Online Algorithms for Covering and Packing Problems with Convex Objectives

Niv Buchbinder Tel Aviv University

Based on:

Paper 1: N. Buchbinder, S. Chen, A. Gupta, V. Nagarajan, J. Naor

Paper 2: Y. Azar, I. R. Cohen, D. Panigrahi

Paper 3: T.-H. H. Chan, Z. Huang, N. Kang

Road Map

- The online primal-dual framework
- A natural extension of the primal
- A natural extension of the dual
- Main results
- Algorithms and analysis ideas

Offline Covering/Packing Problems

Primal (covering)	Dual (Packing)	Strong Duality
(P): Min <i>c'x</i>	(D): Max $\sum_{t=1}^{T} y_t$	1
$\begin{array}{l} Ax \geq 1 \\ x \geq 0 \end{array}$	$y'A \le c'$ $y \ge 0$	Primal (Min)
$A \in R_+^{T imes n}$, b	$\in R_+^T, c \in R_+^n$	solutions
		$P^* + D^*$

Dual (Max)

solutions

Captures many (relaxations) of combinatorial optimization problems:

- Covering: Covering problems (set-cover, facility location), connectivity/cut problems (steiner tree, shortest path), paging ...
- Packing: knapsack , flow problems (Maximum multicommodity flow, matching), combinatorial auctions

Online Covering/Packing Problems

Primal (covering)	Dual (Packing)
(P): Min $c'x$	(D): Max $\sum_{t=1}^{T} y_t$
$Ax \ge 1$	$y'A \leq c'$
$x \ge 0$	$y \ge 0$
$A \in R_+^{T imes n}$, $b \in R_+^T$, $c \in R_+^n$	

• *c* is known in advance.

At time t = 1, 2, ... T:

• The *t*th row of A is revealed (and a new dual y_t).

Covering: Variables x_j can only be increased to maintain a feasible solution.

• Goal: Minimize the total cost.

Packing: New dual variable y_t should be set immediately.

• **Goal:** Maintain a feasible solution, Max total profit.

Example 1: Online Set Cover

Primal (covering)

(P): Min $\sum_{s} x_s$ $\sum_{s \mid e \in s} x_s \ge 1 \quad \forall e \in E$ $x \ge 0$ Non negative objective function

- *x_s*: Choose set *s*
- Rows (=elements) arrive online
- *x_s* can only be increased over time

Online set cover [Alon-Awerbuch-Azar-B-Naor03]:

- $E = \{1, 2, ..., n\}, S_i \subseteq E \text{ (m sets)}.$
- Elements arrive one-by-one and should be covered **upon arrival**.
- Sets cannot be unchosen.

Goal: Minimize total cost of sets chosen.

Example 2: Virtual Circuits Routing

Dual (packing)	
(D): Max $\sum_i y_{r_i}$	Non-negative objective
$\sum_{\substack{r_i \mid e \in p_i \\ y_{r_i} \leq 1 \\ y \geq 0}} y_{r_i} \leq c_e \ \forall e \in E$	 Packing constraints for all e ∈ E Variables y_r (= requests) arrive online. Should be set upon arrival.

Online virtual circuits routing [Awerbuch-Azar-Plotkin93]:

- Graph G = (V, E), capacities on edges c_e .
- Requests $r_i = (s_i, t_i, p_i)$ arrive one-by-one.
- Should be connected using capacity 1, or rejected.
- Accepted requests cannot be rejected later.

Goal: Maximize number of requests accepted.

Online Covering/Packing problems

Primal (covering)	Dual (Packing)
(P): Min <i>c'x</i>	(D): Max $\sum_{t=1}^{T} y_t$
$\begin{array}{l} Ax \geq 1 \\ x \geq 0 \end{array}$	$\begin{array}{l} y'A \leq c' \\ y \geq 0 \end{array}$
$A \in R_+^{T \times n}, b \in R_+^T, c \in R_+^n$	

Captures many (relaxations) of **online** combinatorial optimization problems:

- Covering: online set-cover, online connectivity/cut, facility location, (weighted) paging, Metrical task systems ...
- Packing: routing, matching (ad-auctions), online knapsack, online combinatorial auctions.

