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Beyond Worst-Case Analysis

Tim Roughgarden (Stanford University)

a tour d’horizon

see also lecture notes and YouTube videos for 
Stanford’s CS264 course (on my Web page)
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General Formalism

Performance measure: cost(A,z)
•  A = algorithm, z = input

Examples:
•  running time (or space, I/O operations, etc.)
•  solution quality (or approximation ratio)
•  correctness (1 or 0)

Issue: how to compare incomparable algorithms?
•  rare exception: instance optimality [Fagin/Loten/Naor 

03], [Afshani/Barbay/Chan 09], ...
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Worst-Case Analysis

One approach: summarize performance profile 
{cost(A,z)}z with a single number cost(A)

–  rare exception: bijective analysis [Angelopoulos/Dorrigiv/
López-Ortiz 07], [Angelopoulos/Schweitzer 09]

Worst-case analysis: cost(A):= supz cost(A,z)
–  often parameterized, e.g. by input size |z|

Pros of WCA: universal applicability (no data model)
•  relatively analytically tractable
•  countless killer applications
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WCA Failure Modes: Simplex

Linear programming: optimize linear            
objective s.t. linear constraints.

Simplex method: [Dantzig 1940s] very
fast in practice (# of iterations≈linear)

[Klee/Minty 72] there exist instances where simplex 
requires exponential number of iterations.

Irony: many worst-case polynomial-time LP 
algorithms unusable in practice (e.g., ellipsoid).
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WCA Failure Modes: Clustering

Clustering: group data points “coherently.”

Formalization?: optimization => NP-hard
•  k-means, k-median, k-sum, correlation clustering, etc.

In practice: simple algorithms                              
(e.g., k-means++) routinely                                            
find meaningful clusters.
•  “clustering is hard only when                               

it doesn’t matter”                                                                    
    [Daniely/Linial/Saks 12]



6 

WCA Failure Modes: Paging

Online paging: manage cache of size k to   
minimize # of page faults with online requests.

Gold standard in practice: LRU.
•  better than e.g. FIFO due to “locality of reference”

Worst-case analysis: [Sleator/Tarjan 85] every 
deterministic algorithm is equally terrible!
•  page fault rate = 100%, best in hindsight (FIF) ≤ (1/k)%
•  how to incorporate locality of reference in the model?
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Refinements of WCA

Theorem: [Albers/Favrholdt/Giel 05] suppose ≤ f(w) 
distinct pages requested in windows of size w:
1.  worst-case fault rate always ≥ αf(k) 

–  αf(k) ≈ 1/√k if f(w) = √w, ); αf(k) ≈ k/2k if f(w) = log w
2.  for LRU, worst-case fault rate always ≤ αf(k)
3.  for FIFO, exist f,k s.t. fault rate can be > αf(k)

 
 

Broader point: fine-grained input parameterizations 
can be key to meaningful WCA results.
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WCA Report Card

1.  Performance prediction: generally poor unless 
little variation across inputs

2.  Identify optimal algorithms: works for some 
problems (sorting, graph search, etc.) but not 
others (linear programming, paging, etc.)

3.   Design new algorithms: wildly successful 
(1000s of algorithms, many of them practical)
–  performance measure as  “brainstorm organizer”
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Beyond Worst-Case Analysis

Cons of worst-case analysis: 
•  often overly pessimistic
•  can rank algorithms inaccurately (LP, paging)
•  no data model (or rather: “Murphy’s Law” model)

To go beyond: need to articulate a model of 
“relevant inputs.”

–  in algorithm analysis, like in algorithm design, no 
“silver bullet” – most illuminating model will depend    
on the type of problem



1.  What is worst-case analysis?

2.  Worst-case analysis failure modes

3.  Clustering is hard only when it doesn’t matter

4.  Sparse recovery

Coming in Part 2: planted and semi-random 
models, smoothed analysis and other hybrid 
analysis frameworks 
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Outline (Part 1)



Approximation Stability

Approximation Stability: [Balcan/Blum/Gupta 09] an 
instance is α-approximation stable if all α-
approximate solutions cluster almost as in OPT.
target/OPT α-approximation

allowed

α-approximation

not allowed!
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Stable k-Median Instances

Thesis: “clustering is hard only when it doesn’t matter.” 

