UNIVERSITY OF TWENTE.

Scheduling with Uncertain Processing Times

Marc Uetz
m.uetz@utwente.nl

Berkeley, 2016

This Talk

Mixture of

1. (mini) introductory lecture, stochastic scheduling
2. along with some recent results (unrelated machine scheduling) [Skutella, Sviridenko \& U. 2016]

1 Setting the Scene

2 Stochastic Scheduling

3 Unrelated Machines \& Time-indexed LP

4 Final Remarks

Single Machine Scheduling

Given: n jobs j with weights $w_{j}>0$, processing times $p_{j} \in \mathbb{Z}_{>0}$

Task: sequence jobs on 1 machine; at most one job at a time;

Objective: minimize $\sum_{j} w_{j} C_{j}$ where $C_{j}=j$'s completion time;
Theorem (Smith 1956)
Smith's rule, sequencing jobs in order $w_{j} / p_{j} \searrow$ is optimal

Identical Parallel Machine Scheduling

Given: n jobs as above; m identical parallel machines

Task: schedule each job on any one machine; minimize $\sum_{j} w_{j} C_{j}$

Theorem

Problem is strongly NP-hard [Garey \& Johnson, Problem SS13] Smith's rule: tight 1.21-approximation [Kawaguchi \& Kyan, 1986] There exists a PTAS [Skutella \& Woeginger, 2000]

Unrelated Machine Scheduling

Given: m machines, machine-dependent processing times $p_{i j}$

Task: schedule each job on one machine; minimize $\sum_{j} w_{j} C_{j}$

Theorem

Problem is APX-hard [Hoogeveen et al., 2002]
Exists $\left(\frac{3}{2}-c\right)$-approximation [Bansal, Srinivasan, Svensson, 2016]

Main Result

Theorem (Skutella, Sviridenko, U. 2016)
Stochastic unrelated machine scheduling has a $\left(\frac{3+\Delta}{2}\right)$-approximation.
$\Delta=$ bounds the (squared) coeff. of variation of processing times

1 Setting the Scene

2 Stochastic Scheduling

3 Unrelated Machines \& Time-indexed LP

4 Final Remarks

Stochastic Scheduling

processing time $=$ (independent) random variables P_{j} (or $P_{i j}$); all known to us

$$
\operatorname{Pr}\left[P_{j} \geq t\right]
$$

Solution: Non-anticipatory scheduling policy Π
Decisions based on information up to now and a priori knowledge about P_{j} (or $P_{i j}$); no further information about the future.

Optimality

On instance I with policy Π
$\Pi(I):=$ cost of policy Π on I, is a random variable

Definition (Optimal Policy)

Call $\Pi^{\text {OPT }}$ optimal if it achieves

$$
\inf \{\mathbb{E}[\Pi(I)] \mid \Pi \text { non-anticipatory policy }\}
$$

Existence follows from [Möhring, Radermacher, Weiss 1985]

An Example

$n=4$ jobs, unit weights

blue jobs: $\quad P_{j}=1$
green jobs: $P_{j}=\left\{\begin{array}{ll}0 & \text { probability } 4 / 5 \\ 10 & \text { probability } 1 / 5\end{array} \quad\left(\right.\right.$ note $\left.\mathbb{E}\left[P_{j}\right]=2\right)$

Stochastic World

Tradeoff: better to delay

$$
\text { large } \mathbb{E}\left[P_{j}\right] \text { or large } \operatorname{Pr}\left(P_{j}\right. \text { "large") (heavy tail) ? }
$$

Claim

Unique 2-machine optimal policy: green, blue \rightarrow green \rightarrow blue $\left[\right.$ with $\left.\Pi(I)=\mathbb{E}\left[\sum_{j} C_{j}\right]=6.92\right]$.

Just work it out

Stochastic World: Deliberate Idleness

Theorem (U. 2003)

There are instances where only optimal policy deliberately leaves machines idle.

Approximation Algorithms

Optimal policies

- intuitively complex, exponential size decision tree; definitely NP(APX)-hard, ...
- only computing $\mathbb{E}[\Pi(I)]$ can be \#P-hard [Hagstrom, 1988]

Definition (Approximation)

Policy Π has performance guarantee $\alpha \geq 1$, if for all instances /

$$
\mathbb{E}[\Pi(I)] \leq \alpha \mathbb{E}\left[\Pi^{\mathrm{OPT}}(I)\right]
$$

Our adversary is non-anticipatory, too!

