Always Valid Inference
Continuous Monitoring of A/B Tests

Ramesh Johari | Leo Pekelis | David Walsh
Stanford University / Optimizely
rjohari@stanford.edu

21 September 2016
Background: Online A/B Testing
What is A/B testing?

- **A/B testing** = randomized controlled trials used by technology companies and web applications
- Typical use case: comparing versions of a web page
- Question: *Does one yield a higher conversion rate?*
How it works

- Visitors are randomized to Variation A (control) or B (treatment).
- Conversion rates tracked in each group.
- Let p_A, p_B be true underlying conversion rates in each group.
- Hypothesis test:

 $H_0 : \theta = 0$ (Null hypothesis)
 $H_1 : \theta \neq 0$ (Alternative hypothesis)

where $\theta = p_A - p_B$ is the conversion rate difference.
How it works

Fixed horizon testing:

- The user **must** set sample size N **in advance**.
- After each new visitor, the interface computes a *p-value*:

 $$p_n = \mathbb{P}(\text{data at least as “extreme” as current sample} \mid H_0).$$

- Simple decision rule: Reject H_0 if *p-value* $p_N \leq \alpha$.

This approach:

- Bounds Type I error (false positive probability) at level.
- Gives optimal power (true positive probability) given (assuming a UMP hypothesis test is used).
- Allows many users to draw inferences on the same dashboard, without knowing the details of the experiment.
How it works

Fixed horizon testing:

- The user **must** set sample size N in advance.
- After each new visitor, the interface computes a *p-value*:
 \[p_n = \mathbb{P}(\text{data at least as “extreme” as current sample} \mid H_0). \]
- Simple decision rule: Reject H_0 if *p-value* $p_N \leq \alpha$.

This approach:

- Bounds *Type I error* (false positive probability) at level α.
How it works

Fixed horizon testing:

- The user **must** set sample size N **in advance**.
- After each new visitor, the interface computes a *p-value*:
 \[p_n = \mathbb{P}(\text{data at least as “extreme” as current sample} \mid H_0). \]
- Simple decision rule: Reject H_0 if *p-value* $p_N \leq \alpha$.

This approach:

- Bounds *Type I error* (false positive probability) at level α.
- Gives optimal power (true positive probability) given α (assuming a UMP hypothesis test is used).
How it works

Fixed horizon testing:

- The user **must** set sample size N **in advance**.
- After each new visitor, the interface computes a p-value:
 $$p_n = \mathbb{P}(\text{data at least as “extreme” as current sample } | H_0).$$
- Simple decision rule: Reject H_0 if p-value $p_N \leq \alpha$.

This approach:

- Bounds **Type I error** (false positive probability) at level α.
- Gives optimal power (true positive probability) given α (assuming a UMP hypothesis test is used).
- Allows **many** users to draw inferences on the same dashboard, without knowing the details of the experiment.
Continuous Monitoring
Continuous monitoring

In practice:

Technology makes it convenient to continuously monitor tests!

E.g., results matrix:
The problem with peeking

Example: A sample path from an A/A test:
The problem with peeking

Unfortunately this *dramatically* inflates Type I errors! In fact, with arbitrarily large horizon, Type I error is guaranteed.

Even on finite horizons, Type I errors are highly inflated:
Why do users continuously monitor?

Because there is value in detecting real effects as quickly as possible, and high opportunity cost in waiting to end a test.

In other words, users are making a dynamic tradeoff between *detection* (higher power) and *run time*.

This is a risk preference that is *not known* to the platform.
Our challenge

Can we:

1. deliver essentially optimal inference (like classical p-values and confidence intervals);
2. in an environment where users continuously monitor experiments;
3. and when the platform does not know the user’s priorities regarding run-time and detection in advance?

Our work addresses this challenge.

