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Classical	Op7miza7on	Problem:		

											Maximum	Weighted	Matching	

Input:	Weighted	Bipar=te	Graph	

Output:	Matching	that	maximizes	the	sum	of	matched	edge	weights.	
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Example Applica.on
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Adver=sers	 Ad	slots	
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Selling	adver7sement	slots	
¤  A	search	engine	has	adver=sing	slots	for	sale	
¤  Adver=sers	are	willing	to	pay	different	amount	to	have	their	ad	shown	in	a	

par=cular	slot.	

Suppose	search	engine	wants	to	make	as	much	money	as	possible.	



The values are private!
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Algorithm	must	solicit	values.	

Adver=sers	may	lie	to	get	a	beIer	deal.	
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This	is	a	game!	
	
Google	designs	the	game.	
	
The	adver=sers	play	the	
game.	



Big	Picture	
• Many	problems	where	input	is	the	private	data	of	
agents	who	will	act	selfishly	to	promote	their	own	
best	interests	
•  Resource	alloca=on	
•  Rou=ng	and	conges=on	control		
•  Electronic	commerce	

	 7	

Mechanism	design:	
How	do	we	op7mize	in	a	selfish	world?	



Real	world	mechanism	design	seJngs	

•  Sponsored	search	auc=ons;	display	adver=sing	

8	

``What	most	people	don’t	know	is	that	all	that	money	comes	in	pennies	at	a	=me.”																												
Hal	Varian,	Google	Chief	Economist	

Google	revenue	in	2015	
was	approximately	
$74,500,000,000.	



Real	world	mechanism	design	seJngs	
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¤  Resource	alloca=on	in	the	
cloud	

¤  Pla_orm	design	for	a	
sharing	economy	

¤  Energy	and	electricity	
markets	

¤  Bitcoin	

¤  Par=cipatory	democracy	

¤  Crowdsourcing	

¤  Sponsored	search	
auc=ons;	display	
adver=sing	

¤  FCC	spectrum		auc=ons	

¤  Kidney	exchange	

¤  Healthcare	systems	

¤  Recommenda=on	systems	

¤  Rou=ng	on	the	Internet	



What	characterizes	these	problems?	

• Many	par=cipants	with		
•  diverse	incen=ves		
•  private	informa=on	of	each	agent	unknown	to	designer	
and	other	agents	(maybe	even	to	themselves!)	
•  varying	aI=tudes	towards	risk.	
•  varying	degrees	of	myopia	

• Complex	op=miza=on	problems	
• Dynamic	and	repeated	interac7on	

	



Plan	for	talk	

• Meander…	
•  Posted	prices	via	prophet	inequali=es	
•  Prior-independent	and	prior-free	auc=ons,	sample	
complexity	
•  AGT	and	learning	

Apologies:	incomplete	references.	

	
	



Applica.ons of prophet inequali.es



Prophet	inequali=es,	reminder	
•  Sequence	of	prizes		
•  You	know	all	the	priors.	
•  See	them	one	at	a	=me	and	make	an	irrevocable	decision	at	that	
moment	whether	or	not	to	keep	it.	Once	done,	game	over.	
•  Compete	with	prophet	who	gets	expected	reward	

Version	1:	Take	the	first	prize	that	is	above		
	
Version	2:			Choose	threshold	t	such	that		
Pr(there	is	any	value	is	higher	than	t)	=	½	
Take	the	first	one	above	t.	
	
Guarantee:	expected	value	of	prize	selected	

1

2

E(max

i
Vi)

V1 ⇠ F1 V2 ⇠ F2 . . . Vn ⇠ Fn
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i
Vi)

E(maxiVi)



Winner	&	price	

Bidder’s	goal:	maximize	u=lity	=	
																																	value	-	payment	

Maximize	social	surplus:	allocate	to	bidder	with	maximum	value.	