Algorithm for the framework

Primal (covering)	Dual (Packing)
(P): Min $\sum_{j=1}^{n} c_j x_j$	(D): Max $\sum_{t=1}^{T} y_t$
$Ax \ge 1$	$y'A \leq c'$
$x \ge 0$	$y \ge 0$

Theorem [B-Naor05, Gupta-Nagarajan12]: There is an algorithm that produces solutions *x*, *y* such that:

• x is $O(\log d)$ -competitive,

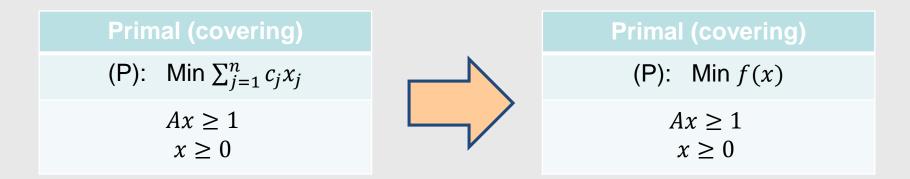
d = Maximum row sparsity of A.

• $y \text{ is } O\left(\log\left(d \cdot \frac{a_{max}}{a_{\min}}\right)\right)$ -competitive,

 a_{\max}/a_{\min} - ratio of maximal to minimal (non-zero) entry in a column of A.

Results are tight asymptotically.

A Natural Generalization of Covering



f is a convex monotone function. (Monotone: *x* ≤ *y* ⇒ *f*(*x*) ≤ *f*(*y*))
 Offline: Problem is polynomially solvable.
 Online (same setting):

- Rows of *A* arrive online.
- Variables should be monotonically increasing.

Example 1: L_p-norm Set Cover

Primal (covering)

(P): Min
$$\sum_{i=1}^{k} (c'_i x)^p$$

$$\sum_{\substack{s \mid e \in s}} x_s \ge 1 \quad \forall e \in E$$
$$x \ge 0$$

- Elements arrive one-by-one and should be covered upon arrival.
- Sets cannot be unchosen.
- $f(x) = \sum_{i=1}^{k} (c'_i x)^p$
- Special case 1: $f(x) = \sum_{j=1}^{n} c_s x_s$ (*p* = 1)
- Special case 2: $f(x) = \max_{i=1}^{k} (c'_i x)$ $(p \approx \log k)$

Motivation: combining multiple objectives, makespan, energy minimization.

The Dual Problem

Primal (covering)	Dual (Packing)
(P): Min $f(x)$	(D): $\max \sum_{t=1}^{T} y_t - f^*(A^T y)$
$\begin{array}{l} Ax \ge 1 \\ x \ge 0 \end{array}$	$y \ge 0$

- $f^*(z) = \sup_{x \ge 0} (z'x f(x))$ (conjugate function)
- f^* always convex (even if f is not convex).
- [Nice function f]: if f is continuous, convex, monotone, differentiable and f(0) = 0

→ f^* is convex, monotone, non-negative, $f^*(0) = 0$ and $f^{**} = f$.

The Dual Problem

Primal (covering)	Dual (Packing)
(P): Min $f(x)$	(D): $\max \sum_{t=1}^{T} y_t - f^*(A^T y)$
$Ax \ge 1$	
$x \ge 0$	$y \ge 0$

•
$$f^*(z) = \sup_{x \ge 0} (z'x - f(x))$$
 (conjugate function)
Proof (weak duality): x, y solutions to primal/dual:
 $f(x) \ge f(x) - y'(Ax - 1)$
 $= \sum_{t=1}^{T} y_t - (x'(A^Ty) - f(x))$
 $\ge \sum_{t=1}^{T} y_t - \sup_{x \ge 0} (x'(A^Ty) - f(x)) = \sum_{t=1}^{T} y_t - f^*(A^Ty)$
 $x \ge 0, \text{ definition of } f^*$

Natural Extension of Dual Problem

Primal (covering)	Dual (Packing)
(P): Min $f(x)$	(D): Max $\sum_{t=1}^{T} y_t - f^*(A^T y)$
$Ax \ge 1$	
$x \ge 0$	$y \ge 0$

Online setting (Dual):

• Primal constraint arrive at time t

 \Rightarrow New dual variable y_t

 Value of y_t should be set immediately and cannot be changed later on.

