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An Example

Classical Optimization Problem:
Maximum Weighted Matching
Input: Weighted Bipartite Graph

Output: Matching that maximizes the sum of matched edge weights.
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Example Application

Selling advertisement slots
O A search engine has advertising slots for sale

O Advertisers are willing to pay different amount to have their ad shown in a
particular slot.

Suppose search engine wants to make as much money as possible.

Advertisers 9 Ad slots




The values are private!

Algorithm must solicit values.

Advertisers may lie to get a better deal.

Advertisers Ad slots
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The values are private!

. . This is a game!
Algorithm must solicit values. 5

Advertisers may lie to get a better deal. Google designs the game.

The advertisers play the
Advertisers Ad slots game.




Big Picture

* Many problems where input is the private data of
agents who will act selfishly to promote their own
best interests

 Resource allocation
e Routing and congestion control
e Electronic commerce




Real world mechanism design settings

* Sponsored search auctions; display advertising

Of )glC ad auctions Search | Advanced Search
b [# Show options... Results 1 - 10 of about 29,000,000 for ad auctions. (1.44e-15 epoc
'oduction to the Google Ad Auction Sponsored Links

9 min - Mar 11, 2009 - Create An Ad Here

Our Chief Economist, Hal Varian, explains the AdWords Ad Auction and

= . : N Target New Customers With E:
- how your max CPC bid and quality score determine how much you pay for a ! - o
- Start Making Every Click Coun ‘ 500 e e ‘ '
www.youtube.com/watch?v=K710a2PVhPQ - Related vid www.Google.com/AdWords g I € revenue in 2 1 5
. B S Print Ads im
mpeting Ad Auctions: Multi-homing and Participation Costs — HBS ... Newsnaner & magazine ads he was a p p roximate |y

22, 2010 ... Joining ad platforms can attract substantial regulatory attention: In .
never been easier to buy.

'ember 2008, the Department of Justice planned to file antitrust ... A
wk.hbs.edu/item/6354.html - Cached www.mediabids.com S74, 500, OOO, OOO .

Ad Auctions

Looking for Ad Auctions?
Find exactly what you want tod
Yahoo.com

nt Advertising in Print Media - Newspaper Advertising ...

it advertising, newspaper advertising, magazine advertising and per-inquiry print
ertising made easy. ... RFP/ Print Advertising Auctions ...

v.mediabids.com/ - Cack Similar

slice of pizza: Ad Auctions Workshop 2010

+ 6th Ad Auctions Workshop will take place on June 8th, collocated with the EC
iference. The call for participation is now available. Deadline April 14. ...
sliceofpizza.blogspot.com/2010/.../ad-auctions-workshop-2010.html - C

ws results for ad auctions

_—l Orange. OpenX Set Out To Build Pan-European Ad Exchange Ecosystem -
VpenX 1 dav aao

“What most people don’t know is that all that money comes in pennies at a time.”
Hal Varian, Google Chief Economist



Real world mechanism design settings

Sponsored search
auctions; display
advertising

FCC spectrum auctions
Kidney exchange
Healthcare systems

Recommendation systems

Routing on the Internet

Resource allocation in the
cloud

Platform design for a
sharing economy

Energy and electricity
markets

O Bitcoin
O Participatory democracy

O Crowdsourcing



What characterizes these problems?

* Many participants with
e diverse incentives

* private information of each agent unknown to designer
and other agents (maybe even to themselves!)

* varying atttitudes towards risk.
e varying degrees of myopia

 Complex optimization problems
* Dynamic and repeated interaction



Plan for talk

* Meander...
* Posted prices via prophet inequalities

* Prior-independent and prior-free auctions, sample
complexity

 AGT and learning

Apologies: incomplete references.



Applications of prophet inequalities



Prophet inequalities, reminder

* Sequence of prizes Vi~F;, Von~F, .. V,~F,
* You know all the priors.

* See them one at a time and make an irrevocable decision at that
moment whether or not to keep it. Once done, game over.

 Compete with prophet who gets expected reward E(maXZ-V?;)

1
Version 1: Take the first prize that is above §]E(max V;;)

1

Version 2: Choose threshold t such that
Pr(there is any value is higher than t) =4
Take the first one above t.