Approximation Algorithms

Möhring, Schulz \& U. [JACM, 1999]

First LP-based approximation algorithms
e.g.: Smith's rule has performance guarantee $\left(\frac{3+\Delta}{2}\right)$.

Skutella \& U. [SICOMP, 2005]
Extension to problems w. precedence constraints.
Megow, U. \& Vredeveld [MOR, 2006] as well as Chou et al.
[2006], Schulz [2008]
Stochastic jobs that arrive online.

All for identical machines; use LP lower bound on $\Pi^{\text {OPT }}$

LP Relaxation Identical Machines

Core ingredient: stochastic version of load inequalities [Möhring, Schulz \& U., 1999]

$$
\begin{aligned}
\sum_{j \in S} \mathbb{E}\left[P_{j}\right] \mathbb{E}\left[C_{j}^{\Pi}\right] \geq & \frac{1}{2 m}\left(\sum_{j \in S} \mathbb{E}\left[P_{j}\right]\right)^{2}+\frac{1}{2} \sum_{j \in S} \mathbb{E}\left[P_{j}\right]^{2} \\
& -\frac{m-1}{2 m} \sum_{j \in S} \operatorname{Var}\left[P_{j}\right] \quad \forall \text { subsets } S
\end{aligned}
$$

Generalizes LPs used earlier [Wolsey, 1985; Queyranne, 1993 \& 1995; Hall, Schulz, Shmoys \& Wein 1997]

But: doesn't generalize to unrelated machines

1 Setting the Scene

2 Stochastic Scheduling

3 Unrelated Machines \& Time-indexed LP

4 Final Remarks

Structuring The Input

Theorem

At a cost of $(1+\varepsilon)$, may assume w.l.o.g. input is integer valued.

Time-Indexed LP Relaxation: Intuition

Instance I and non-anticipatory policy Π, define
$x_{i j t}:=\operatorname{Pr}\left[\Pi\right.$ starts job j on machine i at time $\left.t \in \mathbb{Z}_{\geq 0}\right]$

second blue job, $j=4$, has

$$
\begin{aligned}
& x_{1,4,0}=16 / 25 \\
& x_{2,4,1}=8 / 25 \\
& x_{1,4,10}=1 / 25
\end{aligned}
$$

Time-Indexed LP Relaxation

Instance I and non-anticipatory policy Π
$x_{i j t}:=\operatorname{Pr}\left[\Pi\right.$ starts job j on machine i at time $\left.t \in \mathbb{Z}_{\geq 0}\right]$
Properties of $x_{i j t}$ (Π non-anticipatory!):
■ $\mathbb{E}\left[C_{j}\right]=\sum_{i, t}\left(t+\mathbb{E}\left[P_{i j}\right]\right) x_{i j t}$

- $\sum_{i, t} x_{i j t}=1$ for all jobs j
- $\operatorname{Pr}[i$ processes j in $[s, s+1]]=\sum_{t=0}^{s} x_{i j t} \operatorname{Pr}\left[P_{i j}>s-t\right]$

- $\sum_{j} \sum_{t=0}^{s} x_{i j t} \operatorname{Pr}\left[P_{i j}>s-t\right] \leq 1$ for each machine i and time s

Time-Indexed LP Relaxation

$\min \sum_{i, j, t} w_{j}\left(t+\mathbb{E}\left[P_{i j}\right]\right) x_{i j t}$
s.t. $\quad \sum_{i, t} x_{i j t}=1$
jobs j,
$\sum_{j} \sum_{t=0}^{s} x_{i j t} \operatorname{Pr}\left[P_{i j}>s-t\right] \leq 1$ machines i, times s, $x_{i j t} \geq 0 \quad$ jobs j, machines i, times t.

Example:

Technical Detail: Infinite LP Solution?

Two identical jobs with exponentially distributed processing times:

But: There are feasible LP solutions that are finite, e.g.

Theorem
\exists finite optimal LP solution; LP can be solved efficiently (FPTAS).

