
1

Beyond Worst-Case Analysis

Tim Roughgarden (Stanford University)

a tour d’horizon

see also lecture notes and YouTube videos for
Stanford’s CS264 course (on my Web page)

2

General Formalism

Performance measure: cost(A,z)
•  A = algorithm, z = input

Examples:
•  running time (or space, I/O operations, etc.)
•  solution quality (or approximation ratio)
•  correctness (1 or 0)

Issue: how to compare incomparable algorithms?
•  rare exception: instance optimality [Fagin/Loten/Naor

03], [Afshani/Barbay/Chan 09], ...

3

Worst-Case Analysis

One approach: summarize performance profile
{cost(A,z)}z with a single number cost(A)

–  rare exception: bijective analysis [Angelopoulos/Dorrigiv/
López-Ortiz 07], [Angelopoulos/Schweitzer 09]

Worst-case analysis: cost(A):= supz cost(A,z)
–  often parameterized, e.g. by input size |z|

Pros of WCA: universal applicability (no data model)
•  relatively analytically tractable
•  countless killer applications

4

WCA Failure Modes: Simplex

Linear programming: optimize linear
objective s.t. linear constraints.

Simplex method: [Dantzig 1940s] very
fast in practice (# of iterations≈linear)

[Klee/Minty 72] there exist instances where simplex
requires exponential number of iterations.

Irony: many worst-case polynomial-time LP
algorithms unusable in practice (e.g., ellipsoid).

5

WCA Failure Modes: Clustering

Clustering: group data points “coherently.”

Formalization?: optimization => NP-hard
•  k-means, k-median, k-sum, correlation clustering, etc.

In practice: simple algorithms
(e.g., k-means++) routinely
find meaningful clusters.
•  “clustering is hard only when

it doesn’t matter”
 [Daniely/Linial/Saks 12]

6

WCA Failure Modes: Paging

Online paging: manage cache of size k to
minimize # of page faults with online requests.

Gold standard in practice: LRU.
•  better than e.g. FIFO due to “locality of reference”

Worst-case analysis: [Sleator/Tarjan 85] every
deterministic algorithm is equally terrible!
•  page fault rate = 100%, best in hindsight (FIF) ≤ (1/k)%
•  how to incorporate locality of reference in the model?

7

Refinements of WCA

Theorem: [Albers/Favrholdt/Giel 05] suppose ≤ f(w)
distinct pages requested in windows of size w:
1.  worst-case fault rate always ≥ αf(k)

–  αf(k) ≈ 1/√k if f(w) = √w,); αf(k) ≈ k/2k if f(w) = log w
2.  for LRU, worst-case fault rate always ≤ αf(k)
3.  for FIFO, exist f,k s.t. fault rate can be > αf(k)

Broader point: fine-grained input parameterizations
can be key to meaningful WCA results.

8

WCA Report Card

1.  Performance prediction: generally poor unless
little variation across inputs

2.  Identify optimal algorithms: works for some
problems (sorting, graph search, etc.) but not
others (linear programming, paging, etc.)

3.  Design new algorithms: wildly successful
(1000s of algorithms, many of them practical)
–  performance measure as “brainstorm organizer”

9

Beyond Worst-Case Analysis

Cons of worst-case analysis:
•  often overly pessimistic
•  can rank algorithms inaccurately (LP, paging)
•  no data model (or rather: “Murphy’s Law” model)

To go beyond: need to articulate a model of
“relevant inputs.”

–  in algorithm analysis, like in algorithm design, no
“silver bullet” – most illuminating model will depend
on the type of problem

1.  What is worst-case analysis?

2.  Worst-case analysis failure modes

3.  Clustering is hard only when it doesn’t matter

4.  Sparse recovery

Coming in Part 2: planted and semi-random
models, smoothed analysis and other hybrid
analysis frameworks

10

Outline (Part 1)

Approximation Stability

Approximation Stability: [Balcan/Blum/Gupta 09] an
instance is α-approximation stable if all α-
approximate solutions cluster almost as in OPT.
target/OPT α-approximation

allowed

α-approximation

not allowed!