Guarantee: expected value of prize selected iE(m'aX V;;)
(/



My value is vy, but |
will bid b,

v, =100
v, =380
Wl Truthful bidding:
u, =20
u,=0

bs Auction

With collusion, say
b,= 10
Bidder’s goal: maximize utility = Bidder 1 pays him $50
value - payment u, =100-10-50 =40
u,=>50

Maximize social surplus: allocate to bidde

Vickrey Second-price Auction: Allocate to highest bidder at
second highest bid

Incentivizes truth-telling, i.e. by := v1 no matter what others bid



Issues with Vickrey Auction

* Collusion.
* Can be slow and inconvenient.
* May require more communication than we would like.

» All bidders needs to be present over the time the
auction is run.

e But, if we are willing to settle for approximate
optimality, and we have a prior...

* That is, we know that V; ~ F,independently



Use posted price based on prophet inequality

* Choose threshold t such that Pr(there is any bidder whose
value is higher thant) =%

* Post a price of t; whoever grabs item first, gets it.

* This guarantees that the expected surplus of the outcome
(value of winning bidder) is % E(maxv;)
(]
* Features:
* Very simple to implement: auction described by one number
* Very simple for agents to “play”.

» Agent doesn’t even need to know exact value.

* Robust: it doesn’t matter if bidders aren’t all there at the same time,
or come in some arbitrary or even worst-case order.

* Resilient to collusion.

* |t doesn’t matter if distributions change above or below the
threshold!



Beautiful generalization
[Feldman, Gravin, Lucier]



Combinatorial auction:
m items, n bidders each with private submodular Uz()
Goal: allocate items to maximize Z v; (S;)
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Combinatorial auctions, surplus
maximization, submodular bidders

 Algorithmic version: 1-1/e approx.
 [Dobzinski, Shapira][Vondrak][Feige]

* The best known truthful auction achieves O(+/logm)

approx.
* [Dobzinski]

. %iI{InEuItaneous first-price auctions achieve 1-1/e approx. at every

. [TCh(rjistc])doquu, Kovacs, Schapira][Hassidim, Kaplan, Mansour, Nisan] [Syrgkanis,
ardos

* [Feldman, Gravin, Lucier] constant approximation via posted prices,
given priors.



Given priors, compute posted prices

Utility of bidder = value of bundle - price

Prices guarantee constant
fraction of the optimal
expected surplus!

utility of % = v(kindle + tap) — (99 + 114)




Note

* Here we don’t even know how to design a truthful
mechanism that gets close to the same approximation
ratio as we can get in the algorithmic setting.

* One of the big open questions in mechanism design:

* to what extent is computability with incentive
compatibility harder than without. [Nisan, Ronen]



Profit Maximization: prophet
inequalities very useful here too!



What if we want to design an auction to maximize
auctioneer revenue?

assuming known priors
completely solved by [Myerson]

My value is vy, but |
will bid b,

Winner & price

Auction




Simplest case: 1 bidder

V ~F
Optimal auction: posted price

Best price to offer: p™ — argmax,, p(1 — F(p))

Called monopoly price for the distribution.



Maximizing revenue
Bayesian setting: V.~ F

Under i.i.d. assumption

[Myerson]

 The optimal auction is just Vickrey with a monopoly
reserve price.

 Reserve price r: like an opening bid on eBay

* Truthful auction

Vickrey auction:
 Winner = highest bidder above r, if any
* Price = maximum of r and 2"9 highest bid



Beyond i.i.d.

Bayesian setting: V;~F, independently

[Myerson]
 Ask bidders to report values
 For each bidder, compute virtual value
1 — Fz (Uz)

Ui(v) =,
1 1 1 fz (’UZ)
E(revenue of an auction) = E( virtual value of winner)

Optimal auction®: Allocate to bidder with highest
Y(vs) (if positive) breaking ties by value.

* distributions regular



Example

* Bidder 1 has value drawn exp(1)
* Bidder 2 has value drawn UJ[0,1]
*(vy, v,)=(1.5,0.8) =>

bidder 2 wins (and pays 0.75)

Indep, but not identical =2
optimal auction complicated, unintuitive and depends
on detailed distributional information!