LP-Based Scheduling Policy

Algorithm

1. find an optimal (or approximate) LP solution $\left(x_{i j t}\right)$;
2. assign each job j independently at random to a machine i with

$$
\operatorname{Pr}[j \text { assigned to } i]=\sum_{t} x_{i j t}
$$

3. apply Smith's rule on each machine (that's optimal!);

Theorem (Skutella, Sviridenko \& U. 2014)
This algorithm is a $\left(\frac{3+\Delta}{2}\right)$-approximation.

$$
\Delta \geq \mathbb{C V}^{2}\left[P_{i j}\right]:=\frac{\operatorname{Var}\left[P_{i j}\right]}{\mathbb{E}^{2}\left[P_{i j}\right]} \quad \text { for all } P_{i j}
$$

Proof of Performance Ratio

Idea: Analyze more complicated and provably worse algorithm:

1. find an optimal (or approximate) LP solution $\left(x_{i j t}\right)$;
2. for each job j
a) choose pair (i, t) independently at random with probability $x_{i j t}$;
b) choose $r \in \mathbb{Z}_{\geq 0}$ indep. at random with probability $\frac{\operatorname{Pr}\left[P_{i j}>r\right]}{\mathbb{E}\left[P_{i j}\right]}$;
c) set the tentative start time of j to $s:=t+r$;
3. on each machine, sequence jobs by incr. tentative start times;

Proof of Performance Ratio

Key Lemma

Total exp. processing before job $j \rightarrow(i, s) \leq$ tent. start time $s+\frac{1}{2}$
Which yields

$$
\begin{aligned}
\mathbb{E}\left[C_{j}\right] & \leq \sum_{i} \sum_{s \in \mathbb{Z}_{\geq 0}}\left(s+\frac{1}{2}+\mathbb{E}\left[P_{i j}\right]\right) \operatorname{Pr}[j \rightarrow(i, s)] \\
& \leq \cdots \leq\left(\frac{3+\Delta}{2}\right) C_{j}^{\mathrm{LP}}
\end{aligned}
$$

Lower Bounds

Performance bounds are tight ...

Theorem

Any "fixed assignment" policy can have optimality gap $\Delta / 2$. [identical machines].

Theorem

The time-indexed LP can have optimality gap $\Delta / 2$. [1 machine].

1 Setting the Scene

2 Stochastic Scheduling

3 Unrelated Machines \& Time-indexed LP

4 Final Remarks

Final Remarks

To improve, only adaptivity is not enough [Smith's rule, even though adaptive, can be as bad as $\Omega(\sqrt{\Delta})$]
open problems are

1. const. approximation (indep. of Δ)? Im, Moseley \& Pruhs [STACS 2015] get

$$
\mathrm{O}\left(\log ^{2} n+m \log n\right)-\text { approximation }
$$

(identical machines); balancing $\mathbb{E}\left[P_{j}\right]$ vs. $\operatorname{Pr}\left[P_{j}\right.$ "large" $]$
2. nontrivial hardness / bounds on approximation ?

Beating $\Omega(\Delta)$: Im, Moseley, Pruhs 2015

Which jobs first? we want to exclude jobs with...
■ $\operatorname{Pr}\left[P_{j}=\right.$ "large" $]$ maximal

- $\mathbb{E}\left[P_{j}\right]$ maximal
if ALG schedules k jobs A, OPT schedules k jobs A^{*}, then

Core Lemma

$\operatorname{Pr}[\operatorname{ALG}(A)$ blocks all machines beyond $\tau]$
$\leq \operatorname{Pr}\left[\operatorname{OPT}\left(A^{*}\right)\right.$ blocks all machines beyond $\left.\tau / \alpha\right]$
$\alpha=\Theta(m \log n)$

Some Reading

- Approximation in Stochastic Scheduling:. . . J ACM 46, 1999
- When Greediness Fails: Examples from Stochastic Scheduling OR Lett 31, 2003
- Stochastic Machine Scheduling with Precedence Constraints SIAM Comp 34, 2005
- Models and Algorithms for Stochastic Online Scheduling MOR 31, 2006
- Unrelated Machine Scheduling with Stochastic Processing Times MOR 41, 2016
[w/ Megow, Möhring, Schulz, Skutella, Sviridenko, Vredeveld]
- Stochastic Scheduling of Heavy-Tailed Jobs Im, Moseley \& Pruhs, STACS, 2015

