historical perspective

• First algorithms proposed in 1980s

− algorithms [Vardi, Courcoubetis, Yannakakis, …]

− [Hansson, Jonsson, de Alfaro] & first implementations

• 2000: general purpose tools released

− PRISM: efficient extensions of symbolic model checking 
[Kwiatkowska, Norman, Parker, …]

− ETMCC: model checking for continuous-time Markov chains [Baier, 

Hermanns, Haverkort, Katoen, …]

• Now mature area, of industrial relevance

− successfully used by non-experts for many application domains, 
but full automation and good tool support essential

• distributed algorithms, communication protocols, security protocols, 
biological systems, quantum cryptography, planning, …

− genuine flaws found and corrected in real-world systems

− www.prismmodelchecker.org
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But which modelling abstraction?

• Several probabilistic models supported…

• Markov chains (DTMCs and CTMCs)

− discrete states + discrete or exponential probability

− for: component failures, unreliable communication media, …

• Markov decision processes (MDPs)

− probability + decisions (nondeterministic choices)

− for: distributed coordination, motion planning in robotics, …

• Probabilistic timed automata (PTAs)

− probability + decisions+ real-time passage

− for: wireless comm. protocols, embedded control systems, …

• Towards stochastic cont.space/hybrid systems (LMPs, SHSs)

− probability + decisions + continuous flows

− for: control of physical processes, motion in space, …
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The challenge of mobile autonomy

• Autonomous systems

− are reactive, continuously interact with their environment

• including other components or human users, adversarial

− have goals/objectives

• often quantitative, may conflict

− take decisions based on current state and external events

• Natural to adopt a game-theoretic view

− need to account for the uncontrollable behaviour of 
components, possibly with differing/opposing goals

− in addition to controllable events

• Many occurrences in practice

− e.g. decision making in economics, power distribution 
networks, controller synthesis, motion planning, security, 
distributed consensus, energy management, sensor network 
co-ordination, …
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What makes a game?

• Players with moves (turn-based or concurrent)

• Strategy for each player 

− plans for how to choose  moves, based on information available

• Value (or payoff) for each player

• Winning 

− corresponds to optimising the value no matter how the others 
play the game

• Main question: is there a winning strategy?
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Playing games with the Google car…

“This is a classic 
example of the 
negotiation that’s a 
normal part of driving 
– we’re all trying to 
predict each other’s 
movements. In this 
case, we clearly bear 
some responsibility, 
because if our car 
hadn’t moved there 
wouldn’t have been a 
collision”. 
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This lecture…

• Puts forward stochastic multi-player games (SMGs)

− as an appropriate modelling abstraction for competitive 
behaviour, in adversarial environments

− stochasticity to model e.g. failure, sensor uncertainty

• Property specification: rPATL

− single-objective properties

− verification

− strategy synthesis

• Extensions

− multi-objective properties, Pareto sets 

− compositional strategy synthesis 

• Tool support: PRISM-games 2.0

• Future challenges

Model Checking and Strategy Synthesis for Stochastic Games: From Theory to Practice.
In Proc. 43rd ICALP . To appear, 2016.
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Stochastic multi-player games (SMGs)

• A stochastic game involves

− multiple players (competitive or collaborative behaviour)

− nondeterminism (decisions, control, environment)

− probability (failures, noisy sensors, randomisation)

• Here consider only games that are

− turn-based, discrete time, zero sum, complete observation

− timed/continuous extensions exist, but tool support lacking

• Widely studied, esp. algorithmic complexity, many applications

− autonomous traffic (risk averse vs risk taking)

− distributed coordination (selfish agents vs unselfish)

− controller synthesis (system vs. environment)

− security (defender vs. attacker)
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Stochastic multi-player games

• Stochastic multi-player game (SMGs) 

− multiple players + nondeterminism + probability

− generalisation of MDPs: each state controlled by unique player

• A (turn-based) SMG is a tuple (Π, S, ⟨Si⟩i∈Π, A, ∆, L):

− Π is a set of n players

− S is a (finite) set of states

− ⟨Si⟩i∈Π is a partition of S

− A is a set of action labels

− ∆ : S × A → Dist(S) is a (partial)

transition probability function

− L : S → 2AP is a labelling with

atomic propositions from AP

• NB tool does not support concurrent 
games
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Rewards