Goal: Maximize profit $\sum_{t=1}^{T} y_t$ minus cost $f^*(A^T y)$.

Example 2: Virtual Circuits Routing

Dual (packing)

(D): Max
$$\sum_{i} y_{r_i} - f^*(z)$$

$$\sum_{\substack{r_i \mid e \in p_i \\ y_{r_i} \leq 1 \\ y \geq 0}} y_{r_i} = z_e \ \forall e \in E$$

Online virtual circuits routing (with capacity costs):

- Requests arrive online as before and should be accepted/rejected immediately.
- Capacity should be bought at cost $f^*(z)$.

• Special case 1:
$$f^*(z) = \begin{cases} 0 & z_e \leq c_e \quad \forall e \in E \\ \infty & Otherwise \end{cases}$$

• Special case 2: $f^*(z) = \sum_{e \in E} g_e(z_e)$

Extending the Basic Framework

Primal (covering)	Dual (Packing)
(P): Min $\sum_{j=1}^{n} c_j x_j$	(D): Max $\sum_{t=1}^{T} y_t$
$\begin{array}{l} Ax \ge 1 \\ x \ge 0 \end{array}$	$\begin{array}{l} y'A \leq c' \\ y \geq 0 \end{array}$
(P): Min $f(x)$	(D): Max $\sum_{t=1}^{T} y_t - f^*(A^T y)$
$\begin{array}{l} Ax \ge 1 \\ x \ge 0 \end{array}$	$y \ge 0$

- f(x): Non-negative monotone convex function (+ ∇f is monotone). Let $p = \sup_{x \ge 0} \frac{\langle \nabla f(x), x \rangle}{f(x)}$ (Intuition: f(x) is a polynomial of degree p)
- Covering competitive ratio: $O(p \cdot \log d)^p$
- Packing competitive ratio: $O\left(p \cdot log\left(d\frac{a_{max}}{a_{\min}}\right)\right)^p$
- *d* row sparsity of matrix *A*
- $a_{\text{max}}/a_{\text{min}}$ ratio of maximal to minimal (non-zero) entry in a column of A.

Our Results (cont.)

• Matches the best bounds for the linear case.

Theorem (lower bound):

There exists an instance with f = polynomial of degree psuch that any online algorithm for the **primal** problem is $\Omega(p \log d)^p$ -competitive.

Rounding (Integral solutions)

• **Example:** There exists a $(\frac{p^3}{\log p} \log d \log n)$ -competitive algorithm for L_p -norm set cover

(n: num. of elements, d: max num. of sets containing an element)

• Other applications: scheduling, facility location ...

Previous Results (Primal)

[Azar, Bhaskar, Fleischer, Panigrahi, 2013]

Online Mixed Packing and Covering (P): Min $\operatorname{Max}_{i=1}^{k} \{c'_{i}x\}$ $Ax \ge 1$ $x \ge 0$ • $O\left(\log k \cdot \log\left(d \cdot \frac{a_{max}}{a_{min}} \cdot \frac{c_{max}}{c_{min}}\right)\right)$ -competitive algorithm. $(a_{max}, a_{min}, c_{max}, c_{min}: \max / \min (\operatorname{non-zero}) \operatorname{coordinate})$

Our result (for this case): $O(\log k \log d)$ -competitive (best possible)

Previous Results (Dual)

[Blum, Gupta, Mansour, Sharma, 11], [Huang, Kim, 15]

Maximizing social welfare with (separable) production costs

- n item types, buyers arrive online. For each bundle S:
 - $\succ v_{i,S}$: value of bundle *S* to buyer *i*
 - $\succ a_{j,S}$: number of items of type *j* in bundle *S*
- $y_{i,S}$: allocate bundle *S* to buyer *i*
- z_j : how many items of type *j* to produce.

(D): $\max \sum_{i=1}^{m} \sum_{S} v_{i,S} \cdot y_{i,S} - \sum_{j=1}^{n} f_{j}^{*}(z_{j})$ $\sum_{S} y_{i,S} \leq 1 \quad for \ each \ buyer \ i$ $\sum_{i=1}^{m} \sum_{S} a_{j,S} y_{i,S} = z_{j} \quad for \ each \ item \ type \ j$ $y \geq 0$

 \rightarrow f^{*}is separable (separate cost for each item type).

