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The Gaussian noise stability of A C R" is Pr(X € A,Y € A).
Applications in

» approximability (e.g., optimal UGC hardness of
Max-Cut, KKMO ’05)

> testing (e.g., testing half-spaces, MORS ’09)
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Borell’s theorem

What sets have high noise stability?

Half-spaces maximize the noise stability (among all sets of a
given volume):

Theorem (Borell '85)

For any A C R™, if A" C R"™ is a half-space with Pr(A") = Pr(A)
then
Pr(X e A Y € A) <Pr(X e A Y € A).

A half-space is a set of the form {z € R" : - a < b}.
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Borell’s theorem
Define ®(z) = Pr(X; < ). Then {x € R" : 21 < @7 1(a)} is a
half-space of volume a. Define
J(a,b) =Pr(X; < (a), Y1 <71(1)).

Since the Gaussian measure is rotationally invariant, Borell’s
theorem is equivalent to

Pr(X € A,Y € A) < J(Pr(A), Pr(A)).

Theorem (Mossel, N. 12, Eldan ’13)
If Pr(X,Y € A) = J(Pr(A),Pr(A)) then A is a.s. equal to a
half-space.

If Pr(X,Y € A) > J(Pr(A),Pr(A)) — o then there is a
half-space B with

CPrA) | /5Toe(1/5).

Pr(AAB) <
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Borell’s theorem: previous proofs

» Borell’s original proof, using Ehrhard symmetrization.

» Burchard-Schmuckenschlager and Issakson-Mossel, using
spherical symmetrization.

» Kindler-O’Donnell (when Pr(X € A) = 1, and for certain
values of p), using subadditivity.
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An application: half-space testing

Suppose we have query access to some unknown A C R™ (ie. we
can ask whether x € A) and we want to check if A is a
half-space.

1. Sample Z1, ..., Zy, ~ N(0,1I,) and let p = w

2. Sample (X1,Y1),...,(Xm,Ym) ~ Pr,. Answer “yes” if

and “no” otherwise.

Theorem (Mossel, N. 12, Eldan ’13)

If A is a half-space, then the algorithm above answers “yes”
w.h.p.

If A is e-far from a half-space and m > O(e~*) then the
algorithm answers “no” w.h.p.

MORS ’09 showed that a similar algorithm works if m > ¢76.
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Proof of Borell’s theorem

Recall J(a,b) = Pr(X; < @ !(a),Y7 < ®71(b)).

Theorem
For any f:R™ — [0,1],

EJ(f(X), f(Y)) < J(Ef,Ef).
To get the original statement,
Pr(X € A)Y € A) < J(Pr(A),Pr(4)),

set f=14.
(Note that J(1,1) =1 and J(0,1) = J(1,0) = J(0,0) = 0.)
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Want to show EJ(f(X), f(Y)) < J(Ef,Ef).
Define the operator P; by
(Pf)(z) =Ef(ele + 1 —e2tX).

Note that Pyf = f and P f = Ef.
Consider EJ(P,f(X), P.f(Y)).

The punchline: this is an increasing function of ¢.



Proof of Borell’s theorem

Let

UV = ’Ut(X) =
Wt = wt(Y)

i)
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Proof of Borell’s theorem
Let

v = vy (X) = 7 (Pf(X))
we = wy(Y) = @7 (Bf(Y)).

d
SEJ(PS (X, PS(Y)

= ...chain rule (x8) ...

= ...integrate by parts ...
_ P
2my/1 — p?

>0 (]

Ee—(vf+w?—2pvtwt)/(1—p2)|vvt — V|2
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What’s going on?
Why consider EJ(f(X), f(Y))?
Given f:R™ — [0,1], define Ay C R"™! by
Ap={(z,zn+1) € R Tpi1 < (I)il(f(x))}
Then

Pr((X, Xn+1) € Af) =Ef(X)
Pr((X, Xp41) € A, (Y, Yoy1) € Ap) = EJ(f(X), F(Y)).

and so Borell’s theorem (in R"*1) applied to A gives

EJ(f(X), /(V))
Pr((X, Xy41) € Af (Y, Yn11) € Af)
J(Pr(Ay),Pr(Ay))

JEF,ES).

VAN
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What’s going on?

Why does the proof work?
AP10f :

We showed that this transformation only increases the noise
stability.

This idea has been used before: Bakry and Ledoux 96 used it
to prove the Gaussian isoperimetric inequality.



Borell’s theorem vs. Jensen’s inequality

Theorem (Mossel, N. ’12)
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Borell’s theorem vs. Jensen’s inequality

Theorem (Mossel, N. ’12)

9% J(z,y) paQJ(x,y)
If J:0,1] x [0,1] — R satisfies < 328f(2];,y) 822:(59?};) )
0xdy Oy?
EJ(f(X), f(Y)) < J(ES,Ef)

whenever X and Y are p-correlated Gaussians.

Does the condition mean anything? Our J is the smallest one
satisfying it.
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Proof: the equality case

Claim: if f =14 and EJ(f(X), f(Y)) = J(Ef,Ef) then A is a
half-space.
Recall that

d P

SEI(P(X), PLf(Y)) = WES_(”W 2600 7y— Vy
where

o= w(X) = (P (X))

wy = wy(Y) = & L(PA(Y))

EJ(f,f) = J(Ef,Ef) <= Vt Vu(X) = Vw(Y) = constant
<~ Pf(z) = ®(a(t) - x4+ b(t))
<~ if f =14 then A is a half-space. [
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Claim: if f =14 and EJ(f(X), f(Y)) > J(Ef,Ef) — 0 then A
is almost a half-space.
Recall that

JELES) —EJ(f(X), f(Y))

P /OO — (v +w?—2pviwe) 2
= Ee™ e TWe 2Pt g, — Vwg|” dt.
2my/1 — p? Jo | |

Lemma
For anyt >0, P,f is close to a function of the form ®(a-x+Db).

Lemma
If P,f is close to a function of the form ®(a - x + b) then f is
also close to a function of the same form.