12

Stable k-Median Instances

Thesis: “clustering is hard only when it doesn’t matter.”

Recall: k-median/min-sum clustering.
–  NP-hard to approximate better than ≈ 1.73 [Jain/

Madian/Saberi 02]

Main Theorem: [Balcan/Blum/Gupta 09]
for metric k-median, α-approximation stable
instances are easy, even when close to 1.
•  can recover a clustering structurally close to

target/OPT in poly-time

Perturbation Stability: [Bilu/Linial 10] an instance is
γ-perturbation stable if OPT is invariant under all
perturbations of distances by factors in [1, γ]
•  motivation: distances often heuristic, anyways

13

Perturbation Stability

3

3 3

3

1 1

the max cut

3

3 3

3

2 2

still the max cut

Case Study: [Makarychev/Makarychev/Vijayaraghavan
14] the min multiway cut problem.

–  undirected graph G=(V,E)
–  costs ce for each edge e

–  terminals t1,...,tk

Theorem: [Makarychev/Makarychev/Vijayaraghavan 14]
a suitable LP relaxation is exact for all 4-
perturbation stable multiway cut instances.

14

Minimum Multiway Cut

Folklore: LP relaxation
of the min s-t cut problem
is exact (opt soln = integral).

15

Warm-Up: Minimum s-t Cut

Proof idea: randomized
rounding yields optimal cut.
•  cut ball of random radius

r in (0,1) around s
•  expected cost ≤ LP OPT
•  must produce optimal cut

with probability 1

Theorem: [Makarychev/Makarychev/Vijayaraghavan 14]
LP relaxation exact for all 4-perturbation stable instances.

LP Relaxation: [Călinescu/Karloff/Rabani 00]

16

Min Multiway Cut (Relaxation)

Lemma: [Kleinberg/Tardos 00] there is a randomized
rounding algorithm such that:
•  Pr[edge e cut] ≤ 2xe
•  Pr[edge e not cut] ≥ (1-xe)/2

Proof idea (of Theorem): copy min s-t cut proof.
•  lose 2 factors of 2 from lemma
•  absorbed by 4-stability assumption
•  LP relaxation must solve to integers

17

Min Multiway Cut (Recovery)

1.  Improve over the factor of 4.
2.  Prove NP-hardness for γ-perturbation stable

instances for as large a γ as you can.
3.  Connections between poly-time approximation

and poly-time recovery in stable instances?
–  [Makarychev/Makarychev/Vijayaraghavan 14] tight

connection between exact recovery in stable max
cut instances and approximability of sparsest cut/
low-distortion l22 -> l1 embeddings

–  [Balcan/Haghtalab/White 16] k-center
18

Open Questions

1.  What is worst-case analysis?

2.  Worst-case analysis failure modes

3.  Clustering is hard only when it doesn’t matter

4.  Sparse recovery

Coming in Part 2: planted and semi-random
models, smoothed analysis and other hybrid
analysis frameworks

19

Outline (Part 1)

Sparse recovery: recover unknown (but “simple”)
object from a few “clues.” (ideally, in poly time)

Case study: compressive sensing [Donoho 06],
[Candes/Romberg/Tao 06]

20

Compressive Sensing

linear
measurements

unknown
signal measurement

results

21

Key assumption: unknown signal x is
(approximately) k-sparse (only k non-zeros).

Fact: minimizing sparsity s.t. linear constraints (“l0-
minimization”) is NP-hard in general. [Khachiyan 95]

Heuristic: l1-minimization: minimizing the l1 norm
over solutions to Az=b (in z) (a linear program).

L1-Minimization

Question: when
does it work?

22

Theorem: if A satisfies the
“restricted isometry property
(RIP)” then l1-minimization
recovers x (approximately).

Example: random matrix (Gaussian entries)
satisfies RIP w.h.p. if m=Ω(k log (n/k)).