• Annotate SMGs with rewards (or costs) 

− real-valued quantities assigned to states and/or transitions

• Wide range of possible uses:

− elapsed time, power consumption, number of messages 
successfully delivered, net profit, …

• We work with:

− state rewards: r : S → ���

− action rewards: r : A → ���

• Form basis for a variety of quantitative objectives

− expected cumulative (total) reward (denoted C)

− mean-payoff (limit-average) reward (denoted S)

− ratio reward

− (and many more not considered here)
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Paths, strategies + probabilities

• A path is an (infinite) sequence of connected states in SMG

− i.e. s0a0s1a1… such that ai∈A(si) and ∆(si,ai)(si+1)>0 for all i

− represents a system execution (i.e. one possible behaviour)

− to reason formally, need a probability space over paths

• A strategy for player i ∈ Π resolves choices in Si states

− based on history of execution so far

− i.e. a function σi : (SA)*Si → Dist(A)

− Σi denotes the set of all strategies for player i

− deterministic if σi always gives a Dirac distribution

− memoryless if σi (s0a0…sk) depends only on sk

− also finite-memory, infinite memory, …

− history based or explicit memory representation

• A strategy profile is tuple σ=(σ1,…,σn) 

− combining strategies for all n players
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Paths, strategies + probabilities…

• For a strategy profile σ:

− the game’s behaviour is fully probabilistic

− essentially an (infinite-state) Markov chain

− yields a probability measure Prs
σ

over set of all paths Paths from s

• Allows us to reason about the probability of events

− under a specific strategy profile σ

− e.g. any (ω-)regular property over states/actions

• Also allows us to define expectation of random variables

− i.e. measurable functions X : Paths → ℝ≥0

− Es
σ [X] = ∫Paths

X dPrs
σ

− used to define expected costs/rewards…

s1 s2s
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Property specification: rPATL

• Temporal logic rPATL:

− reward probabilistic alternating temporal logic

• CTL, extended with:

− coalition operator ⟨⟨C⟩⟩ of ATL (Alternating Temporal Logic)

− probabilistic operator P of PCTL, where P⋈q[ψ] means “the 
probability of ensuring ψ satisfies ⋈ q”

− reward operator R of PRISM, where R⋈q [ρ] means “the 
expected value of ρ satisfies ⋈ q”

• Example:

− ⟨⟨{1,2}⟩⟩ P<0.01 [ F
≤10 error ]

− “players 1 and 2 have a strategy to ensure that the probability 
of an error occurring within 10 steps is less than 0.1, 
regardless of the strategies of other players”
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rPATL properties

• Syntax:

φ ::= ⟨⟨C⟩⟩P⋈q[ψ] | ⟨⟨C⟩⟩Rr
⋈q[ρ] | ⟨⟨C⟩⟩Rr/c

⋈q[ρ]

ψ ::= F a

ρ ::= C | S

• where:

− a∈AP is an atomic proposition, C⊆Π is a coalition of players,

⋈∈{≤,<,>,≥}, q∈ ℝ≥0, r and c are reward structures

• ⟨⟨C⟩⟩P≥1[F “end”]

− “players in coalition C have a collective strategy to ensure that 
the game reaches an “end”-state almost surely, regardless of 
the strategies of other players” 

“ratio”

“cumulative”

“longrun average”

“reachability”
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“ratio”

rPATL reward properties

• Syntax:

φ ::= ⟨⟨C⟩⟩P⋈q[ψ] | ⟨⟨C⟩⟩Rr
⋈q[ρ] | ⟨⟨C⟩⟩Rr/c

⋈q[ρ]

ψ ::= F a

ρ ::= C | S

• ⟨⟨C⟩⟩Rfuel
<q [C]

− “players in coalition C have a strategy to ensure that the 
expected total fuel consumption is less than q, regardless of 
the strategies of other players”

• ⟨⟨C⟩⟩Rfuel/time
≤q [S]

− “players in coalition C have a strategy to ensure that the 
expected longrun fuel consumption per time unit is at most q, 
regardless of the strategies of other players”

“cumulative”

“longrun average”

“reachability”
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rPATL semantics

• Semantics for most operators is standard

• Just focus on P and R operators…

− use reduction to a stochastic 2-player game

• Coalition game GC for SMG G and coalition C⊆Π

− 2-player SMG where C and Π\C collapse to players 1 and 2

• ⟨⟨C⟩⟩P⋈q[ψ] is true in state s of G iff:

− in coalition game GC:

− ∃σ1∈Σ1 such that ∀σ2∈Σ2 . Prs
σ1,σ2 (ψ) ⋈ q

• Semantics for R operator defined similarly…
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Examples
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Verification and strategy synthesis

• The verification problem is:

− Given a game G and rPATL property φ, does G satisfy φ? 