Is there a simpler, more practical, more robust way, if
we are willing to sacrifice optimality?



Prophet inequalities to the rescue!

[Chawla, Hartline, Kleinberg] [Chawla, Hartline, Malec, Sivan]

* Myerson tells us that our revenue will be the expected
virtual value of winning bidder.

* To apply prophet inequality, think of ¢;(V;)"
as ith prize.

1
» Choose t sothat P(maxp,;(V;)T >1t) = 5

(4
* For each bidder this induces a threshold price. ¥i(pi) =1

* Sell to first bidder willing to pay his personal reserve price.
* Gives 2 approximation!



Observations

* Although constant virtual price t gives bidder-specific
posted prices, it’s still way simpler than optimal auction

o All
e Cal

the nice properties we saw earlier.
led oblivious posted pricing because don’t care what

order the agents show up.

*Ift
oro

ne designer is allowed to consider the agents in the
er of his choosing, better approximations possible.

Cal

ed sequential posted pricing.



Sequential Posted Pricing Vi ~ F
[Chawla, Hartline, Kleinberg]
[Chawla, Hartline, Malec, Sivan] [Alaei] [Yan]

* Relax the problem by considering the optimal ex-ante
relaxation i.e., agent i wins with probability g,

maximize Z R;(q;)

subject to Z% <1
" >0

* If distributions nice (regular), then optimal ex-ante
pricing is a posted pricing with solution say

Z Ri(q;) = Z q;Pi

q =1— F;i(p;)



[ADSY]

Sequential Posted Pricing I ki (pi)
[Alaei] [Yan][Agrawal, Ding, Saberi,” f 270 - R
submodular

 Example: if distributions regul D distn over subsets S of N

ante pricing is a posted pricin with marginals g;

Z; Z ST T e un(£(9))
* Suggests: order by decreasing p.. > ] — 1/6
* Then
Rev = Z q; D H(l —
1 1<1

Example: p; = 1,¢; = 1/n, ex-ante opt: 1
1 .
Rev =) —1(1-1/n)""' —»1—1/e

—n
()



Revenue maximization beyond
single-item auctions
* All of this even more interesting beyond single

item,.e.g. many agents can be served, with
combinatorial feasibility constraint, e.g. matroid.

e See [Chawla, Hartline, Malec, Sivan]...



Summary

Many results on posted price auctions (often based on prophet
inequalities). Many extensions beyond single item auctions.

In mechanism design, we love posted prices! Simple, strategyproof,
robust, collusion-resistant, less information revealed, don’t need
everyone present at once, they are what we see in the real world, etc.

Take-away: Auctions can be approximately optimal without being
complex! “simple vs optimal” [Hartline, Roughgarden]

These results depend on deep understanding of optimal auction for
single item auctions.

Take-away: The optimal (or approx optimal) auction serves as
benchmark for evaluating more practical designs.

Huge on-going quest to understand optimal and approximately optimal
auctions in ever-more complex settings.

All of the above depended on the fact that we had an accurate prior in
our hands.



Where does the prior come from?



The prior...

* Where does it come from?
* Previous experience in the market
* On the fly market analysis

* What if the prior is not accurate? Results
potentially sensitive to small errors in the prior.

 What if the prior is changing over time?

* Even if we can get our hands on it, we may not

want to redesign the mechanism every time the
prior changes



Prior independence
[Dhangwatnotai, Roughgarden, Yan]

* Prior-independent mech design; unknown F

* Assume values come from some prior, design single
auction (with no knowledge of F) so that, no matter
what F is

Cvnr(A(Vv)) 2 ¢ E(optp(v))

Not possible without any assumptions on F. However, benign
assumptions suffice!



Single item, i.i.d. setting (regular distributions)

e [Bulow, Klemperer]

E(Rev Vickrey) >

with n + 1 bidders

* Interpretation:

E(Rev opt )
with n bidders

* A little more competition is more important than precise

knowledge of prior.

* High value from one extra sample
* Random price from the distribution almost as good as the

optimal reserve price.



