
Always Valid Inference
Continuous Monitoring of A/B Tests

Ramesh Johari | Leo Pekelis | David Walsh
Stanford University / Optimizely

rjohari@stanford.edu

21 September 2016

1 / 47



Background: Online A/B Testing
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What is A/B testing?

▶ A/B testing = randomized
controlled trials used by
technology companies
and web applications

▶ Typical use case:
comparing versions of a
web page

▶ Question: Does one yield
a higher conversion rate?
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How it works

▶ Visitors are randomized to Variation A (control) or B
(treatment).

▶ Conversion rates tracked in each group.
▶ Let pA, pB be true underlying conversion rates in each

group.
▶ Hypothesis test:

H0 : θ = 0 (Null hypothesis)
H1 : θ ̸= 0 (Alternative hypothesis)

where θ = pA − pB is the conversion rate difference.
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How it works
Fixed horizon testing:

▶ The usermust set sample size N in advance.
▶ After each new visitor, the interface computes a p-value:

pn = P(data at least as “extreme” as current sample
|H0).

▶ Simple decision rule: Reject H0 if p-value pN ≤ α.

This approach:

▶ Bounds Type I error (false positive probability) at level α.
▶ Gives optimal power (true positive probability) given α

(assuming a UMP hypothesis test is used).
▶ Allowsmany users to draw inferences on the same

dashboard, without knowing the details of the
experiment.
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Continuous Monitoring
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Continuous monitoring

In practice:

Technology makes it convenient to
continuouslymonitor tests!

E.g., results matrix:
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The problemwith peeking

Example: A sample path from an A/A test:
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The problemwith peeking
Unfortunately this dramatically inflates Type I errors! In fact,
with arbitrarily large horizon, Type I error is guaranteed.

Even on finite horizons, Type I errors are highly inflated:
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Why?

Why do users continuously monitor?

Because there is value in detecting real effects as quickly as
possible, and high opportunity cost in waiting to end a test.

In other words, user are making a dynamic tradeoff between
detection (higher power) and run time.

This is a risk preference that is not known to the platform.
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Our challenge

Can we:
1. deliver essentially optimal inference (like classical

p-values and confidence intervals);
2. in an environment where users continuously monitor

experiments;
3. and when the platform does not know the user’s

priorities regarding run-time and detection in advance?
Our work addresses this challenge.

It was released to Optimizely’s entire customer base
worldwide in 2015.
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The plan

1. Always valid p-values: Control Type I error despite
continuous monitoring

2. Efficiently trade off power and run-time
3. Implementation in an A/B testing platform
4. Multiple hypothesis testing corrections
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Always Valid Statistics
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Always valid p-values

Initial goal:
▶ A user should be able to look at

their resultswhenever they want.
▶ The p-value at that time should

give valid type I error control.
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Always valid p-values

Definition
A (fixed-horizon) p-value process is a (data-dependent)
sequence pn such that for all n and all x ∈ [0, 1]:

P0(pn ≤ x) ≤ x.

Definition
A p-value process is always valid if for any data-dependent
stopping time T and all x ∈ [0, 1]:

P0(pT ≤ x) ≤ x.

Allows user to favorably bias the choice of T based on the
data that is seen.
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Constructing Always Valid p-values
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Sequential tests

Definition
A sequential test {Tα} is a data-dependent rule for stopping
the test and rejecting the null that:
1. stops the test later when α is lower; and
2. stops with probability≤ αwhen the null is true:

P0(Tα < ∞) ≤ α.
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Constructing always valid p-values

Theorem
Given a sequential test, define the p-value pn to be:

the smallest α such that the α-level test
would have stopped by observation n.

Then the resulting p-value process is always valid.
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Proof of theorem

Step 1. pn is decreasing.

Step 2. Thus p∞ exists a.s.

Step 3. For fixed α > x, the event {Tα < ∞}
contains the event {p∞ ≤ x}, so:

P0(p∞ ≤ x) ≤ P0(Tα < ∞) ≤ α.

Step 4. Thus taking α → x, for any stopping time T :

P0(pT ≤ x) ≤ P0(p∞ ≤ x) ≤ x.
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Duality

Note that if a user stops the first time that the always valid
p-value drops below α, then the stopping time is Tα.