• e.g. ⟨⟨C⟩⟩P⋈q[ψ] is true in state s of G iff:

− in coalition game GC:

− ∃σ1∈Σ1 such that ∀σ2∈Σ2 . Prs
σ1,σ2 (ψ) ⋈ q

• The synthesis problem is:

− Given a game G and a coalition property φ, find, if it exists, a 
coalition strategy σ that is a witness to G satisfying φ

• Reduce to computing optimal values and winning strategies 
in 2-player games

− e.g. ⟨⟨C⟩⟩P≥q[ψ]  ⇔  supσ1∈Σ1
infσ2∈Σ2

Prs
σ1,σ2 (ψ) ≥q

− complexity NP ∩ coNP (this fragment), cf P for MDPs
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Verification and strategy synthesis

• The verification problem is:

− Given a game G and rPATL property φ, does G satisfy φ? 

• The synthesis problem is:

− Given a game G and a coalition property φ, find, if it exists, a 
coalition strategy σ that is a witness to G satisfying φ

• Reduce to computing optimal values and winning strategies 
in 2-player games 

− typically employ value iteration to specified convergence

− both players have optimal strategies

− memoryless deterministic strategies suffice 

− (epsilon-optimal) strategies can be typically extracted from 
optimal values in linear time
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Value iteration

• E.g. ⟨⟨C⟩⟩P≥q[ F φ ] : max/min reachability probabilities

− compute supσ1∈Σ1
infσ2∈Σ2

Prs
σ1,σ2 (F φ) for all states s

− deterministic memoryless strategies suffice

• Value is:

− 1 if s ∈ Sat(φ), and otherwise least fixed point of:

• Computation:

− start from zero, propagate probabilities backwards

− guaranteed to converge

• Expected rewards: ⟨⟨C⟩⟩Rr
≥q[ F φ ] and ⟨⟨C⟩⟩Rr/c

≥q[ F φ ] are 
computed similarly adding the state-rewards at each step
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Multi-objective properties

• May need to explore trade-offs, if conflicting objectives

− e.g. between performance and resource usage: maximise
probability of success and minimise energy usage

• Consider conjunctions of objectives (for stopping games), 
also known as multidimensional

− expected total rewards, mean-payoffs or ratios

− almost sure mean-payoffs/ratios

• Example

− “the expected longrun average fuel consumption and profit are 
simultaneously at least v1and v2, respectively ”

⟨⟨C⟩⟩ ( Rfuel
≥v1 [S] & Rprofit

≥v2 [S] )

• NB Boolean combinations may be needed for implication

⟨⟨C⟩⟩ ( Rfuel/time
≥v1 [S] ⇒ Rprofit

≥v2 [S] )
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Example of Pareto optimality

• Consider the simpler scenario of MDPs (1½ player games)

• Pareto optimum for conjunction of two objectives

− probability of reaching D is greater than 0.2 and

− probability of reaching E is greater than 0.6

• Randomised strategies may be needed…

ca

s0

s3s2

b

0.4

0.6

0.5 0.5
0.8

0.2

s5ED

s1

s4

0.5
0.6

D

E0.80.5
0

0

all (randomised) strategies

Pareto curve

strategy 
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Multi-objective properties

• For MDPs, optimal strategies exist but randomised strategies 
may be needed 

• For stochastic games:

− optimal strategies may not exist

− infinite memory may be required

• Therefore

− work with restricted games (e.g. stopping)

− use stochastic memory update representation [Brazdil et al, 2014]

• exponentially more succinct than deterministic update

• equivalent power if infinite memory allowed

• Decision procedure

− complexity is NP ∩ coNP

− compute epsilon-approximations of Pareto sets and epsilon-
optimal strategies, fixed point reached in finitely many steps
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Multidimentional Pareto set

Pareto set approximation for a mixed multi-objective property
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Computation of Pareto sets