Vickrey	Second-price	Auc7on:	Allocate	to	highest	bidder	at	
second	highest	bid	

Incen=vizes	truth-telling,	i.e.																									no	maIer	what	others	bid	b1 := v1

v1	=	100	
v2	=	80	
Truthful	bidding:	
u1	=	20	
u2=	0	
	
With	collusion,	say	
b2=	10	
Bidder	1	pays	him	$50	
u1		=	100-10	-50	=	40	
u2	=	50	
	



Issues	with	Vickrey	Auc=on	

•  Collusion.	
•  Can	be	slow	and	inconvenient.	
• May	require	more	communica=on	than	we	would	like.	
•  All	bidders	needs	to	be	present	over	the	=me	the	
auc=on	is	run.	

	

•  But,	if	we	are	willing	to	seIle	for	approximate	
op=mality,	and	we	have	a	prior…	
•  That	is,	we	know	that	Vi	~	Fi	independently		



Use	posted	price	based	on	prophet	inequality	

•  Choose	threshold	t	such	that	Pr(there	is	any	bidder	whose	
value	is	higher	than	t)	=	½	
•  Post	a	price	of	t;	whoever	grabs	item	first,	gets	it.	
•  This	guarantees	that	the	expected	surplus	of	the	outcome	
(value	of	winning	bidder)	is			½		
•  Features:	

•  Very	simple	to	implement:	auc=on	described	by	one	number	
•  Very	simple	for	agents	to	“play”.	
•  Agent	doesn’t	even	need	to	know	exact	value.	
•  Robust:	it	doesn’t	maIer	if	bidders	aren’t	all	there	at	the	same	=me,	
or	come	in	some	arbitrary	or	even	worst-case	order.	

•  Resilient	to	collusion.	
•  It	doesn’t	maIer	if	distribu=ons	change	above	or	below	the	
threshold!	

	

E(max

i
vi)



Beau.ful generaliza.on 
[Feldman, Gravin, Lucier]



Combinatorial	auc7on:	
m	items,		n	bidders	each	with	private	submodular	
Goal:	allocate	items	to	maximize	

X

i

vi(Si)

vi(·)



Combinatorial	auc=ons,	surplus	
maximiza=on,	submodular	bidders	
•  Algorithmic	version:	1-1/e	approx.			

•  [Dobzinski,	Shapira][Vondrak][Feige]	

•  The	best	known	truthful	auc=on	achieves		
approx.		

•  [Dobzinski]	

•  Simultaneous	first-price	auc=ons	achieve	1-1/e	approx.	at	every	
BNE			
•  [Christodoulou,	Kovacs,	Schapira][Hassidim,	Kaplan,	Mansour,	Nisan]	[Syrgkanis,	

Tardos]	

•  [Feldman,	Gravin,	Lucier]		constant	approxima=on	via	posted	prices,	
given	priors.	

O(

p
logm)



										$50																																					$39																																		$99																																			$114	

utility of = v(kindle + tap)� (99 + 114)

Given	priors,	compute	posted	prices	
	
U=lity	of	bidder	=	value	of	bundle	-	price	

Prices	guarantee	constant	
frac=on	of	the	op=mal	
expected	surplus!	



Note	

• Here	we	don’t	even	know	how	to	design	a	truthful	
mechanism	that	gets	close	to	the	same	approxima=on	
ra=o	as	we	can	get	in	the	algorithmic	seqng.	
• One	of	the	big	open	ques=ons	in	mechanism	design:		
•  to	what	extent	is	computability	with	incen=ve	
compa=bility	harder	than	without.	[Nisan,	Ronen]	



Profit Maximiza.on: prophet 
inequali.es very useful here too!



Winner	&	price	

What	if	we	want	to	design	an	auc7on	to	maximize	
auc7oneer	revenue?	

	
assuming	known	priors	

completely	solved	by	[Myerson]	



Simplest	case:	1	bidder	

 
 
Op=mal	auc=on:	posted	price	
	
Best	price	to	offer:	
	
	
Called	monopoly	price	for	the	distribu=on.	
	