Thus we have a simple decision rule that implements the
sequential test.
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Power and Run-Time
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Power vs. run-time
Recall: users are trying to efficiently trade off power and
run-time.

In order to make progress, some user model is needed.

We use the following:

1. We choose a method of computing p-values.
2. The user observes p-values, and wants to detect whether

a nonzero effect exists (reject H0).
3. The user stops the first time the p-value falls below α, up

to a maximum run time of M.

Question: what always valid p-value processes deliver an
efficient tradeoff between power and run-time, without
advance knowledge of M?
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Data model

For simplicity, we assume data generated from aN (θ, 1)
distribution, where θ is unknown.

We then consider testing:
H0 : θ = 0

H1 : θ ≠ 0

More generally our theory holds for a single stream of data
generated from a single parameter exponential family.

(We generalize to A/B tests — i.e., two streams —with
binomial and normal data in the paper.)
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ThemSPRT
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ThemSPRT

Notation: Let Ln(θ, θ0; x, n) be LR of θ against θ0 = 0,
given n observations with sample mean x.

Let H ∼ N (0, σ2), and consider:

Ln =

∫
Ln(θ, θ0;Xn, n)dH(θ).

Define:
Sα = inf

{
n : Ln ≥ 1

α

}
.

This is themixture sequential probability ratio test (mSPRT)
due to Robbins and Siegmund.

25 / 47



Always valid p-values

It is straightforward to show usingmartingale techniques that
the mSPRT is a sequential test, i.e., it controls Type I error at
level α.

In addition, the mSPRT has power one: it is guaranteed to
detect any true effect eventually.

We use the corresponding always valid p-value process: pn is
the smallest α such that Sα ≤ n.

Thus for the mSPRT the always valid p-value is particularly
simple:

pn = inf
{

1

Lk

}
.
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Why it works

Under the null:
▶ Typical fluctuations of sample mean are of size 1/

√
n, so

any decision rule of the form:

Reject if |sample mean| > k/
√

n

is bound to eventually reject. This is what fixed horizon
testing (e.g., z-test) will do.

▶ In fact, by law of the iterated logarithm, the boundary√
2 log log n/

√
n is crossed infinitely often.

▶ mSPRT leads to boundary of the form C
√

log n/
√

n:
▶ Goes to zero (power one);
▶ But slowly enough (so Type I error can be controlled).
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Efficiency

Although the mSPRT has power one, that is only
asymptotically in the infinite data limit.

We show that the mSPRT trades off power and run-time
efficiently, even when a user might abandon the test
prematurely (at her personal maximum run-time M).
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Efficiency
Given M, α, and θ, and an always valid p-value process, let:

▶ R(θ;M, α) = expected run-time, and
▶ q(θ;M, α) = false negative probability

when the true effect is θ, assuming the user stops at the
lesser of M or the first time the p-value drops below α.

Definition
The p-value process is ϵ-efficient at (M, α) if for any other test
with Type I error at most α, expected run length R̂(θ), and
false negative probability q̂(θ), if:

(1 + ϵ)q̂(θ) ≤ q(θ;M, α) ∀ θ ̸= 0,

then
(1 + ϵ)R(θ;M, α) ≤ R̂(θ) ∀ θ ̸= 0.

29 / 47



Efficiency
Given M, α, and θ, and an always valid p-value process, let:

▶ R(θ;M, α) = expected run-time, and
▶ q(θ;M, α) = false negative probability

when the true effect is θ, assuming the user stops at the
lesser of M or the first time the p-value drops below α.

Definition
The p-value process is ϵ-efficient at (M, α) if for any other test
with Type I error at most α, expected run length R̂(θ), and
false negative probability q̂(θ), if:

(1 + ϵ)q̂(θ) ≤ q(θ;M, α) ∀ θ ̸= 0,

then
(1 + ϵ)R(θ;M, α) ≤ R̂(θ) ∀ θ ̸= 0.

29 / 47



Efficiency

Informally, ϵ-efficiency means that power cannot be
appreciably increased without significantly inflating run-time
(or vice versa).

Our efficiency result considers performance of the mSPRT in
the “cheap data” limit, where M → ∞.

Theorem
Consider a sequence of users with Mk → ∞ and αk → 0. Then
the mSPRT leads to ϵ-efficient always valid p-values for all
sufficiently large k, provided log(1/αk) = O(Mk).