It was released to Optimizely’s entire customer base worldwide in 2015.
The plan

1. *Always valid* p-values: Control Type I error despite continuous monitoring
2. Efficiently trade off power and run-time
3. Implementation in an A/B testing platform
4. Multiple hypothesis testing corrections
Always Valid Statistics
Always valid p-values

Initial goal:

- A user should be able to look at their results \textbf{whenever} they want.
- The p-value at that time should give valid type I error control.
Always valid p-values

Definition

A **(fixed-horizon) p-value** process is a (data-dependent) sequence p_n such that for all n and all $x \in [0, 1]$:

$$\mathbb{P}_0(p_n \leq x) \leq x.$$
Always valid p-values

Definition
A (fixed-horizon) p-value process is a (data-dependent) sequence p_n such that for all n and all $x \in [0, 1]$:

$$\mathbb{P}_0(p_n \leq x) \leq x.$$

Definition
A p-value process is **always valid** if for any data-dependent stopping time T and all $x \in [0, 1]$:

$$\mathbb{P}_0(p_T \leq x) \leq x.$$
Always valid p-values

Definition
A (fixed-horizon) p-value process is a (data-dependent) sequence p_n such that for all n and all $x \in [0, 1]$:

$$\mathbb{P}_0(p_n \leq x) \leq x.$$

Definition
A p-value process is always valid if for any data-dependent stopping time T and all $x \in [0, 1]$:

$$\mathbb{P}_0(p_T \leq x) \leq x.$$

Allows user to favorably bias the choice of T based on the data that is seen.
Constructing Always Valid p-values
Sequential tests

Definition
A **sequential test** $\{T_\alpha\}$ is a data-dependent rule for stopping the test and rejecting the null that:

1. stops the test later when α is lower; and
2. stops with probability $\leq \alpha$ when the null is true:

$$\mathbb{P}_0(T_\alpha < \infty) \leq \alpha.$$
Constructing always valid p-values

Theorem

Given a sequential test, define the p-value p_n to be:

the smallest α such that the α-level test would have stopped by observation n.

Then the resulting p-value process is always valid.
Proof of theorem

Step 1. p_n is decreasing.
Proof of theorem

Step 1. p_n is decreasing.

Step 2. Thus p_∞ exists a.s.
Proof of theorem

Step 1. p_n is decreasing.

Step 2. Thus p_∞ exists a.s.

Step 3. For fixed $\alpha > x$, the event $\{T_\alpha < \infty\}$ contains the event $\{p_\infty \leq x\}$, so:

$$\mathbb{P}_0(p_\infty \leq x) \leq \mathbb{P}_0(T_\alpha < \infty) \leq \alpha.$$
Proof of theorem

Step 1. p_n is decreasing.

Step 2. Thus p_∞ exists a.s.

Step 3. For fixed $\alpha > x$, the event $\{T_\alpha < \infty\}$ contains the event $\{p_\infty \leq x\}$, so:

$$\mathbb{P}_0(p_\infty \leq x) \leq \mathbb{P}_0(T_\alpha < \infty) \leq \alpha.$$

Step 4. Thus taking $\alpha \to x$, for any stopping time T:

$$\mathbb{P}_0(p_T \leq x) \leq \mathbb{P}_0(p_\infty \leq x) \leq x.$$
Duality

Note that if a user stops the first time that the always valid p-value drops below α, then the stopping time is T_α.

Thus we have a simple decision rule that implements the sequential test.
Power and Run-Time
Power vs. run-time

Recall: users are trying to efficiently trade off power and run-time.

In order to make progress, some user model is needed.
Power vs. run-time

Recall: users are trying to efficiently trade off power and run-time.

In order to make progress, some user model is needed.

We use the following:

1. We choose a method of computing p-values.
Power vs. run-time

Recall: users are trying to efficiently trade off power and run-time.

In order to make progress, some user model is needed.

We use the following:

1. We choose a method of computing p-values.
2. The user observes p-values, and wants to detect whether a nonzero effect exists (reject H_0).
Power vs. run-time

Recall: users are trying to efficiently trade off power and run-time.

In order to make progress, some user model is needed.