Prior-independent results inspired by [BK]

[Dhangwatnotai, Roughgarden, Yan]

* Pick one random bidder and use his bid as the reserve for
others — “market research on the fly”

* “single sample mechanism” gets 2 approximation to optimal
mechanism tailored to the distributions, no matter what the
distribution™®

* Many extensions.
* Beginning of flurry of activity on prior-independent auctions.

[Roughgarden, Talgam-Cohen, Yan][Devanur, Hartline, K, Nguyen][Roughgarden,
Talgam-Cohen] [Goldner, K]....

* Under regularity assumption, +..



V]_,...’VS NF

[Elkind]
[Dhangwatnotai et al
[Cole, Roughgarden]

: : [Huang, Mansouir,
Learning algorithm Roughgarden]
[Devanur, Huang, Psomas]

l Revenue
\ g Auction A(vi,...,Vs) Eadii |

~J onvV

Question: How many samples are necessary and sufficient
togeta 1 — e approximation to the optimal expected

revenue?



V]_,...’VS NF

[Elkind]
[Dhangwatnotai et al
[Cole, Roughgarden]

: : [Huang, Mansouir,
Learning algorithm Roughgarden]
[Devanur, Huang, Psomas]

A Auction A(vy,..., V)
~F

Revenue
—> of A

on V

Approach:

* Discretize the value space losing only O(€) fraction of revenue.

 Bounds number of mechanisms need to consider.

* Chernoff bounds => best mechanisminclassis 1 — ¢
approximation on new random sample.



Vl,...7VS N.F

[Elkind]

l [Dhangwatnotai,
Roughgarden, Yan]
[Cole, Roughgarden]

Learning algorithm [Huang, Mansour,

Roughgarden]

l [Devanur, Huang, Psomas]

Revenue

A\ Auction A(Vy,...,Vs) B |
~ on Vv

Results:
* Without any assumptions on distribution, can’t do anything.

* Ini.i.d. setting, poly(e_l) samples suffices.

* In non-i.i.d. setting n poly(e~ ') samples suffice.



V].?"‘)VS N‘F

l [Morgenstern, Roughgarden]

Learning algorithm

Selects auction in C

Revenue
—> of A

\emmmd Auction A(vy,..., V)

~ S onV

Apply notion of ~pseudodimension’ from learning theory.

pseudodimension d(C) matches intuitive notion of simplicity/complexity of
family of auctions C.

Implies good sample complexity bounds. Roughly FH?e¢~2d samples suffice.
Results imply that when it’s possible to compute a near-optimal simple auction
with a known prior, can do so with unknown prior (with polynomial number of
samples).



* Bayesian optimal mechanism design

* Given priors, design mechanism that maximizes or
approximates the optimal expected revenue

* Prior-independent opt mechanism design — unknown F

* Knowing that values are drawn from some large class of
distributions, design single auction so that

v (A(V)) > c-

L(opt p(V))

* Prior-free optimal mechanism design
* Design truthful auctions so that for every input

A(v) = QB(v))

where B (V) is some profit benchmark.



We'd like B(v) to be Opt(v), but in the setting

of truthful auction design, there is no such
thing as an optimal auction!

* Prior-free optimal mechanism design
* Design auction so that for every input v

A(v) = QB(v))

where D (V) is some profit benchmark.



Example: digital good auctions
[Goldberg, Hartline, Wright] [GHKWS]

e Auctioneer has unlimited supply of items.
* n agents, each has private value v, for getting one item

* Auction as before takes as input set of bids, and
chooses as output, a subset of winners.

* Design a truthful auction that obtains good revenue
pointwise.
A(v) = Q(B(v))

* What should benchmark B(v) be?
* As | said, there is no optimal truthful auction.



* Good benchmark : optimal fixed price profit : order
values . Sy > ... >0,

B(v) = max v,

* Nice thing about this benchmark:

* |f you did have a prior, then this quantity is at least as
large as optp(v): sellatprice maxp(1l — F(p))
p

* If we can compete with this benchmark, then
simultaneously competitive with all Bayesian optimal
auctions.

 Question: Can we construct a truthful auction that
gets revenue ¢ B(v) on every input?



Competing with best fixed price

Truthful mechanism: price an agent charged can’t depend
on their own value.