Algorithm for the framework

Primal (covering)	Dual (Packing)
(P): Min $f(x)$	(D): Max $\sum_{t=1}^{T} y_t - f^*(A^T y)$
$Ax \ge 1$	
$x \ge 0$	$y \ge 0$

- Initially set x = 0.
- When t^{th} row of A arrives (and new y_t).
 - While *t*th constraint is unsatisfied:
 - Increase y_t at rate δ
 - (... depends on parameters of the problem).
 - Increase each x_i with $a_{ti} > 0$ with rate:

$$\frac{dx_j}{dy_t} = \frac{a_{tj}x_j + 1/d}{\nabla_j f(x)}$$

 $d (\leq n) =$ Maximum row sparsity seen so far.

(Intuition: linear case, $\nabla_j f(x) = c_j$)

Algorithm for the framework (

Primal (covering)	Dual (Packing)
(P): Min $f(x)$	(D): Max $\sum_{t=1}^{T} y_t - f^*(A^T y)$
$\begin{array}{l} Ax \ge 1 \\ x \ge 0 \end{array}$	$v \ge 0$

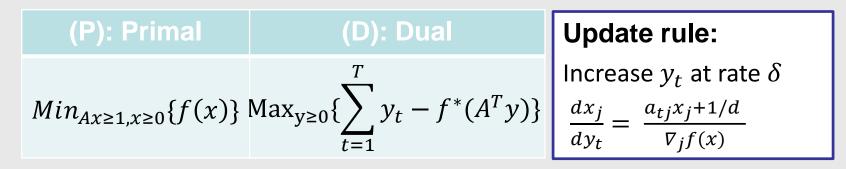
Theorem: Algorithm produces a **monotone** primal solution *P* and a **monotone** dual solution *D* such that:

$$P \le O\left(p\log\left(d\frac{a_{\max}}{a_{\min}}\right)\right)^p D$$

→ (Weak duality):

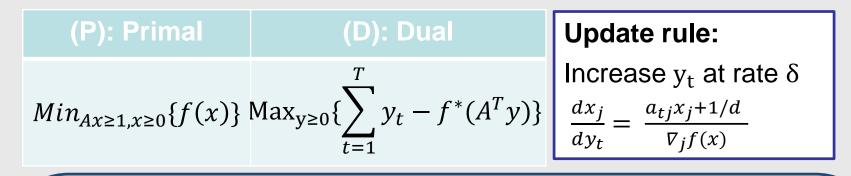
P, *D* are
$$O\left(p \log\left(d \frac{a_{\max}}{a_{\min}}\right)\right)^p$$
-competitive.

Analysis: Main Ideas



Bounding the "profit":
Assume
$$y_t$$
 is increased at rate 1 (not $\delta < 1$)
 $\frac{\partial f}{\partial y_t} = \sum_{j=1}^n \frac{\partial f(x)}{\partial x_j} \cdot \frac{\partial x_j}{\partial y_t} = \sum_{j|a_{tj}>0} \nabla_j f(x) \cdot \frac{a_{tj}x_j + \frac{1}{d}}{\nabla_j f(x)} = \sum_{j|a_{tj}>0} \left(a_{tj}x_j + \frac{1}{d}\right) \le 2$
 $\Rightarrow f(\bar{x}) \le \frac{2}{\delta} \sum_{t=1}^T y_t, \quad \bar{x}: \text{ final value of } x.$
Or, $\sum_{t=1}^T y_t \ge \frac{\delta}{2} f(\bar{x}) \quad (\Rightarrow \text{ Profit is large compared to primal cost})$

Analysis: Main Ideas



Bounding the "production cost": Claim: $x_j \ge \frac{1}{\underset{t\in S_i}{\operatorname{dim}} x_{\{a_{tj}\}}} \left| exp\left(\frac{\sum_{t\in S_j} a_{tj} \cdot y_t}{\delta \nabla_j f(\bar{x})}\right) - 1 \right|, S_j \subseteq \{t \mid a_{tj} > 0\}$ **Proof:** Solving differential equation of update rule + ∇f is monotone. $x_j \leq \frac{1}{\min_{t \in S_i} \{a_{tj}\}}$ (at this value all constraints are feasible) $\Rightarrow (A^T y)_j = \sum_{t \in S_j} a_{tj} \cdot y_t \le \delta \nabla_j f(\bar{x}) \cdot O\left(\log\left(d\frac{a_{max}}{a_{min}}\right)\right)$ \rightarrow (By prop. of f^* + bound on "convexity" of f) bound on $f^*(A^Ty)$ Finally, optimizing the value δ .