We use the following:

1. We choose a method of computing p-values.
2. The user observes p-values, and wants to detect whether a nonzero effect exists (reject H_0).
3. The user stops the first time the p-value falls below α, up to a maximum run time of M.
Power vs. run-time

Recall: users are trying to efficiently trade off power and run-time.

In order to make progress, some user model is needed.

We use the following:

1. We choose a method of computing p-values.
2. The user observes p-values, and wants to detect whether a nonzero effect exists (reject H_0).
3. The user stops the first time the p-value falls below α, up to a maximum run time of M.

Question: what always valid p-value processes deliver an efficient tradeoff between power and run-time, without advance knowledge of M?
For simplicity, we assume data generated from a $\mathcal{N}(\theta, 1)$ distribution, where θ is unknown.

We then consider testing:

$$H_0 : \theta = 0$$
$$H_1 : \theta \neq 0$$

More generally our theory holds for a single stream of data generated from a single parameter exponential family.

(We generalize to A/B tests — i.e., two streams — with binomial and normal data in the paper.)
The mSPRT
The mSPRT

Notation: Let $L_n(\theta, \theta_0; \bar{x}, n)$ be LR of θ against $\theta_0 = 0$, given n observations with sample mean \bar{x}.

Let $H \sim \mathcal{N}(0, \sigma^2)$, and consider:

$$L_n = \int L_n(\theta, \theta_0; \bar{X}_n, n) \, dH(\theta).$$

Define:

$$S_\alpha = \inf \left\{ n : L_n \geq \frac{1}{\alpha} \right\}.$$

This is the *mixture sequential probability ratio test* (mSPRT) due to Robbins and Siegmund.
Always valid p-values

It is straightforward to show using martingale techniques that the mSPRT is a sequential test, i.e., it controls Type I error at level α.
Always valid p-values

It is straightforward to show using martingale techniques that the mSPRT is a sequential test, i.e., it controls Type I error at level α.

In addition, the mSPRT has power one: it is guaranteed to detect any true effect eventually.
Always valid p-values

It is straightforward to show using martingale techniques that the mSPRT is a sequential test, i.e., it controls Type I error at level α.

In addition, the mSPRT has *power one*: it is guaranteed to detect any true effect eventually.

We use the corresponding always valid p-value process: p_n is the smallest α such that $S_\alpha \leq n$.

Thus for the mSPRT the always valid p-value is particularly simple:

$$p_n = \inf \left\{ \frac{1}{L_k} \right\}.$$
Why it works

Under the null:

- Typical fluctuations of sample mean are of size $1/\sqrt{n}$, so any decision rule of the form:

\[\text{Reject if } |\text{sample mean}| > k/\sqrt{n} \]

is bound to eventually reject. This is what fixed horizon testing (e.g., z-test) will do.
Why it works

Under the null:

- Typical fluctuations of sample mean are of size $1/\sqrt{n}$, so any decision rule of the form:

$$
\text{Reject if } |\text{sample mean}| > \frac{k}{\sqrt{n}}
$$

is bound to eventually reject. This is what fixed horizon testing (e.g., z-test) will do.

- In fact, by law of the iterated logarithm, the boundary $\sqrt{2 \log \log n}/\sqrt{n}$ is crossed infinitely often.
Why it works

Under the null:

► Typical fluctuations of sample mean are of size \(\frac{1}{\sqrt{n}} \), so any decision rule of the form:

\[
\text{Reject if } |\text{sample mean}| > \frac{k}{\sqrt{n}}
\]

is bound to eventually reject. This is what fixed horizon testing (e.g., z-test) will do.

► In fact, by law of the iterated logarithm, the boundary \(\sqrt{2 \log \log n} / \sqrt{n} \) is crossed infinitely often.

► mSPRT leads to boundary of the form \(C \sqrt{\log n} / \sqrt{n} \):

 ► Goes to zero (power one);

 ► But slowly enough (so Type I error can be controlled).
Efficiency

Although the mSPRT has power one, that is only asymptotically in the infinite data limit.

