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This Talk

Mixture of

1. (mini) introductory lecture, stochastic scheduling

2. along with some recent results (unrelated machine
scheduling) [Skutella, Sviridenko & U. 2016]
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Single Machine Scheduling

Given: n jobs j with weights wj > 0, processing times pj ∈ Z>0

Task: sequence jobs on 1 machine; at most one job at a time;

0 timeCred Cgreen Corange Cblue

Objective: minimize
∑

j wj Cj where Cj = j ’s completion time;

Theorem (Smith 1956)

Smith’s rule, sequencing jobs in order wj/pj ↘ is optimal
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Identical Parallel Machine Scheduling

Given: n jobs as above; m identical parallel machines

Task: schedule each job on any one machine; minimize
∑

j wj Cj

0 time

Theorem

Problem is strongly NP-hard [Garey & Johnson, Problem SS13]
Smith’s rule: tight 1.21-approximation [Kawaguchi & Kyan, 1986]
There exists a PTAS [Skutella & Woeginger, 2000]
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Unrelated Machine Scheduling

Given: m machines, machine-dependent processing times pij

Task: schedule each job on one machine; minimize
∑

j wj Cj

0 time

Theorem

Problem is APX-hard [Hoogeveen et al., 2002]

Exists ( 3
2 − c)-approximation [Bansal, Srinivasan, Svensson, 2016]
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Main Result

Theorem (Skutella, Sviridenko, U. 2016)

Stochastic unrelated machine scheduling has a
( 3+∆

2 )-approximation.

∆ = bounds the (squared) coeff. of variation of processing times
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Stochastic Scheduling

processing time = (independent) random variables Pj (or Pij); all
known to us

1

0
time t

Pr[Pj ≥ t]

Solution: Non-anticipatory scheduling policy Π

Decisions based on information up to now and a priori knowledge
about Pj (or Pij); no further information about the future.

0 timenow
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Optimality

On instance I with policy Π

Π(I ) := cost of policy Π on I , is a random variable

Definition (Optimal Policy)

Call ΠOPT optimal if it achieves

inf{ E[Π(I )] | Π non-anticipatory policy }

Existence follows from [Möhring, Radermacher, Weiss 1985]
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An Example

n = 4 jobs, unit weights

time
0 1 10

blue jobs: Pj = 1

green jobs: Pj =

{
0 probability 4/5

10 probability 1/5
(note E[Pj ] = 2)
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Stochastic World

Tradeoff: better to delay

large E[Pj ] or large Pr(Pj“large”) (heavy tail) ?

Claim

Unique 2-machine optimal policy: green,blue → green → blue
[with Π(I ) = E[

∑
j Cj ] = 6.92].

Just work it out

0 1 2 1110
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Stochastic World: Deliberate Idleness

Theorem (U. 2003)

There are instances where only optimal policy deliberately leaves
machines idle.

0ε time

0ε time
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Approximation Algorithms

Optimal policies

intuitively complex, exponential size decision tree;
definitely NP(APX)-hard, . . .

only computing E[Π(I )] can be #P-hard
[Hagstrom, 1988]

Definition (Approximation)

Policy Π has performance guarantee α ≥ 1, if for all instances I

E[Π(I )] ≤ α E[ΠOPT(I )]

Our adversary is non-anticipatory, too!
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Approximation Algorithms

Möhring, Schulz & U. [JACM, 1999]
First LP-based approximation algorithms
e.g.: Smith’s rule has performance guarantee ( 3+∆

2 ).

Skutella & U. [SICOMP, 2005]
Extension to problems w. precedence constraints.

Megow, U. & Vredeveld [MOR, 2006] as well as Chou et al.
[2006], Schulz [2008]
Stochastic jobs that arrive online.

All for identical machines; use LP lower bound on ΠOPT
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LP Relaxation Identical Machines

Core ingredient: stochastic version of load inequalities
[Möhring, Schulz & U., 1999]

∑
j∈S

E[Pj ]E[CΠ
j ] ≥ 1

2m

(∑
j∈S

E[Pj ]

)2

+
1

2

∑
j∈S

E[Pj ]
2

−m − 1

2m

∑
j∈S

Var[Pj ] ∀ subsets S

Generalizes LPs used earlier [Wolsey, 1985; Queyranne, 1993 &
1995; Hall, Schulz, Shmoys & Wein 1997]

But: doesn’t generalize to unrelated machines
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Structuring The Input

Theorem

At a cost of (1 + ε), may assume w.l.o.g. input is integer valued.