• Multi-objective strategy synthesis

− value iteration over 
polytopic sets

− maintains a vector of 
such sets for each 
state, one for each 
dimension

• Pareto sets

− optimal achievable 
trade-offs between 
objectives

• Visualisation of 
high-dimensional 
Pareto sets

− projection

− slicing
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Compositional strategy synthesis

• Componentised games

− improve scalability of analysis, avoid product state space

− devise a composition operator for SMGs

• Assume-guarantee synthesis:

− need a strategy for the full system satisfying a global property

− synthesise one strategy per component, for local properties

− use assume-guarantee rules to compose local strategies

• Example: local strategies for G1 |=φA and G2 |=φA =>φB

compose to a global strategy for G1|| G2 |=φB

• For any player 1 strategy, each game Gi becomes MDP Mi

− can leverage matching compositional assume-guarantee rules 
for MDPs, e.g. [Etessami et al 2017][Kwiatkowska et al, 2013]
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Compositional strategy synthesis

• Extension of rPATL: Boolean combinations of objectives

− expected total rewards (for stopping games)

− expected mean-payoffs or ratios (controllable multi-chain)

− conjunctions of almost sure mean-payoffs/ratios (all games)

• Example

− “Player 1 can guarantee that, whenever the expected ratio of 
longrun average values for "r1" and "c" is at most v1, then the 
ratio for "r2" and "c" is at least v2

− ⟨⟨1⟩⟩ ( R{"r1"/"c"}<=v1 [ S ] => R{"r2"/"c"}>=v2 [ S ] )

• Employ strategy synthesis on component games:

− multi-objective properties to use in local and global properties

− admit also longrun properties (e.g. ratios of rewards) 

− need to consider fairness requirements
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Compositional strategy synthesis

• Based on assume-guarantee contracts over component 
interfaces

• Synthesise local strategies for components, then compose 
into a global strategy using assume-guarantee rules

• Under-approximation of Pareto sets
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Tool support: PRISM-games 2.0

• Model checker for stochastic games

− integrated into PRISM model checker

− using new explicit-state model checking engine

• SMGs added to PRISM modelling language

− guarded command language, based on reactive modules

− finite data types, parallel composition, proc. algebra op.s, …

• rPATL added to PRISM property specification language

− implemented value iteration based model checking

• Supports strategy synthesis

− single and multiple objectives, Pareto curve

− total expected reward, longrun average, ratio rewards

− compositional strategy synthesis

• Available now:

− http://www.prismmodelchecker.org/games/
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Case studies

• Evaluated on several case studies:

− team formation protocol [CLIMA’11]

− futures market investor model [McIver & Morgan]

− collective decision making for sensor networks [TACAS’12]

− energy management in microgrids [TACAS’12]

− reputation protocol for user-centric networks [SR’13]

− DNS bandwidth amplification attack [Deshpande et al]

− self-adaptive software architectures [Camara, Garlan et al]

− attack-defence scenarios in RFID goods man. [Aslanyan et al]

• Case studies using PRISM-games 2.0 functionality:

− autonomous urban driving (multi-objective) [QEST’13]

− UAV path planning with operator (multi-objective) [ICCPS’15]

− aircraft electric power control (compositional) [TACAS’15]

− temperature control (compositional) [Wiltsche PhD]

PRISM-games 2.0: A Tool for Multi-Objective Strategy Synthesis for Stochastic Games. 
Kwiatkowska et al., In Proc TACAS 2016
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Summary so far…

• What we have shown

− games can model a wide range of competitive and cooperative
scenarios relevant for mobile autonomy

− variety of quantitative objectives

− multi-objective properties

− compositional synthesis via assume-guarantee rules

− implementation: explicit engine, Parma polyhedra library, 
value iteration 

− many applications

• But are games sufficient?

− i.e. is the modelling abstraction satisfactory for the problem at 
hand?

− can quantitative verification help?
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It’s not that simple…

• Games will not suffice – need multi-modal communication,
cognitive reasoning, social norms, trust, ethics, …
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Perception software

Credits: Oxford Robotics Institute
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Things that can go wrong…

• …in perception software

- sensor failure

- object detection 
failure

• Machine learning 
software

- not clear how it 
works

- does not offer
guarantees

- Yet end-to-end 
solutions are being 
considered…
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Conclusion

• Demonstrated progress towards ensuring safety and 
efficiency for mobile autonomy based on the games 
abstraction, with tool support

• But many challenges remain

− how to handle partial observability?