We show that the mSPRT trades off power and run-time efficiently, even when a user might abandon the test prematurely (at her personal maximum run-time M).
Efficiency

Given M, α, and θ, and an always valid p-value process, let:

1. $R(\theta; M, \alpha) = \text{expected run-time}$, and
2. $q(\theta; M, \alpha) = \text{false negative probability}$

when the true effect is θ, assuming the user stops at the lesser of M or the first time the p-value drops below α.
Efficiency

Given M, α, and θ, and an always valid p-value process, let:

- $R(\theta; M, \alpha) =$ expected run-time, and
- $q(\theta; M, \alpha) =$ false negative probability when the true effect is θ, assuming the user stops at the lesser of M or the first time the p-value drops below α.

Definition

The p-value process is ϵ-efficient at (M, α) if for any other test with Type I error at most α, expected run length $\hat{R}(\theta)$, and false negative probability $\hat{q}(\theta)$, if:

$$(1 + \epsilon)\hat{q}(\theta) \leq q(\theta; M, \alpha) \ \forall \theta \neq 0,$$

then

$$(1 + \epsilon)R(\theta; M, \alpha) \leq \hat{R}(\theta) \ \forall \theta \neq 0.$$
Efficiency

Informally, ϵ-efficiency means that power cannot be appreciably increased without significantly inflating run-time (or vice versa).

Our efficiency result considers performance of the mSPRT in the “cheap data” limit, where $M \to \infty$.

Theorem

Consider a sequence of users with $M_k \to \infty$ and $\alpha_k \to 0$. Then the mSPRT leads to ϵ-efficient always valid p-values for all sufficiently large k, provided $\log(1/\alpha_k) = O(M_k)$.
Efficiency

Informally, ε-efficiency means that power cannot be appreciably increased without significantly inflating run-time (or vice versa).

Our efficiency result considers performance of the mSPRT in the “cheap data” limit, where $M \to \infty$.

Theorem

Consider a sequence of users with $M_k \to \infty$ and $\alpha_k \to 0$. Then the mSPRT leads to ε-efficient always valid p-values for all sufficiently large k, provided $\log(1/\alpha_k) = O(M_k)$.

(If the latter condition fails, then any sequential test controlling Type I error will have vanishingly small power.)
We interpret this result as follows:

- Users will have a range of risk preferences, encapsulated through α and M.

Wefirst control Type I error for all of them (always valid p-values).

Some users will be too conservative: α will be too small relative to M. For them, power will be small under any method.

For the rest, α is reasonable relative to M. Among them, we focus on those with larger M. For these users, the SPRT achieves an approximately efficient tradeoff between power and run-time, uniformly over M.
Interpretation

We interpret this result as follows:

- Users will have a range of risk preferences, encapsulated through α and M.
- We first control Type I error for all of them (always valid p-values).

...
Interpretation

We interpret this result as follows:

- Users will have a range of risk preferences, encapsulated through α and M.
- We first control Type I error for all of them (always valid p-values).
- Some users will be too conservative: α will be too small relative to M.
 For them, power will be small under any method.
Interpretation

We interpret this result as follows:

- Users will have a range of risk preferences, encapsulated through α and M.
- We first control Type I error for all of them (always valid p-values).
- Some users will be too conservative: α will be too small relative to M. For them, power will be small under any method.
- For the rest, α is reasonable relative to M. Among them, we focus on those with larger M. For these users, the mSPRT achieves an approximately efficient tradeoff between power and run-time, uniformly over θ.
How to choose the mixing distribution?

Since the mSPRT has power one with infinite data, we aim to optimize run-time.

In particular: assume effect θ is drawn from a prior G, and aim to minimize $\mathbb{E}[R(\theta; M, \alpha)]$.

Optimizing the mSPRT
Optimizing the mSPRT

We show that the optimal choice of \(H \) depends on the shape of \(G \).

In the limit of \(\alpha \to 0 \), the optimal choice of mixing distribution in the mSPRT involves roughly matching the mixing variance \(\sigma^2 \) to the prior variance \(\tau^2 \).

The constant of proportionality depends on \(\log(1/\alpha)/M \), but (under reasonable values for prior) is relatively robust to changes in \(\alpha \) or \(M \).
Run length
No free lunch?