	

p⇤ = argmaxp p(1� F (p))

V ⇠ F



Maximizing	revenue	

Bayesian	seqng:			Vi	~	F	
	
Under	i.i.d.	assump*on	
	[Myerson]	
•  The	op=mal	auc=on	is	just	Vickrey	with	a	monopoly	

reserve	price.	
•  Reserve	price	r:	like	an	opening	bid	on	eBay	
•  Truthful	auc=on	
	

	
 
 

 

Vickrey	auc7on:	
•  Winner	=	highest	bidder	above	r,	if	any	
•  Price	=	maximum	of	r	and	2nd	highest	bid	



Beyond	i.i.d.	

Bayesian	seqng:			Vi	~	Fi			independently	
	
	[Myerson]	
•  Ask	bidders	to	report	values	
•  For	each	bidder,	compute	virtual	value	

E(revenue	of		an	auc7on)	=	E(	virtual	value	of	winner)	
	
Op7mal	auc7on*:		Allocate	to	bidder	with	highest	
														(if	posi=ve)	breaking	=es	by	value.	
	
*	distribu=ons	regular	
 

 (vi)

 i(vi) = vi �
1� Fi(vi)

fi(vi)



Example	

• Bidder	1	has	value	drawn	exp(1)	
• Bidder	2	has	value	drawn	U[0,1]	
•  (v1,	v2)	=	(1.5,	0.8)		=>	
															bidder	2	wins	(and	pays	0.75)	
	

 Indep,	but	not	iden=cal	à	
								op7mal	auc7on	complicated,	unintui7ve	and	depends	
on	detailed	distribu7onal	informa7on!	

Is	there	a	simpler,	more	prac=cal,	more	robust	way,	if	
we	are	willing	to	sacrifice	op=mality?	



Prophet	inequali=es	to	the	rescue!	
[Chawla,	Hartline,	Kleinberg]	[Chawla,	Hartline,	Malec,	Sivan]	

• Myerson	tells	us	that	our	revenue	will	be	the	expected	
virtual	value	of	winning	bidder.	
•  To	apply	prophet	inequality,	think	of		
as	ith	prize.			

• Choose								so	that	
	
•  For	each	bidder	this	induces	a	threshold	price.			
•  Sell	to	first	bidder	willing	to	pay	his	personal	reserve	price.	
• Gives	2	approxima=on!	

t P(max

i
'i(Vi)

+ � t) =
1

2

'i(Vi)
+

'i(pi) = t



Observa=ons	

• Although	constant	virtual	price	t	gives	bidder-specific	
posted	prices,	it’s	s=ll	way	simpler	than	op=mal	auc=on	
• All	the	nice	proper=es	we	saw	earlier.	
• Called	oblivious	posted	pricing	because	don’t	care	what	
order	the	agents	show	up.		
•  If	the	designer	is	allowed	to	consider	the	agents	in	the	
order	of	his	choosing,	beIer	approxima=ons	possible.		
Called	sequen7al	posted	pricing.	



Sequen=al	Posted	Pricing	
[Chawla,	Hartline,	Kleinberg]	
[Chawla,	Hartline,	Malec,	Sivan]	[Alaei]	[Yan]	

• Relax	the	problem	by	considering	the	op7mal	ex-ante	
relaxa7on		i.e.,	agent	i	wins	with	probability	qi	

•  If	distribu=ons	nice	(regular),	then	op=mal	ex-ante	
pricing	is	a	posted	pricing	with	solu=on	say	

X

i

Ri(qi) =
X

i

qipi

maximize

X

i

Ri(qi)

subject to

X

i

qi  1

qi � 0

qi = 1� Fi(pi)

Vi ⇠ Fi



qi = 1� Fi(pi)Vi ⇠ FiSequential Posted Pricing 
 [Alaei] [Yan][Agrawal, Ding, Saberi, Ye] 