Recall: k-median/min-sum clustering.
–  NP-hard to approximate better than ≈ 1.73 [Jain/

Madian/Saberi 02]

Main Theorem: [Balcan/Blum/Gupta 09] 
for metric k-median, α-approximation stable 
instances are easy, even when close to 1.
•  can recover a clustering structurally close to 

target/OPT in poly-time



Perturbation Stability: [Bilu/Linial 10] an instance is 
γ-perturbation stable if OPT is invariant under all 
perturbations of distances by factors in [1, γ]
•  motivation: distances often heuristic, anyways
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Perturbation Stability
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Case Study: [Makarychev/Makarychev/Vijayaraghavan 
14] the min multiway cut problem.

–  undirected graph G=(V,E)
–  costs ce for each edge e 

–  terminals t1,...,tk

Theorem: [Makarychev/Makarychev/Vijayaraghavan 14] 
a suitable LP relaxation is exact for all 4-
perturbation stable multiway cut instances.
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Minimum Multiway Cut



Folklore: LP relaxation
of the min s-t cut problem
is exact (opt soln = integral).
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Warm-Up: Minimum s-t Cut

Proof idea: randomized 
rounding yields optimal cut.
•  cut ball of random radius 

r in (0,1) around s
•  expected cost ≤ LP OPT
•  must produce optimal cut 

with probability 1



Theorem: [Makarychev/Makarychev/Vijayaraghavan 14] 
LP relaxation exact for all 4-perturbation stable instances.

LP Relaxation: [Călinescu/Karloff/Rabani 00]
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Min Multiway Cut (Relaxation)



Lemma: [Kleinberg/Tardos 00] there is a randomized 
rounding algorithm such that:
•  Pr[edge e cut] ≤ 2xe
•  Pr[edge e not cut] ≥ (1-xe)/2

Proof idea (of Theorem): copy min s-t cut proof.
•  lose 2 factors of 2 from lemma
•  absorbed by 4-stability assumption
•  LP relaxation must solve to integers
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Min Multiway Cut (Recovery)



1.  Improve over the factor of 4.
2.  Prove NP-hardness for γ-perturbation stable 

instances for as large a γ as you can.
3.  Connections between poly-time approximation 

and poly-time recovery in stable instances?
–  [Makarychev/Makarychev/Vijayaraghavan 14] tight 

connection between exact recovery in stable max 
cut instances and approximability of sparsest cut/
low-distortion l22 -> l1  embeddings

–  [Balcan/Haghtalab/White 16] k-center
18 

Open Questions



1.  What is worst-case analysis?

2.  Worst-case analysis failure modes

3.  Clustering is hard only when it doesn’t matter

4.  Sparse recovery

Coming in Part 2: planted and semi-random 
models, smoothed analysis and other hybrid 
analysis frameworks 
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Outline (Part 1)



Sparse recovery: recover unknown (but “simple”) 
object from a few “clues.” (ideally, in poly time)

Case study: compressive sensing [Donoho 06], 
[Candes/Romberg/Tao 06]

20 

Compressive Sensing

linear 
measurements

unknown
signal measurement

results
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Key assumption: unknown signal x is 
(approximately) k-sparse (only k non-zeros).

Fact: minimizing sparsity s.t. linear constraints (“l0-
minimization”) is NP-hard in general. [Khachiyan 95]

Heuristic: l1-minimization: minimizing the l1 norm 
over solutions to Az=b (in z) (a linear program).

L1-Minimization

Question: when
does it work?
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Theorem: if A satisfies the 
“restricted isometry property 
(RIP)” then l1-minimization 
recovers x (approximately).

Example: random matrix (Gaussian entries) 
satisfies RIP w.h.p. if m=Ω(k log (n/k)).

–  cf., Johnson-Lindenstrauss transform

Largely open: port sparse recovery techniques 
over to more combinatorial problems.