–  cf., Johnson-Lindenstrauss transform

Largely open: port sparse recovery techniques
over to more combinatorial problems.

Recovery Under RIP

23

•  algorithm analysis is hard, worst-case analysis can fail
–  almost all algorithms are incomparable

•  going beyond worst-case analysis requires a model of
“relevant inputs”

•  approximation stability: all near-optimal solutions are
“structurally close” to target solution

•  perturbation stability: optimal solution invariant under
perturbations of objective function

•  exact recovery: characterize the inputs for which a given
algorithm (like LP) computes the optimal solution
–  examples: min multiway cut, compressive sensing

Part 1 Summary

24

Intermission

1.  Planted and semi-random models.
–  planted clique
–  semi-random models
–  planted bisection
–  recovery from noisy parities

2.  Smoothed analysis.

3.  More hybrid models.

4.  Distribution-free benchmarks/instance classes.
25

Outline (Part 2)

26

Setup: [Jerrum 92]
•  let H = Erdös-Renyi random graph, from G(n,½)
•  let C = random subset of k vertices
•  final graph G = H + clique on C

Goal: recover C in poly time.
–  easier for bigger k
–  cf., “meaningful clusterings”

State-of-the-art: [Alon/Krivelevich/Sudakov 98]
poly-time recovery when k = Ω(√n).

Planted Clique

G
C

27

Observation: [Kucera 95] poly-time recovery when k
= Ω(√(n log n)).

Reason: in random
graph H, all degrees
in [n/2-c√(n log n), n/2+c(√n log n)] w.h.p.

So: if k = Ω(√(n log n)), C = the k vertices with the
largest degrees.

Problem: algorithm tailored to input distribution.
–  how to encourage “robust” algorithms?

An Easy Positive Result

28

Average-case analysis: cost(A):= Ez[cost(A,z)]
–  for some distribution over inputs z

•  well motivated if:
–  (i) detailed and stable understanding of distribution;
–  and (ii) don’t need a general-purpose solution

Concern: advocates brittle solutions overly tailored
to input distribution.

–  which might be wrong, change over time, or be
different in different applications

On Average-Case Analysis

29

Idea: [Blum/Spencer 95] nature and an adversary
collaborate to produce a (random) input.

Semi-random planted clique: [Feige/Killian 01]
•  adversary allowed to delete

non-clique edges

Note: “top degrees” algorithm
no longer works!

Theorem: [Feige/Krauthgamer 00] poly-time recovery
when k = Ω(√n). [using SDP/Lovasz theta function]

Semi-Random Models

G
C

30

Setup: [Bui/Chaudhuri/Leighton/Sipser 92]
•  let A, B = n/2 vertices each
•  p = edge density inside A, B
•  q = edge density between A, B (q < p)

Known: characterization of p and q such
that exact recovery of A,B possible (w.h.p.).

–  [Feige/Killian 01], [McSherry 01], [Abbe/Bandeira/Hall 15], ...
•  positive results generally extend to semi-random model

–  adversary can add edges inside A,B
or delete edge between A, B

Planted Bisection

A

B

31

Sparse regime: p = a/n, q = b/n.
•  only partial recovery possible

(due to isolated nodes)

Theorem: [Mossel/Neeman/Sly 13,14], [Massoulié 14]
partial recovery possible iff (a-b)2 > 2(a+b).

Theorem: [Moitra/Perry/Wein 16] there is a range of
a,b with (a-b)2 > 2(a+b) such that partial recovery
is not possible in the semi-random model.
•  semi-random models strictly harder than random models

Planted Bisection

A B

1.  Are SDP relaxations always optimal in semi-
random models?

–  see [Moitra/Perry/Wein 16] for partial results
2.  Positive results for stronger adversaries.

–  see [Makarychev/Makarychev/Vijayaraghavan 12,14]

3.  Computational separation between random
and semi-random models?

4.  Replace planted clique hardness assumption
with (weaker) semi-random clique hardness?

32

Open Questions

33

Setup: [Globerson/Roughgarden/Sontag/Yildirim 15]
•  known graph G=(V,E)
•  unknown labeling X:V -> {0,1}
•  given noisy parity of each edge

Goal: (approximately) recover X.