− can we verify perception software?

− combine with Nash equilibria? 

− integrate with mechanism design?

• Need social aspects and ethics

− extend with cognitive reasoning?

− model human-like trust?

• Can we develop quantitative verification and synthesis?
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Case study: Energy management

• Energy management protocol for Microgrid

− Microgrid: local energy management

− randomised demand management protocol
[Hildmann/Saffre'11]

− probability: randomisation, demand model, …

• Existing analysis

− simulation-based

− assumes all clients are unselfish

• Our analysis

− stochastic multi-player game

− clients can cheat (and cooperate)

− exposes protocol weakness

− propose/verify simple fix

All follow alg.

No use of alg.

Deviations of

varying size

Automatic Verification of Competitive Stochastic Systems, Chen et al., In Proc TACAS 2012
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Case study: Autonomous urban driving

• Inspired by DARPA challenge

− represent map data as a stochastic
game, with environment active, 
able to select hazards 

− express goals as conjunctions of 
probabilistic and reward properties

− e.g. “maximise probability of 
avoiding hazards and minimise time
to reach destination”

• Solution (PRISM-games 2.0)

− synthesise a probabilistic strategy
to achieve the multi-objective goal

− enable the exploration of trade-offs between subgoals

− applied to synthesise driving strategies for English villages

Synthesis for Multi-Objective Stochastic Games: An Application to Autonomous Urban 
Driving, Chen et al., In Proc QEST 2013
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Case study: UAV path planning

• Human operator

− sensor tasks

− high-level commands for 
piloting

• UAV autonomy

− low-level piloting function

• Quantitative mission objectives

− road network surveillance with 
the minimal time, fuel, or 
restricted operating zone visits

• Analysis of trade-offs

− consider operator fatigue and 
workload

− multi-objective, MDP and SMG 
models

Controller Synthesis for Autonomous Systems Interacting with Human Operators. L. Feng 
et al, In Proc. ICCPS 2015, ACM
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Case study: Aircraft power distribution

• Consider Honeywell high-voltage AC (HVAC) subsystem

− power routed from generators to 
buses through switches

− represent as a stochastic game, 
modelling competition for buses, 
with stochasticity used to model 
failures

− specify control objectives in LTL 
using longrun average

− e.g. “maximise uptime of the buses
and minimise failure rate”

• Solution (PRISM-games 2.0)

− compositional strategy synthesis

− enable the exploration of trade-offs between uptime of buses 
and failure rate

Compositional Controller Synthesis for Stochastic Games, Basset et al., In Proc 
CONCUR 2014
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Personalised wearable/implantable devices

• Hybrid model-based framework

− timed automata model  for pacemaker 
software

− hybrid heart models in Simulink, adopt 
synthetic ECG model (non-linear ODE) 

• Properties

− (basic safety) maintain 
60-100 beats per minute

− (advanced) detailed analysis 
energy usage, plotted against
timing parameters of the 
pacemaker

− parameter synthesis: find values
for timing delays that optimise
energy usage

Synthesising robust and optimal parameters for cardiac pacemakers using symbolic and 
evolutionary computation techniques. Kwiatkowska, Mereacre, Paoletti and Patane, HSB’16
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DNA computation

• Cardelli’s DNA transducer gate

− inputs/outputs single strands

− two transducers connected

• PRISM identifies a bug: 5-step trace to a
“bad” deadlock state

− previously found manually  [Cardelli’10]

− detection now fully automated

• Bug is easily fixed

− (and verified)

Counterexample:
(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0)

reactive gates

Design and Analysis of DNA Strand Displacement Devices using Probabilistic Model 
Checking, Lakin et al, Journal of the Royal Society Interface, 9(72), 1470-1485, 2012



51

DNA origami tiles

• DNA origami tiles: molecular breadboard [Turberfield lab]

50nm

Aim to understand how to control the folding pathways

• formulate an abstract Markov chain model 

• obtain model predictions using Gillespie simulation

• perform a range of experiments, consistent with preditions

Guiding the folding pathway of DNA origami. Dunne, Dannenberg, Ouldridge, Kwiatkowska, 
Turberfield & Bath, Nature 525, pages 82–86, 2015.

50nm