Recovery Under RIP
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•  algorithm analysis is hard, worst-case analysis can fail
–  almost all algorithms are incomparable

•  going beyond worst-case analysis requires a model of 
“relevant inputs”

•  approximation stability: all near-optimal solutions are 
“structurally close” to target solution

•  perturbation stability: optimal solution invariant under 
perturbations of objective function

•  exact recovery: characterize the inputs for which a given 
algorithm (like LP) computes the optimal solution
–  examples: min multiway cut, compressive sensing

Part 1 Summary
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Intermission



1.  Planted and semi-random models.
–  planted clique
–  semi-random models
–  planted bisection
–  recovery from noisy parities

2.  Smoothed analysis.

3.  More hybrid models.

4.  Distribution-free benchmarks/instance classes.
25 

Outline (Part 2)
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Setup: [Jerrum 92]
•  let H = Erdös-Renyi random graph, from G(n,½)
•  let C =  random subset of k vertices
•  final graph G = H + clique on C

Goal: recover C in poly time.
–  easier for bigger k
–  cf., “meaningful clusterings”

State-of-the-art: [Alon/Krivelevich/Sudakov 98]       
poly-time recovery when k = Ω(√n).

Planted Clique

G
C
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Observation: [Kucera 95] poly-time recovery when k 
= Ω(√(n log n)).

Reason: in random
graph H, all degrees
in [n/2-c√(n log n), n/2+c(√n log n)] w.h.p. 

So: if k = Ω(√(n log n)), C = the k vertices with the 
largest degrees.

Problem: algorithm tailored to input distribution.
–  how to encourage “robust” algorithms?

An Easy Positive Result
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Average-case analysis: cost(A):= Ez[cost(A,z)]
–  for some distribution over inputs z

•  well motivated if:
–  (i) detailed and stable understanding of distribution; 
–  and (ii) don’t need a general-purpose solution

Concern: advocates brittle solutions overly tailored 
to input distribution.

–  which might be wrong, change over time, or be 
different in different applications

On Average-Case Analysis
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Idea: [Blum/Spencer 95] nature and an adversary 
collaborate to produce a (random) input.

Semi-random planted clique: [Feige/Killian 01] 
•  adversary allowed to delete                                           

non-clique edges

Note: “top degrees” algorithm                                 
no longer works!

Theorem: [Feige/Krauthgamer 00] poly-time recovery 
when k = Ω(√n).  [using SDP/Lovasz theta function]

Semi-Random Models

G
C
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Setup: [Bui/Chaudhuri/Leighton/Sipser 92]
•  let A, B = n/2 vertices each
•  p = edge density inside A, B
•  q = edge density between A, B (q < p)

Known: characterization of p and q such             
that exact recovery of A,B possible (w.h.p.).

–  [Feige/Killian 01], [McSherry 01], [Abbe/Bandeira/Hall 15], ...
•  positive results generally extend to semi-random model

–  adversary can add edges inside A,B                          
or delete edge between A, B

Planted Bisection

A

B
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Sparse regime: p = a/n, q = b/n.
•  only partial recovery possible                                    

(due to isolated nodes)

Theorem: [Mossel/Neeman/Sly 13,14], [Massoulié 14] 
partial recovery possible iff (a-b)2 > 2(a+b).

Theorem: [Moitra/Perry/Wein 16] there is a range of 
a,b with (a-b)2 > 2(a+b) such that partial recovery 
is not possible in the semi-random model.
•  semi-random models strictly harder than random models

Planted Bisection

A B



1.  Are SDP relaxations always optimal in semi-
random models?

–  see [Moitra/Perry/Wein 16] for partial results
2.  Positive results for stronger adversaries.

–  see [Makarychev/Makarychev/Vijayaraghavan 12,14] 

3.  Computational separation between random 
and semi-random models?

4.  Replace planted clique hardness assumption 
with (weaker) semi-random clique hardness?
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Open Questions
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Setup: [Globerson/Roughgarden/Sontag/Yildirim 15]
•  known graph G=(V,E)
•  unknown labeling X:V -> {0,1}
•  given noisy parity of each edge

Goal: (approximately) recover X.