Analysis: Main Ideas

Primal (covering)	Dual (Packing)
(P): Min $f(x)$	(D): $\max \sum_{t=1}^{T} y_t - f^*(A^T y)$
$Ax \ge 1$	u > 0
$x \ge 0$	$y \ge 0$

Theorem: The algorithm produces a **monotone** primal solution *P* and a **monotone** dual solution *D* such that: $P \le O\left(p \log\left(d \frac{a_{\max}}{a_{\min}}\right)\right)^p \mathsf{D}$

How to remove the a_{max}/a_{min} term?

There exists a feasible solution D' such that:

 $P \le O(p\log(d))^p \cdot D'$

D' is not monotone!

Primal (covering)	Dual (Packing)
(P): Min $\sum_{j=1}^{n} x_j$	(D): Max $\sum_{t=1}^{T} y_t$
$\begin{array}{l} Ax \ge 1 \\ x \ge 0 \end{array}$	$y'A \le 1$ $y \ge 0$

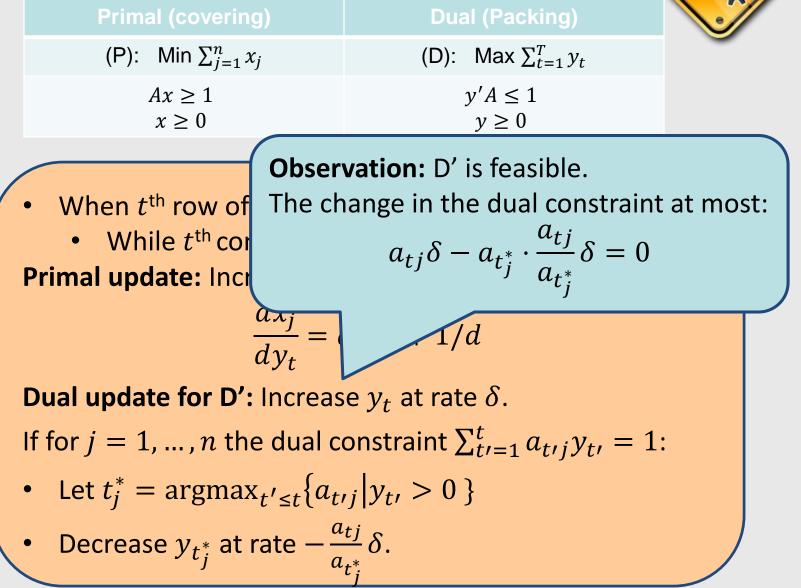
Why we must decrease dual variables?

Primal (cove	ring)	Dual (Packing)
(P): Min :	<i>x</i> ₁	(D): Max $y_1 + My_2 + M^2y_3 + \dots$
$\begin{array}{l} x_1 \geq 1 \\ x_1 \geq M \\ x_1 \geq M^2 \end{array}$	$(M \gg 1)$	$y_1 + y_2 + y_3 + \dots \le 1$ $y \ge 0$

Aiming towards constant competitive ratio 'c':

$$y_1 = 1/c, y_2 = 1/c, y_3 = 1/c \dots$$

But dual constraint should be satisfied!



Primal (covering)	Dual (Packing)
(P): Min $\sum_{j=1}^{n} x_j$	(D): Max $\sum_{t=1}^{T} y_t$
$\begin{array}{l} Ax \ge 1 \\ x \ge 0 \end{array}$	$\begin{array}{l} y'A \leq 1 \\ y \geq 0 \end{array}$

Primal update as before:

Increase each x_j with $a_{tj} > 0$ with rate: $\frac{dx_j}{dy_t} = a_{tj}x_j + 1/d$

Change in the primal objective function:

$$\frac{\partial P}{\partial y_t} = \sum_{j \mid a_{tj} > 0} \left(a_{tj} x_j + \frac{1}{d} \right) \le 2$$

Main question: Does the Dual D' increase enough?