•  Example:	if	distribu=ons	regular,	then	op=mal	ex-
ante	pricing	is	a	posted	pricing	with	solu=on	

•  Suggests:	order	by	decreasing	pi.	
•  Then		

X

i

Ri(qi) =
X

i

qipi

Rev =
X

i

qipi
Y

j<i

(1� qj)

f : 2N ! R

D distn over subsets S of N
with marginals qi

submodular

[ADSY]

Rev =
X

i

1

n
1(1� 1/n)i�1 ! 1� 1/e

Example: pi = 1, qi = 1/n, ex-ante opt: 1

Corr gap =

ES⇠I(D)(f(S))

ES⇠D(f(S))

� 1� 1/e



Revenue	maximiza=on	beyond		
single-item	auc=ons	
• All	of	this	even	more	interes=ng	beyond	single	
item,.e.g.	many	agents	can	be	served,	with	
combinatorial	feasibility	constraint,	e.g.	matroid.	
•  See	[Chawla,	Hartline,	Malec,	Sivan]...	
	



Summary	
•  Many	results	on	posted	price	auc=ons	(owen	based	on	prophet	
inequali=es).	Many	extensions	beyond	single	item	auc=ons.	

•  In	mechanism	design,	we	love	posted	prices!		Simple,	strategyproof,	
robust,	collusion-resistant,	less	informa=on	revealed,	don’t	need	
everyone	present	at	once,	they	are	what	we	see	in	the	real	world,	etc.	

•  Take-away:	Auc=ons	can	be	approximately	op=mal	without	being	
complex!		“simple	vs	op=mal”		[Hartline,	Roughgarden]	

•  These	results	depend	on	deep	understanding	of	op=mal	auc=on	for	
single	item	auc=ons.	

•  Take-away:	The	op=mal	(or	approx	op=mal)	auc=on	serves	as	
benchmark	for	evalua=ng	more	prac=cal	designs.	

•  Huge	on-going	quest	to	understand	op=mal	and	approximately	op=mal	
auc=ons	in	ever-more	complex	seqngs.	

	

•  All	of	the	above	depended	on	the	fact	that	we	had	an	accurate	prior	in	
our	hands.	

	



Where does the prior come from?



The	prior…	

• Where	does	it	come	from?	
•  Previous	experience	in	the	market	
•  On	the	fly	market	analysis	

• What	if	the	prior	is	not	accurate?	Results	
poten=ally	sensi=ve	to	small	errors	in	the	prior.	
• What	if	the	prior	is	changing	over	=me?	
•  Even	if	we	can	get	our	hands	on	it,	we	may	not	
want	to	redesign	the	mechanism	every	=me	the	
prior	changes	



• Prior-independent	mech	design;	unknown	F		
• Assume	values	come	from	some	prior,	design	single	
auc;on	(with	no	knowledge	of	F)	so	that,	no	maBer	
what	F	is	

	

Ev⇠F (A(v)) � c · E(optF (v))

Not	possible	without	any	assump=ons	on	F.	However,	benign	
assump=ons	suffice!	

Prior	independence		
[Dhangwatnotai,	Roughgarden,	Yan] 

	



Single	item,	i.i.d.	seqng		(regular	distribu=ons)	

•  [Bulow,	Klemperer]	

	
•  Interpreta=on:	
•  A	liIle	more	compe==on	is	more	important	than	precise	
knowledge	of	prior.	
•  High	value	from	one	extra	sample		
•  Random	price	from	the	distribu=on	almost	as	good	as	the	
op=mal	reserve	price.	

with n+ 1 bidders with n bidders
E(Rev Vickrey) � E(Rev optF )



Prior-independent	results		inspired	by	[BK]	

[Dhangwatnotai,	Roughgarden,	Yan]	
•  Pick	one	random	bidder	and	use	his	bid	as	the	reserve		for	
others	–	“market	research	on	the	fly”	
•  “single	sample	mechanism”	gets	2	approxima=on	to	op=mal	
mechanism	tailored	to	the	distribu=ons,	no	maIer	what	the	
distribu=on*	
• Many	extensions.	
•  Beginning	of	flurry	of	ac=vity	on	prior-independent	auc=ons.		
		