Results: can achieve error -> 0 as noise -> 0 if G 
is a bounded-face planar graph or an expander.
Not possible if G is a path.

Recovery From Noisy Parities



1.  Characterize graphs where good approximate 
recovery is possible (as noise -> 0).

–  some kind of “weak expansion” condition?

2.  Computationally efficient recovery for 
expanders. (or hardness results)

3.  Take advantage of noisy node labels.

4.  More than two labels.
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More Open Questions



1.  Planted and semi-random models.

2.  Smoothed analysis.
–  the simplex method
–  binary optimization problems
–  local search

3.  More hybrid models.

4.  Distribution-free benchmarks/instance classes.

35 

Outline (Part 2)
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Idea: [Spielman/Teng 01] semi-random model:
–  start with arbitrary input
–  nature applies a small random perturbation

Theorem: [Spielman/Teng 01] the simplex method 
(with the “shadow pivot rule”) has polynomial 
smoothed complexity.
•  for every initial LP, expected (over perturbation) running 

time is polynomial in input size and 1/Φ
•  improved and simplified in [Deshpande/Spielman 05], 

[Vershynin 06]

Smoothed Analysis
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Setup: [Beier/Vöcking 06] n 0-1 decision variables (xi)
•  objective: max Σi vi xi  (vi’s randomly perturbed)
•  abstract constraints (feasible sets=subset of 2[n])

–  examples: max spanning tree, knapsack,                
max-weight independent set, etc.

Theorem: [Beier/Vöcking 06] a binary optimization 
problem is solvable in smoothed polynomial time if 
and only if it is solvable in pseudo-polynomial time.

–  weakly NP-hard -> in “smoothed P”
–  strongly NP-hard -> not in “smoothed P”

Binary Optimization Problems
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Theorem: a binary optimization problem is solvable in smoothed 
polynomial time if and only if it is solvable in pseudo-polynomial time.

Proof of “if” direction: (“only if” is easy)
•  each vi drawn from distribution with density ≤ 1/Φ
•  Isolation Lemma: [Mulmuley/Vazirani/Vazirani 87]  

with high probability, gap between 1st- and 2nd-
best feasible solutions is at least Φ/poly(n)

•  lazy approach: only read as many bits as needed 
to certify optimality (log # of bits => poly-time)

Proof Idea: The Isolation Lemma
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Local search: often huge gap between worst-
case and empirical running times.
•  smoothed analysis killer app: k-means [Arthur/

Vassilvitskii 06], [Arthur/Manthey/Röglin 11]

Example: [Englert/Röglin/Vöcking 07] 2-OPT (for TSP).

Proof idea:
•  only O(n4) moves
•  Isolation Lemma +      

Union Bound => w.h.p., every local move 
makes ≥ Φ/poly(n) progress

Smoothed Analysis of Local Search
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Max cut: [Elsässer/Tscheuschner 11] same idea  
works for max cut (with flip neighborhood) if max 
degree Δ=O(log n).
•  only poly # of distinct local moves

Improvement: [Etscheid/Röglin 14] in general,  
smoothed complexity at most quasi-polynomial.

Open: but is it polynomial?

Local Search for Max Cut



1.  Does every local search problem for a binary 
optimization problem (with poly “diameter”) 
have poly smoothed complexity?

–  max cut with flip neighborhood a special case
–  “avoiding the union bound”

2.  Better smoothed analysis of simplex
–  better running time bounds (linear?), non-Gaussian 

perturbations, other pivot rules, sparsity-preserving 
perturbations
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Open Questions



1.  Planted and semi-random models.

2.  Smoothed analysis.

3.  More hybrid models.
–  examples
–  data-driven algorithm design

4.  Distribution-free benchmarks/instance classes.

42 

Outline (Part 2)
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Hybrid Models

Thesis: for many problems there is a “sweet spot” 
between worst- and average-case analysis.