1

0 time t

Pr[Pj ≥ t]

1 3 4
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Time-Indexed LP Relaxation: Intuition

Instance I and non-anticipatory policy Π, define

xijt := Pr[Π starts job j on machine i at time t ∈ Z≥0]

0 1 2 1110

second blue job, j = 4, has

x1,4,0 = 16/25
x2,4,1 = 8/25
x1,4,10 = 1/25
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Time-Indexed LP Relaxation

Instance I and non-anticipatory policy Π

xijt := Pr[Π starts job j on machine i at time t ∈ Z≥0]

Properties of xijt (Π non-anticipatory!):

E[Cj ] =
∑

i ,t

(
t + E[Pij ]

)
xijt∑

i ,t xijt = 1 for all jobs j

Pr
[
i processes j in [s, s + 1]

]
=
∑s

t=0 xijt Pr[Pij > s − t]

0 1 2 3 4 5 6∑
j

s∑
t=0

xijt Pr[Pij > s − t] ≤ 1 for each machine i and time s
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Time-Indexed LP Relaxation

min
∑

i ,j ,t
wj

(
t + E[Pij ]

)
xijt

s.t.
∑

i ,t
xijt = 1 jobs j ,∑

j

∑s

t=0
xijt Pr[Pij > s − t] ≤ 1 machines i , times s,

xijt ≥ 0 jobs j , machines i , times t.

Example:

0 1 2 3 4 5 6 7
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Technical Detail: Infinite LP Solution?

Two identical jobs with exponentially distributed processing times:

But: There are feasible LP solutions that are finite, e.g.

Theorem

∃ finite optimal LP solution; LP can be solved efficiently (FPTAS).
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LP-Based Scheduling Policy

Algorithm

1. find an optimal (or approximate) LP solution (xijt);

2. assign each job j independently at random to a machine i
with

Pr
[
j assigned to i

]
=
∑

t
xijt ;

3. apply Smith’s rule on each machine (that’s optimal!);

Theorem (Skutella, Sviridenko & U. 2014)

This algorithm is a ( 3+∆
2 )-approximation.

∆ ≥ CV2[Pij ] :=
Var[Pij ]

E2[Pij ]
for all Pij
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Proof of Performance Ratio

Idea: Analyze more complicated and provably worse algorithm:

1. find an optimal (or approximate) LP solution (xijt);

2. for each job j

a) choose pair (i , t) independently at random with probability xijt ;

b) choose r ∈ Z≥0 indep. at random with probability
Pr[Pij>r ]
E[Pij ]

;

c) set the tentative start time of j to s := t + r ;

3. on each machine, sequence jobs by incr. tentative start times;

Example:

0 1 2 3 4 5 6 7
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Proof of Performance Ratio

Key Lemma

Total exp. processing before job j → (i , s) ≤ tent. start time s + 1
2

Which yields

E[Cj ] ≤
∑

i

∑
s∈Z≥0

(
s + 1

2 + E[Pij ]
)

Pr
[
j → (i , s)

]
≤ · · · ≤

(
3 + ∆

2

)
CLP
j
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Lower Bounds

Performance bounds are tight . . .

Theorem

Any “fixed assignment” policy can have optimality gap ∆/2.
[identical machines].

Theorem

The time-indexed LP can have optimality gap ∆/2.
[1 machine].
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Final Remarks

To improve, only adaptivity is not enough

[Smith’s rule, even though adaptive, can be as bad as Ω(
√

∆)]

open problems are

1. const. approximation (indep. of ∆)?

Im, Moseley & Pruhs [STACS 2015] get

O( log2 n + m log n )− approximation

(identical machines); balancing E[Pj ] vs. Pr[Pj“large”]

2. nontrivial hardness / bounds on approximation ?
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Beating Ω(∆): Im, Moseley, Pruhs 2015

Which jobs first? we want to exclude jobs with. . .

Pr[Pj = “large”] maximal

E[Pj ] maximal

if ALG schedules k jobs A, OPT schedules k jobs A∗, then

Core Lemma

Pr[ALG(A) blocks all machines beyond τ ]
≤ Pr[OPT(A∗) blocks all machines beyond τ/α]

α = Θ(m log n)
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Some Reading

Approximation in Stochastic Scheduling:. . .
J ACM 46, 1999

When Greediness Fails: Examples from Stochastic Scheduling
OR Lett 31, 2003

Stochastic Machine Scheduling with Precedence Constraints
SIAM Comp 34, 2005

Models and Algorithms for Stochastic Online Scheduling
MOR 31, 2006

Unrelated Machine Scheduling with Stochastic Processing Times
MOR 41, 2016

[w/ Megow, Möhring, Schulz, Skutella, Sviridenko, Vredeveld]

Stochastic Scheduling of Heavy-Tailed Jobs
Im, Moseley & Pruhs, STACS, 2015
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