Approximation Algorithms For Projection Games

Dana Moshkovitz, MIT

Joint work with Pasin Manurangsi, MIT

"It's good to look at algorithms once in a while as a sanity check on your lower bounds."

Michael Sipser

Projection Games ("Label Cover")

An edge $e=(a,b)\in E$ is satisfied by assignments $f_A: A \rightarrow \Sigma_A$, $f_B: B \rightarrow \Sigma_B$, if $\pi_e(f_A(a))=f_B(b)$.

Label Cover: Given $G=(G=(A,B,E), \Sigma_A, \Sigma_B, \{\pi_e\}_e),$ Find $f_A: A \rightarrow \Sigma_A, f_B: B \rightarrow \Sigma_B$ maximizing fraction of satisfied edges.

Instance (nearly) *satisfiable* if (almost) all edges can be satisfied.

Example II: Unique & p-to-1 Games

- We say that a projection game is
 "p to 1" if
 p=Max_{e∈E, σ∈ΣB} |π_e⁻¹(σ)|.
- Unique games are 1 to 1 games.

This Work

Combinatorial algorithms for satisfiable and nearly satisfiable projection games:

- 1. Poly-time $\Omega((1 / |E| |\Sigma_A|)^{1/4})$ -approximation for satisfiable projection games.
- 2. Sub-exponential time exact algorithm for *smooth* satisfiable projection games.
- 3. PTAS for satisfiable and nearly-satisfiable projection games *on planar graphs*.

Strong PCP Theorem [Raz94, M-Raz08]

There is c>0, such that for any $\varepsilon = \varepsilon(n) \ge 1/n^c$, there is $k=k(\varepsilon)$, such that given a projection game of size n and alphabet size k such that all its edges can be satisfied simultaneously, it is NP-hard to find an assignment that satisfies more than ε fraction of the edges.

Most optimal NP-hardness of approximation results are based on this theorem...

Hardness of Approximation From Projection Games

- [...,Bellare,Goldreich,Sudan 95, Håstad 97]: *MAX-3SAT* is NP-hard to approximate to within $\frac{7}{8} + \epsilon'$.
- ϵ ' is determined by ϵ of the product tion

What is the best tradeoff between n, k and E?

- [Raz 94] (parallel repetition): NP-hard even for k≤poly(1/ε) for const ε>0.
- [M, Raz 08]: $k \le \exp(\operatorname{poly}(1/\epsilon))$ for any $\epsilon \ge 1/n^c$.
- [Dinur, Steurer 13] (parallel repetition of [M, Raz 08]):
 k≤exp(1/ε) for any ε≥1/n^c.
- "Projection Games Conjecture": k ≤ poly(1/ε) for any ε≥1/ n^c.
- Folklore: can satisfy $\epsilon \geq 1/n, 1/k$ fraction of the edges.
- [Peleg 02]: $\epsilon \ge 1/(nk)^{1/2}$.
- [Charikar, Hajiaghayi, Karloff 09]: $\varepsilon \ge 1/(nk)^{1/3}$.
- [Manurangsi, M 13]: $\varepsilon \ge 1/(nk)^{1/4}$.

Poly-Time, Poly-Approximation:

• *Simplifying assumption:* graph bi-regular; p-to-1 (possibly for a large p).

Overall Approach: Win-Win

- Algorithm 1: Satisfies $1/D_B$ fraction, where D_B =degree of B vertices.
- Algorithm 2: Satisfies $p / |\Sigma_A|$ fraction, where p=number of pre-images of a label in Σ_B .
- Algorithm 3: Satisfies hD_A / | E | p fraction, where h=largest number of neighbors of neighbors of an A vertex.
- Algorithm 4: Satisfies $\Omega(D_B / D_A h)$ fraction.

Approximation factor = max of above four \geq (multiplication of above four)^{1/4} = $\Omega((1 / |E| |\Sigma_A|)^{1/4})$.

1/**D**_B Approximation

- Pick an arbitrary assignment to the A vertices.
- Per B vertex decide about one neighbor and satisfy the edge between them.

$p / |\Sigma_A|$ Approximation

• Pick an assignment at random.

2.

• Can derandomize by a greedy algorithm.

3. hD_A/p|E| Approximation

- Let N(a)=a's neighbors; N₂(a)=a's neighbors' neighbors;
- Go over all possible assignments to a:
 - Get labels for the D_A vertices in N(a).
 - Get p labels for the h vertices in $N_2(a)$.
- There must be an assignment that satisfies hD_A/p edges that touch N₂(a), and we can find it greedily.

Ω (D_B/D_Ah) Approximation

- Take $a \in A$ such that $|N_2(a)| \le h$.
- Find an assignment that satisfies all $D_A D_B$ edges on $N(a) \cup N_2(a)$.
- Claim: Can continue ≈ | A | /hD_A times, each time satisfying ≈ D_AD_B new edges.

PTAS for Planar Graphs

General approach:

- 1. Delete a few edges to ensure constant tree-width.
- 2. Solve using dynamic programming.

Tree Decomposition & Tree-Width

 \mathbf{V}

 \mathbf{V}

- Subsets B₁,...,B_n of vertices and tree on them.
- Every edge is inside some B_i.
- If a vertex is in B_i and B_j, then it's in all B_l's on their tree path.

Tree-width = $\max |B_i| - 1$

Theorem (Klein): For any planar graph and number k, can find in linear time at most 1/k fraction of edges to remove, so tree width O(k).

Algorithm For Constant Tree-Width Graphs

- Scan tree on B_i's from leaves up.
- Per assignment inside B_i register how many edges in its sub-tree satisfies.

Saw Two Algorithms:

- Poly time $\Omega((1 / |E| |\Sigma_A|)^{1/4})$ -approximation for satisfiable projection games.
 - What's the right dependence? $(1 / |E| |\Sigma_A|)^{o(1)}$ would contradict the Projection Games Conjecture.
- PTAS for projection and unique games on planar graphs.
 - More easy projection/unique games?