What do we give up in return for continuous monitoring?

- If the effect size is known in advance, should only be better!
- In practice, we don’t know the effect size in advance. The test we designed does not assume knowledge of the effect size.

We compare our test to a fixed horizon test, using data from Optimizely.
Run lengths on Optimizely

Our results show robustness to not knowing the effect size:
Run lengths: Interpretation

Our results show robustness to not knowing the effect size. Intuition:

- Detecting an effect of size Δ takes a run length proportional to $1/\Delta^2$
- So the penalty for guessing wrong about δ is very high!
 - An MDE that is 2x too small \implies run length that is 4x too long
Suppose that effect θ is drawn from a normal distribution.

In an appropriate scaling regime where $\alpha \to 0$ and $N \to \infty$, we show that mSPRT at level α truncated to $\Theta(N)$ gives similar power as fixed horizon test of length N, but with detection time that is $o(N)$.
Suppose that effect θ is drawn from a normal distribution.

In an appropriate scaling regime where $\alpha \to 0$ and $N \to \infty$, we show that mSPRT at level α truncated to $\Theta(N)$ gives similar power as fixed horizon test of length N, but with detection time that is $o(N)$.

In other words: even users who were properly using fixed horizon p-values would prefer our approach, if effect size is uncertain.
Multiple testing
The multiple testing problem

Recall the typical dashboard of an A/B test:

![Dashboard diagram]

Suppose each cell is an *independent* hypothesis test. Note that if $\alpha = 0.1$, expect 4 out of 40 to be significant by *random chance*.
FWER and FDR

Suppose $K =$ number of hypotheses.

Can try to control:

- **Familywise error rate**: probability of making even one mistaken rejection
 - Standard approach to control: *Bonferroni correction*
Suppose $K =$ number of hypotheses.

Can try to control:

- *Familywise error rate*: probability of making even one mistaken rejection
 - Standard approach to control: *Bonferroni correction*

- *False discovery rate*: expected fraction of rejections that are mistaken
 - Less conservative
 - Standard approach to control: *Benjamini-Hochberg (BH) procedure*
Suppose K = number of hypotheses.

Can try to control:

- **Familywise error rate**: probability of making even one mistaken rejection
 - Standard approach to control: *Bonferroni correction*

- **False discovery rate**: expected fraction of rejections that are mistaken
 - Less conservative
 - Standard approach to control: *Benjamini-Hochberg (BH) procedure*

Both use p-values as input. Since we generate p-values, can we apply these procedures?
Always validity, and FWER and FDR

The Bonferroni correction can be directly applied to always valid p-values to provide always valid control of FWER.
Always validity, and FWER and FDR

The Bonferroni correction can be directly applied to always valid p-values to provide always valid control of FWER.

More surprisingly, under reasonable assumptions, always validity “commutes” with the BH procedure.
Always validity and FDR

We find a condition under which the BH procedure “commutes” with always validity.

Examples:

- Any stopping time that depends only on the sequence of the number of rejections made over time (e.g., the first time a fixed number of rejections is reached)
- The first time the p-value on a fixed hypothesis crosses a threshold
Always validity and FDR

In controlling FDR, what can go wrong?

- In general, the stopping time introduces dependence between the p-value processes.
- A result of Benjamini and Yekutieli shows:
 With arbitrary dependence among the hypotheses, the BH procedure at level α controls FDR at level $\alpha \ln K$.
- The same result then applies for always valid p-value processes.
Conclusions
Rapid innovation in information & communication technology has **democratized the scientific method**.

Our goal: “adapt” statistical methodology to **act in partnership with the user**.

Additional results:

- Confidence intervals
- Adaptive allocation (bandits)
Optimizely Stats Engine

Statistics for the Internet Age: The Story Behind Optimizely’s New Stats Engine

By Leonid Pekelis

- The ideas presented in this talk were released to all of Optimizely’s customers on January 20, 2015
- Provides both always valid p-values and multiple testing corrections