(If the latter condition fails, then any sequential test
controlling Type I error will have vanishingly small power.)
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Interpretation
We interpret this result as follows:

▶ Users will have a range of risk preferences, encapsulated
through α and M.

▶ We first control Type I error for all of them (always valid
p-values).

▶ Some users will be too conservative: αwill be too small
relative to M.
For them, power will be small under any method.

▶ For the rest, α is reasonable relative to M. Among them,
we focus on those with larger M.
For these users, the mSPRT achieves an approximately
efficient tradeoff between power and run-time,
uniformly over θ.
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Optimizing the mSPRT

How to choose the mixing distribution?

Since the mSPRT has power one with infinite data, we aim to
optimize run-time.

In particular: assume effect θ is drawn from a prior G, and
aim to minimize E[R(θ;M, α)].
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Optimizing the mSPRT

We show that the optimal choice of H depends on the shape
of G.

In the limit of α → 0, the optimal choice of mixing
distribution in the mSPRT involves roughlymatching the
mixing variance σ2 to the prior variance τ 2.

The constant of proportionality depends on log(1/α)/M, but
(under reasonable values for prior) is relatively robust to
changes in α or M.
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Run length

34 / 47



No free lunch?

What do we give up in return for continuous monitoring?
▶ If the effect size is known in advance,

should only be better!
▶ In practice, we don’t know the effect size in advance.

The test we designed does not assume knowledge of the
effect size.

We compare our test to a fixed horizon test,
using data from Optimizely.
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Run lengths on Optimizely
Our results show robustness to not knowing the effect size:
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Run lengths: Interpretation

Our results show robustness to not knowing the effect size.
Intuition:

▶ Detecting an effect of size∆ takes
a run length proportional to 1/∆2

▶ So the penalty for guessing wrong
about δ is very high!

▶ An MDE that is 2x too small =⇒
run length that is 4x too long
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Run lengths: Theory

Suppose that effect θ is drawn from a normal distribution.

In an appropriate scaling regime where α → 0 and N → ∞,
we show that mSPRT at level α truncated toΘ(N) gives
similar power as fixed horizon test of length N, but with
detection time that is o(N).

In other words: even users whowere properly using fixed
horizon p-values would prefer our approach, if effect size is
uncertain.
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Multiple testing
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Themultiple testing problem

Recall the typical dashboard of an A/B test:

Suppose each cell is an independent hypothesis test.
Note that if α = 0.1,
expect 4 out of 40 to be significant by random chance.
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FWER and FDR

Suppose K = number of hypotheses.

Can try to control:
▶ Familywise error rate: probability of making even one

mistaken rejection
▶ Standard approach to control: Bonferroni correction

▶ False discovery rate: expected fraction of rejections that
are mistaken

▶ Less conservative
▶ Standard approach to control: Benjamini-Hochberg (BH)

procedure

Both use p-values as input. Since we generate p-values, can
we apply these procedures?
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Always validity, and FWER and FDR

The Bonferroni correction can be directly applied to
always valid p-values to provide always valid control of FWER.

More surprisingly, under reasonable assumptions,
always validity “commutes” with the BH procedure.
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Always validity and FDR

We find a condition under which the BH procedure
“commutes” with always validity.

Examples:
▶ Any stopping time that depends only on the sequence of

the number of rejections made over time (e.g., the first
time a fixed number of rejections is reached)

▶ The first time the p-value on a fixed hypothesis crosses a
threshold
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Always validity and FDR

In controlling FDR, what can go wrong?

▶ In general, the stopping time introduces dependence
between the p-value processes.

▶ A result of Benjamini and Yekutieli shows:
With arbitrary dependence among the hypotheses,
the BH procedure at level α controls FDR at level α ln K.

▶ The same result then applies for always valid p-value
processes.
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Conclusions
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Experimentation in the Internet age

Rapid innovation in
information & communication technology
has democratized the scientific method.

Our goal: “adapt” statistical methodology to
act in partnership with the user.

Additional results:
▶ Confidence intervals
▶ Adaptive allocation (bandits)
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Optimizely Stats Engine

▶ The ideas presented in this talk were released to all of
Optimizely’s customers on January 20, 2015

▶ Provides both always valid p-values
andmultiple testing corrections
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