[Roughgarden,	Talgam-Cohen,	Yan][Devanur,	Hartline,	K,	Nguyen][Roughgarden,	
Talgam-Cohen]	[Goldner,	K]….	
*	Under	regularity	assump=on,	+..	



			Auc=on	A(v1, . . . ,vs)
Revenue	
of		
on		
	

v
A

Ques7on:	How	many	samples	are	necessary	and	sufficient	
to	get	a													approxima=on	to	the	op=mal	expected	
revenue?	

v1, . . . ,vs ⇠ F

v
⇠ F

[Elkind]	
[Dhangwatnotai	et	al	
[Cole,	Roughgarden]	
[Huang,	Mansour,	
Roughgarden]	
[Devanur,	Huang,	Psomas]	

1� ✏

Learning	algorithm	



	

							Learning	algorithm	
						

			Auc=on	A(v1, . . . ,vs)
Revenue	
of		
on		
	

v
A

Approach:				
•  Discre=ze	the	value	space	losing	only	O(			)	frac=on	of	revenue.	
•  Bounds	number	of	mechanisms	need	to	consider.	
•  Chernoff	bounds	=>	best	mechanism	in	class	is	
						approxima=on	on	new	random	sample.	

v1, . . . ,vs ⇠ F

v
⇠ F

[Elkind]	
[Dhangwatnotai	et	al	
[Cole,	Roughgarden]	
[Huang,	Mansour,	
Roughgarden]	
[Devanur,	Huang,	Psomas]	

✏

1� ✏



	

							Learning	algorithm	
						

			Auc=on	A(v1, . . . ,vs)
Revenue	
of		
on		
	

v
A

Results:				
•  Without	any	assump=ons	on	distribu=on,	can’t	do	anything.	
	
•  In	i.i.d.	seqng,																									samples	suffices.	
	
•  In	non-i.i.d.	seqng																															samples	suffice.			

v1, . . . ,vs ⇠ F

v
⇠ F

[Elkind]	
[Dhangwatnotai,	
Roughgarden,	Yan]		
[Cole,	Roughgarden]	
[Huang,	Mansour,	
Roughgarden]	
[Devanur,	Huang,	Psomas]	

n poly(✏�1
)

poly(✏�1
)



	Learning	algorithm	
Selects	auc=on	in	C	

						

			Auc=on	A(v1, . . . ,vs)
Revenue	
of		
on		
	

v
A

•  Apply		no=on	of	``pseudodimension’’	from	learning	theory.	
•  pseudodimension	d(C)	matches	intui=ve	no=on	of	simplicity/complexity	of	

family	of	auc=ons	C.	
•  Implies	good	sample	complexity	bounds.		Roughly																							samples	suffice.	
•  Results	imply	that	when	it’s	possible	to	compute	a	near-op=mal	simple	auc=on	

with	a	known	prior,	can	do	so	with	unknown	prior	(with	polynomial	number	of	
samples).	

v1, . . . ,vs ⇠ F

v
⇠ F

[Morgenstern,	Roughgarden]	
	

H2✏�2d



• Bayesian	op7mal	mechanism	design	
•  Given	priors,	design	mechanism	that	maximizes	or	
approximates	the	op;mal	expected	revenue	

• Prior-independent	opt	mechanism	design	–	unknown	F		
•  Knowing	that	values	are	drawn	from	some	large	class	of	
distribu;ons,	design	single	auc;on	so	that	

• Prior-free	op=mal	mechanism	design	
•  Design	truthful	auc;ons	so	that	for	every	input	

where																					is	some	profit	benchmark.	