–  where unknown distribution D lies in some known set 

supz cost(A,z) Ez[cost(A,z)]
worst-case average-case

supD Ez~D[cost(A,z)]
hybrid models



1.  Semi-random models. (adversary => distribution)
2.  Smoothed analysis. (initial input => distribution)
3.  Random order models. (secretary problems)
4.  Competitive guarantees for M/G/1 queues.
5.  Prior-independent auctions. (see Anna’s talk)
6.  Diffuse and statistical adversaries. (paging) 

[Raghavan 91], [Koutsoupias/Papadimitriou 00]
–  adversary = input distribution with large              

min-entropy or other statistical properties
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Hybrid Models: Examples



Setup: [Valiant 84] receive i.i.d. labeled samples 
from unknown distribution, want to learn 
(approximately) the target concept (w.h.p.).

–  single learning algorithm works for all distributions
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PAC Learning



•  self-improving algorithms for sorting [Ailon/Chazelle/Liu/
Seshadhri 06] Delaunay triangulations  [Clarkson/Seshadhri 
08], convex hulls  [Clarkson/Mulzer/Seshadhri 10]
–  assume elements or points are independent, want to run as 

fast as information-theoretic optimal

•  revenue-maximizing auctions (see Anna’s talk)
–  [Elkind 07], [Cole/Roughgarden 14], [Morgenstern/

Roughgarden 15,16], [Devanur/Huang/Psamos 16], ...
–  learn a near-optimal auction from samples

•  application-specific algorithm selection
–  see my Open Lecture (10/24) [Gupta/Roughgarden 16]
–  inspired by [Leyton-Brown et al.]
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Data-Driven Algorithm Design



1.  Planted and semi-random models.

2.  Smoothed analysis.

3.  More hybrid models.

4.  Distribution-free benchmarks/instance classes.
–  compressed sensing revisited
–  no-regret algorithms re-interpreted
–  further examples
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Outline (Part 2)
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Theorem: if A satisfies the 
“restricted isometry property 
(RIP)” then l1-minimization 
recovers k-sparse x.

Example: random matrix (Gaussian entries) 
satisfies RIP w.h.p. if m=Ω(k log (n/k)).

Question: other applications of such         
“average-case thought experiments”?

Recall: Recovery Under RIP



Setup: action set A.  Each day t=1,2,...,T:
•  algorithm picks a distribution over actions
•  adversary picks a reward vector { rt(a) }a in A

Well-Known Results: 
•  can’t compete with best sequence in hindsight.
•  can compete with best fixed action in hindsight

–  need the right benchmark to discover the right 
algorithms!
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No-Regret Online Learning



Average-case thought experiment: suppose every 
reward vector drawn i.i.d. from a distribution D.
•  optimal strategy: always play action with 

highest expected reward (i.i.d.=>time-invariant)

Upshot: a no-regret algorithm does (almost) as 
well as OPT for every unknown distribution D
•  another folklore example: static optimality of data 

structures (compete with OPT for all i.i.d. sequences of 
accesses)

50 

A Re-Interpretation (Folklore)



Distribution-free benchmarks:
•  prior-free auction design (see [Goldberg/Hartline/

Karlin/Saks/Wright 06]) as a deterministic proxy for 
i.i.d. bidders [Hartline/Roughgarden 08]

Distribution-free instance classes:
•  social networks (see my talk in Sept. workshop)

–  graphs that are deterministic proxies for generative 
models [Gupta/Roughgarden/Seshadhri 14]

–  in same spirit: [Brach/Cygan/Lacki/Sankowski 16] 
[Borassi/Crescenzi/Trevisan 16]
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More Examples
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•  distributions useful to define “relevant inputs”
–  but average-case analysis encourages algorithms 

tailored to distributional assumptions

•  semi-random/hybrid models: a “sweet spot” 
between worst- and average-case analysis that 
encourages more robust solutions 
–  clique, bisection, smoothed analysis, learning, etc.

•  “average-case thought experiment:” define 
benchmarks/instance classes as deterministic 
proxies for an unknown distribution

Part 2 Summary