Primal (covering)	Dual (Packing)
(P): Min $\sum_{j=1}^{n} x_j$	(D): Max $\sum_{t=1}^{T} y_t$
$Ax \ge 1$	$y'A \leq 1$
$x \ge 0$	$y \ge 0$

Dual update: Increase y_t at rate δ .

If for j = 1, ..., n the dual constraint $\sum_{t'=1}^{t} a_{t'j} y_{t'} = 1$:

• Let $t_j^* = \operatorname{argmax}_{t' \le t} \{ a_{t'j} | y_{t'} > 0 \}$. Decrease $y_{t_j^*}$ at rate $-\frac{a_{tj}}{a_{t_i^*}} \delta$.

Change in the dual objective function:

$$\frac{\partial D}{\partial y_t} = \delta - \sum_{dual \ of \ j \ is \ tight} \frac{a_{tj}}{a_{t_j^*}} \delta = \delta \cdot \left(1 - \sum_{dual \ of \ j \ is \ tight} \frac{a_{tj}}{a_{t_j^*}}\right)$$

Final claim:
$$\sum_{j \text{ is tight}} \frac{a_{tj}}{a_{t_j^*}} \leq \frac{1}{2}$$
 (so dual increase $\geq \delta/2$)

Primal (covering)	Dual (Packing)
(P): Min $\sum_{j=1}^{n} x_j$	(D): Max $\sum_{t=1}^{T} y_t$
$Ax \ge 1$	$y'A \leq 1$
$x \ge 0$	$y \ge 0$

Final claim:
$$\sum_{j \text{ is tight}} \frac{a_{tj}}{a_{t_j^*}} \leq \frac{1}{2}$$

• Claim: $x_j \geq \frac{1}{d:\max_{t \in S_j} \{a_{tj}\}} \left[exp\left(\frac{\sum_{t \in S_j} a_{tj} \cdot y_t}{\delta}\right) - 1 \right], S_j \subseteq \{t \mid a_{tj} > 0\}$
• $S_j = \{t \mid a_{tj} > 0, y_t > 0\}: x_j \geq \frac{1}{d \cdot a_{t_j^*}} \left[exp\left(\frac{\sum_{t \in S_j} a_{tj} \cdot y_t}{\delta}\right) - 1 \right]$

2

• $\sum_{j} a_{tj} x_j \le 1$ + dual constraints of variables *j* are tight

→ ∑_{j is tight} a_{tj}
$$\left(\frac{1}{d \cdot a_{t_j^*}} \left[exp\left(\frac{1}{\delta}\right) - 1\right]\right) \le \sum_j a_{tj} x_j \le 1$$
→ (Plugging δ = 1/(log(1 + 2d))): $\sum_j \frac{a_{tj}}{a_{t^*}} \le \frac{1}{2}$

Questions

Primal (covering)	Dual (Packing)
(P): Min $f(x)$	(D): $\max \sum_{t=1}^{T} y_t - f^*(A^T y)$
$Ax \ge 1$	
$x \ge 0$	$y \ge 0$

- f(x): Non-negative monotone convex function (+ ∇f is monotone). Let $p = \sup_{x \ge 0} \frac{\langle \nabla f(x), x \rangle}{f(x)}$ (Intuition: f(x) is a polynomial of degree p)
- Covering competitive ratio: $O(p \cdot \log d)^p$
- Packing competitive ratio: $O\left(p \cdot log\left(d\frac{a_{max}}{a_{min}}\right)\right)^p$
- *d* row sparsity of matrix *A*
- $a_{\text{max}}/a_{\text{min}}$ ratio of maximal to minimal (non-zero) entry in a column of A.

Questions

Primal (covering)	Dual (Packing)
(P): Min $f(x)$	(D): $\max \sum_{t=1}^{T} y_t - f^*(A^T y)$
$Ax \ge 1$	
$x \ge 0$	$y \ge 0$

- Is 'd' (row sparsity) the right parameter? Is there a more refined parameter?
 (adding ε noise doesn't change problem, but makes d = n)
- More applications.
- Additional extensions of the framework.
- Handling non-covering constraints (paying for changing x).
- Connections to learning.

Thank you