A(v) = ⌦(B(v))

B(v)

Ev⇠F (A(v)) � c · E(optF (v))



• Prior-free	op=mal	mechanism	design	
•  Design	auc;on	so	that	for	every	input	v	

where																					is	some	profit	benchmark.	

A(v) = ⌦(B(v))

B(v)

We’d	like	B(v)	to	be	Opt(v),	but	in	the	seqng	
of	truthful	auc=on	design,	there	is	no	such	
thing	as	an	op=mal	auc=on!		



Example:	digital	good	auc=ons	
[Goldberg,	Hartline,	Wright]	[GHKWS]	

•  Auc=oneer	has	unlimited	supply	of	items.	
•  n	agents,	each	has	private	value	vi	for	geqng	one	item	
•  Auc=on	as	before	takes	as	input	set	of	bids,	and	
chooses	as	output,	a	subset	of	winners.	

•  Design	a	truthful	auc=on	that	obtains	good	revenue	
pointwise.	

• What	should	benchmark	B(v)	be?	
•  As	I	said,	there	is	no	op=mal	truthful	auc=on.	

A(v) = ⌦(B(v))



• Good	benchmark	:	op=mal	fixed	price	profit	:	order	
values		

	
• Nice	thing	about	this	benchmark:	
•  If	you	did	have	a	prior,	then	this	quan=ty	is	at	least	as	
large	as																			:				sell	at	price	

	
•  If	we	can	compete	with	this	benchmark,	then	
simultaneously	compe77ve	with	all	Bayesian	op=mal	
auc=ons.	

• Ques=on:	Can	we	construct	a	truthful	auc=on	that	
gets	revenue	c	B(v)		on	every	input?	

v1 � v2 � . . . � vn

B(v) = max

i
ivi

optF (v) max

p
p(1� F (p))



Compe=ng	with	best	fixed	price	
•  Truthful	mechanism:	price	an	agent	charged	can’t	depend	
on	their	own	value.	

•  Suggests:	offer	best	fixed	price	from	rest	of	values.	

•  Doesn’t	work:		
•  if	bidder	high,	right	price	looks	low		(liIle	revenue)	
•  If	bidder	low,	right	price	too	high	(rejects)	

•  	[Goldberg,	Hartline,	Wright]	No	determinis=c	auc=on	that	
treats	bidders	symmetrically	can	get	any	constant	
compe==ve	ra=o.	



Constant	compe==ve	auc=on*	
[GHW][GHKSW]	

• Use	random	sampling:	
•  Par==on	the	bidders	at	random	into	two	sets,	S	and	S’	
•  Compute	the	best	fixed	price		p	for	S	and	best	fixed	price	p’	for	
S’	

•  Offer	price	p	to	bidders	in	S’	and	price	p’	to	bidders	in	S	
	

• Many	other	results.	

•  Tight	bound	of	2.42	on	compe==ve	ra=o	is	now	known.	
•  [Goldberg,	Hartline,	K,	Saks]	[Chen,	Gravin,	Lu]	

*	assumes	no	dominant	bidder	

	



AGT and Learning



Issues	

•  Interac=ons	in	the	marketplace	and	beyond	are	highly	
dynamic	and/or	repe==ve.	
• Agents	know	that	informa=on	they	reveal	today	may	be	
used	against	them	tomorrow.	
•  Lots	and	lots	of	data,	but	it	may	be	strategic.	

	



Repeated	interac=ons	very	tricky	

Example:	Fishmonger		
sells	a	fish	each	day	to	a	buyer.	
The	buyer’s	value	V	is	U[0,1]	
but	doesn’t	change	from	day		
to	day.	
	