Results: can achieve error -> 0 as noise -> 0 if G
is a bounded-face planar graph or an expander.
Not possible if G is a path.

Recovery From Noisy Parities

1.  Characterize graphs where good approximate
recovery is possible (as noise -> 0).

–  some kind of “weak expansion” condition?

2.  Computationally efficient recovery for
expanders. (or hardness results)

3.  Take advantage of noisy node labels.

4.  More than two labels.

34

More Open Questions

1.  Planted and semi-random models.

2.  Smoothed analysis.
–  the simplex method
–  binary optimization problems
–  local search

3.  More hybrid models.

4.  Distribution-free benchmarks/instance classes.

35

Outline (Part 2)

36

Idea: [Spielman/Teng 01] semi-random model:
–  start with arbitrary input
–  nature applies a small random perturbation

Theorem: [Spielman/Teng 01] the simplex method
(with the “shadow pivot rule”) has polynomial
smoothed complexity.
•  for every initial LP, expected (over perturbation) running

time is polynomial in input size and 1/Φ
•  improved and simplified in [Deshpande/Spielman 05],

[Vershynin 06]

Smoothed Analysis

37

Setup: [Beier/Vöcking 06] n 0-1 decision variables (xi)
•  objective: max Σi vi xi (vi’s randomly perturbed)
•  abstract constraints (feasible sets=subset of 2[n])

–  examples: max spanning tree, knapsack,
max-weight independent set, etc.

Theorem: [Beier/Vöcking 06] a binary optimization
problem is solvable in smoothed polynomial time if
and only if it is solvable in pseudo-polynomial time.

–  weakly NP-hard -> in “smoothed P”
–  strongly NP-hard -> not in “smoothed P”

Binary Optimization Problems

38

Theorem: a binary optimization problem is solvable in smoothed
polynomial time if and only if it is solvable in pseudo-polynomial time.

Proof of “if” direction: (“only if” is easy)
•  each vi drawn from distribution with density ≤ 1/Φ
•  Isolation Lemma: [Mulmuley/Vazirani/Vazirani 87]

with high probability, gap between 1st- and 2nd-
best feasible solutions is at least Φ/poly(n)

•  lazy approach: only read as many bits as needed
to certify optimality (log # of bits => poly-time)

Proof Idea: The Isolation Lemma

39

Local search: often huge gap between worst-
case and empirical running times.
•  smoothed analysis killer app: k-means [Arthur/

Vassilvitskii 06], [Arthur/Manthey/Röglin 11]

Example: [Englert/Röglin/Vöcking 07] 2-OPT (for TSP).

Proof idea:
•  only O(n4) moves
•  Isolation Lemma +

Union Bound => w.h.p., every local move
makes ≥ Φ/poly(n) progress

Smoothed Analysis of Local Search

40

Max cut: [Elsässer/Tscheuschner 11] same idea
works for max cut (with flip neighborhood) if max
degree Δ=O(log n).
•  only poly # of distinct local moves

Improvement: [Etscheid/Röglin 14] in general,
smoothed complexity at most quasi-polynomial.

Open: but is it polynomial?

Local Search for Max Cut

1.  Does every local search problem for a binary
optimization problem (with poly “diameter”)
have poly smoothed complexity?

–  max cut with flip neighborhood a special case
–  “avoiding the union bound”

2.  Better smoothed analysis of simplex
–  better running time bounds (linear?), non-Gaussian

perturbations, other pivot rules, sparsity-preserving
perturbations

41

Open Questions

1.  Planted and semi-random models.

2.  Smoothed analysis.

3.  More hybrid models.
–  examples
–  data-driven algorithm design

4.  Distribution-free benchmarks/instance classes.

42

Outline (Part 2)

43

Hybrid Models

Thesis: for many problems there is a “sweet spot”
between worst- and average-case analysis.