Suggests: offer best fixed price from rest of values.

Doesn’t work:
* if bidder high, right price looks low (little revenue)
 If bidder low, right price too high (rejects)

[Goldberg, Hartline, Wright] No deterministic auction that
treats bidders symmetrically can get any constant
competitive ratio.



Constant competitive auction™
[GHW][GHKSW]

* Use random sampling:
e Partition the bidders at random into two sets, Sand S’

 Compute the best fixed price p for S and best fixed price p’ for
SI
* Offer price p to bidders in S’ and price p’ to biddersin S

 Many other results.

* Tight bound of 2.42 on competitive ratio is now known.
* [Goldberg, Hartline, K, Saks] [Chen, Gravin, Lu]

* assumes no dominant bidder



AGT and Learning



Issues

* Interactions in the marketplace and beyond are highly
dynamic and/or repetitive.

e Agents know that information they reveal today may be
used against them tomorrow.

 Lots and lots of data, but it may be strategic.



Repeated interactions very tricky

Example: Fishmonger

sells a fish each day to a buyer.
The buyer’s value Vis U[0,1]
but doesn’t change from day
to day.

Single sale: price %
Expected revenue: %

Hart, Tirole][Schmidt]
Devanur, Peres, Sivan]

Mohri,Medinal...




Buyer’s value on day 1 = value on day 2
Seller knows it’s a U[0,1] draw

e.g. Buyer with value 0.6

u[0,1]
@ Accepts both days
=> utility = 0.2
v<0.5 v>0.5 Rejects 1%, accepts 2"
=> utility = 0.35
But if seller could commit...
If not, exp revenue at most 0.45
U[0,0.5] U[0.5,1]
Without commitment, the seller’s
revenue in n days is o(n)!

Remember: buyer utility is
value - price




Learning — other questions

* How do you incentivize providers of data to put the effort in
to give you high quality data?

* How do you learn from data when the data is both noisy and
strategically presented? E.g., if data providers want to
influence the outcome of the learning algorithm.

* Huge body of work emerging from various communities
e.g. [Cai, Daskalakis, Papadimitriou]



Incentivizing exploration
[Mansour, Slivkins, Syrgkanis, Wul]
[Frazier, Kempe, Kleinberg, Kleinberg]...

 Waze recommends routes for drivers, but relies on
the drivers to do the discovery.

* Retailers like amazon want products to be explored
and reviewed, but rely on their users to do this.



* Principal’s goal is to collect information about
many alternatives: necessitates exploring!

e Users’ goal is to select the best alternative for them
right now: exploit!!

* How can the principal incentivize the users so that
long term learning is as good as it can be? And how
good can it be?



[Frazier, Kempe, Kleinberg, Kleinberg] model

* K alternatives (“arms”), each with type that
governs reward distribution when selected

User t-1

...... <«+— Usert: Choose it;Reward f

User t+1

* Users observe all past rewards before making their
selection.



(Bayesian) multi-arm bandits

e K alternatives (“arms”) (Users observe all past
rewards before making their selection.)

User t-1
______ <«— Usert: Choose it  Reward f
User t+1
Principal’s goal: User’s goal:
o
maximize Z v, maximize 71

t=0



(Bayesian) multi-arm bandits

e K alternatives (“arms”

User t-1
...... <«— Usert: Choose I ; Reward ry
User t+1
Optimal policy (Gittins index) Myopic policy
©.@)
maximize nytrt maximize 1y

t=0



Incentive payments

At time t, announce bonus ¢;; > 0 for each arm 1.
User now chooses i to maximize E[r; ¢] + ¢; +.

Paper precisely characterizes the tradeoff
between the incentive payments and the
opportunity cost (what you lose in rewards

from not playing the optimal policy).



Conclusions

* Many missing topics including:
* modeling of agents (e.g. value distributions that aren’t
independent)

* Mechanism design in more complex settings (multi-
parameter)

e complexity of equilibria — beyond worst case?
* dynamic mechanism design.

* Many exciting applications that we don’t
understand!



* For more see
* Jason Hartline’s book
* Tim Roughgarden’s lecture notes and videos

e Simons Institute Economics and Computation semester
workshop videos!
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