Single	sale:	price	½		
Expected	revenue:	¼	
	
	

[Hart,	Tirole][Schmidt]	
[Devanur,	Peres,	Sivan]	
[Mohri,Medina]…	



Buyer’s	value	on	day	1	=	value	on	day	2			
Seller	knows	it’s		a	U[0,1]	draw	

Without	commitment,	the	seller’s	
revenue	in	n	days	is	o(n)!	
	
[Devanur,	Peres,	Sivan]	

Remember:	buyer	u=lity	is	
value	-	price	

e.g.		Buyer	with	value	0.6	
	
Accepts	both	days	
									=>	u=lity	=	0.2	
Rejects	1st,	accepts	2nd		
									=>	u=lity	=	0.35	
But	if	seller	could	commit…	
If	not,	exp	revenue	at	most	0.45	



Learning	–	other	ques=ons	
•  How	do	you	incen=vize	providers	of	data	to	put	the	effort	in	
to	give	you	high	quality	data?	
•  How	do	you	learn	from	data	when	the	data	is	both	noisy	and	
strategically	presented?	E.g.,	if	data	providers	want	to	
influence	the	outcome	of	the	learning	algorithm.	

•  Huge	body	of	work	emerging	from	various	communi=es	
e.g.	[Cai,	Daskalakis,	Papadimitriou]	



Incen=vizing	explora=on	
[Mansour,	Slivkins,	Syrgkanis,	Wu]	
[Frazier,	Kempe,	Kleinberg,	Kleinberg]…	

• Waze	recommends	routes	for	drivers,	but	relies	on	
the	drivers	to	do	the	discovery.	
• Retailers	like	amazon	want	products	to	be	explored	
and	reviewed,	but	rely	on	their	users	to	do	this.		



• Principal’s	goal	is	to	collect	informa=on	about	
many	alterna=ves:		necessitates	exploring!	

• Users’	goal	is	to	select	the	best	alterna=ve	for	them	
right	now:	exploit!!	

• How	can	the	principal	incen=vize	the	users	so	that	
long	term	learning	is	as	good	as	it	can	be?	And	how	
good	can	it	be?	



[Frazier,	Kempe,	Kleinberg, Kleinberg]	model	

• K	alterna=ves		(“arms”),	each	with	type	that	
governs	reward	distribu=on	when	selected	

• Users	observe	all	past	rewards	before	making	their	
selec=on.	

arm 1 arm 2 ...... arm k User t: Choose it ; Reward rt  

User t-1 

User t+1 

...

...



arm 1 arm 2 ...... arm k User t: Choose it ; Reward rt  

User t-1 

User t+1 

...

...

(Bayesian)	mul=-arm	bandits	

• K	alterna=ves		(“arms”)			(Users	observe	all	past	
rewards	before	making	their	selec=on.)	

Principal’s	goal:																																			User’s	goal:		

maximize

1X

t=0

�trt maximize rt



arm 1 arm 2 ...... arm k User t: Choose it ; Reward rt  

User t-1 

User t+1 

...

...

• K	alterna=ves		(“arms”)	

	
Op7mal	policy	(GiJns	index)											Myopic	policy	

maximize

1X

t=0

�trt maximize rt

(Bayesian)	mul=-arm	bandits	



Paper	precisely	characterizes	the	tradeoff	
between	the	incen=ve	payments	and	the	
opportunity	cost	(what	you	lose	in	rewards	
from	not	playing	the	op=mal	policy).	



Conclusions	
• Many	missing	topics	including:	

•  modeling	of	agents	(e.g.	value	distribu=ons	that	aren’t	
independent)		
•  Mechanism	design	in	more	complex	seqngs	(mul=-	
parameter)	
•  complexity	of	equilibria	–	beyond	worst	case?	
•  dynamic	mechanism	design.		

• Many	exci=ng	applica=ons	that	we	don’t	
understand!	



•  For	more	see		
•  Jason	Hartline’s	book		
•  Tim	Roughgarden’s	lecture	notes	and	videos	
•  Simons	Ins=tute	Economics	and	Computa=on	semester	
workshop	videos!	