–  where unknown distribution D lies in some known set

supz cost(A,z) Ez[cost(A,z)]
worst-case average-case

supD Ez~D[cost(A,z)]
hybrid models

1.  Semi-random models. (adversary => distribution)
2.  Smoothed analysis. (initial input => distribution)
3.  Random order models. (secretary problems)
4.  Competitive guarantees for M/G/1 queues.
5.  Prior-independent auctions. (see Anna’s talk)
6.  Diffuse and statistical adversaries. (paging)

[Raghavan 91], [Koutsoupias/Papadimitriou 00]
–  adversary = input distribution with large

min-entropy or other statistical properties

44

Hybrid Models: Examples

Setup: [Valiant 84] receive i.i.d. labeled samples
from unknown distribution, want to learn
(approximately) the target concept (w.h.p.).

–  single learning algorithm works for all distributions

45

PAC Learning

•  self-improving algorithms for sorting [Ailon/Chazelle/Liu/
Seshadhri 06] Delaunay triangulations [Clarkson/Seshadhri
08], convex hulls [Clarkson/Mulzer/Seshadhri 10]
–  assume elements or points are independent, want to run as

fast as information-theoretic optimal

•  revenue-maximizing auctions (see Anna’s talk)
–  [Elkind 07], [Cole/Roughgarden 14], [Morgenstern/

Roughgarden 15,16], [Devanur/Huang/Psamos 16], ...
–  learn a near-optimal auction from samples

•  application-specific algorithm selection
–  see my Open Lecture (10/24) [Gupta/Roughgarden 16]
–  inspired by [Leyton-Brown et al.]

46

Data-Driven Algorithm Design

1.  Planted and semi-random models.

2.  Smoothed analysis.

3.  More hybrid models.

4.  Distribution-free benchmarks/instance classes.
–  compressed sensing revisited
–  no-regret algorithms re-interpreted
–  further examples

47

Outline (Part 2)

48

Theorem: if A satisfies the
“restricted isometry property
(RIP)” then l1-minimization
recovers k-sparse x.

Example: random matrix (Gaussian entries)
satisfies RIP w.h.p. if m=Ω(k log (n/k)).

Question: other applications of such
“average-case thought experiments”?

Recall: Recovery Under RIP

Setup: action set A. Each day t=1,2,...,T:
•  algorithm picks a distribution over actions
•  adversary picks a reward vector { rt(a) }a in A

Well-Known Results:
•  can’t compete with best sequence in hindsight.
•  can compete with best fixed action in hindsight

–  need the right benchmark to discover the right
algorithms!

49

No-Regret Online Learning

Average-case thought experiment: suppose every
reward vector drawn i.i.d. from a distribution D.
•  optimal strategy: always play action with

highest expected reward (i.i.d.=>time-invariant)

Upshot: a no-regret algorithm does (almost) as
well as OPT for every unknown distribution D
•  another folklore example: static optimality of data

structures (compete with OPT for all i.i.d. sequences of
accesses)

50

A Re-Interpretation (Folklore)

Distribution-free benchmarks:
•  prior-free auction design (see [Goldberg/Hartline/

Karlin/Saks/Wright 06]) as a deterministic proxy for
i.i.d. bidders [Hartline/Roughgarden 08]

Distribution-free instance classes:
•  social networks (see my talk in Sept. workshop)

–  graphs that are deterministic proxies for generative
models [Gupta/Roughgarden/Seshadhri 14]

–  in same spirit: [Brach/Cygan/Lacki/Sankowski 16]
[Borassi/Crescenzi/Trevisan 16]

51

More Examples

52

•  distributions useful to define “relevant inputs”
–  but average-case analysis encourages algorithms

tailored to distributional assumptions

•  semi-random/hybrid models: a “sweet spot”
between worst- and average-case analysis that
encourages more robust solutions
–  clique, bisection, smoothed analysis, learning, etc.

•  “average-case thought experiment:” define
benchmarks/instance classes as deterministic
proxies for an unknown distribution

Part 2 Summary

