Online Learning and Online Convex Optimization

Nicolò Cesa-Bianchi

Università degli Studi di Milano

Summary

(1) My beautiful regret
(2) A supposedly fun game I'll play again
(3) The joy of convex

Summary

(1) My beautiful regret

(2) A supposedly fun game I'll play again

(3) The joy of convex

Machine learning

Classification/regression tasks

- Predictive models h mapping data instances X to labels Y (e.g., binary classifier)
- Training data $S_{T}=\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{T}, Y_{T}\right)\right)$ (e.g., email messages with spam vs. nonspam annotations)
- Learning algorithm A (e.g., Support Vector Machine) maps training data S_{T} to model $h=A\left(S_{T}\right)$

Evaluate the risk of the trained model h with respect to a given loss function

Two notions of risk

View data as a statistical sample: statistical risk

$$
\mathbb{E}[\ell(\underbrace{A\left(S_{T}\right)}_{\substack{\text { trained } \\ \text { model }}}, \underbrace{(X, Y)}_{\substack{\text { test } \\ \text { example }}})]
$$

Training set $S_{T}=\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{T}, Y_{T}\right)\right)$ and test example (X, Y) drawn i.i.d. from the same unknown and fixed distribution

Two notions of risk

View data as a statistical sample: statistical risk

$$
\mathbb{E}[\ell(\underbrace{A\left(S_{\mathrm{T}}\right)}_{\substack{\text { trained } \\
\text { model }}}, \underbrace{(\mathrm{X}, \mathrm{Y})}_{\begin{array}{c}
\text { test } \\
\text { example }
\end{array}})]
$$

Training set $S_{T}=\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{T}, Y_{T}\right)\right)$ and test example (X, Y) drawn i.i.d. from the same unknown and fixed distribution

View data as an arbitrary sequence: sequential risk

$$
\sum_{\mathrm{t}=1}^{\mathrm{T}} \ell(\underbrace{A\left(S_{\mathrm{t}-1}\right)}_{\begin{array}{c}
\text { trained } \\
\text { model }
\end{array}},(\underbrace{}_{\left.\begin{array}{c}
\text { exast } \\
\left.X_{\mathrm{t}}, Y_{\mathrm{t}}\right)
\end{array}\right)})
$$

Sequence of models trained on growing prefixes $S_{t}=\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{t}, Y_{t}\right)\right)$ of the data sequence

Regrets, I had a few

Learning algorithm A maps datasets to models in a given class \mathcal{H}
Variance error in statistical learning

$$
\mathbb{E}\left[\ell\left(A\left(S_{T}\right),(X, Y)\right)\right]-\inf _{h \in \mathcal{H}} \mathbb{E}[\ell(h,(X, Y))]
$$

compare to expected loss of best model in the class

Regrets, I had a few

Learning algorithm A maps datasets to models in a given class \mathcal{H}
Variance error in statistical learning

$$
\mathbb{E}\left[\ell\left(A\left(S_{T}\right),(X, Y)\right)\right]-\inf _{h \in \mathscr{H}} \mathbb{E}[\ell(h,(X, Y))]
$$

compare to expected loss of best model in the class

Regret in online learning

$$
\sum_{t=1}^{T} \ell\left(A\left(S_{t-1}\right),\left(X_{t}, Y_{t}\right)\right)-\inf _{h \in \mathcal{H}} \sum_{t=1}^{T} \ell\left(h,\left(X_{t}, Y_{t}\right)\right)
$$

compare to cumulative loss of best model in the class

Incremental model update

A natural blueprint for online learning algorithms

```
For t = 1,2,\ldots
```

(1) Apply current model h_{t-1} to next data element $\left(X_{t}, Y_{t}\right)$
(2) Update current model: $\mathrm{h}_{\mathrm{t}-1} \rightarrow \mathrm{~h}_{\mathrm{t}} \in \mathcal{H}$
(local optimization)

Incremental model update

A natural blueprint for online learning algorithms

For $t=1,2, \ldots$

(1) Apply current model h_{t-1} to next data element $\left(X_{t}, Y_{t}\right)$
(2) Update current model: $h_{t-1} \rightarrow h_{t} \in \mathcal{H}$
(local optimization)

Goal: control regret

$$
\sum_{t=1}^{T} \ell\left(h_{t-1},\left(X_{t}, Y_{t}\right)\right)-\inf _{h \in \mathcal{H}} \sum_{t=1}^{T} \ell\left(h,\left(X_{t}, Y_{t}\right)\right)
$$

Incremental model update

A natural blueprint for online learning algorithms

For $t=1,2, \ldots$

(1) Apply current model h_{t-1} to next data element $\left(X_{t}, Y_{t}\right)$
(2) Update current model: $h_{\mathrm{t}-1} \rightarrow h_{\mathrm{t}} \in \mathcal{H} \quad$ (local optimization)

Goal: control regret

$$
\sum_{t=1}^{T} \ell\left(h_{t-1},\left(X_{t}, Y_{t}\right)\right)-\inf _{h \in \mathcal{H}} \sum_{t=1}^{T} \ell\left(h,\left(X_{t}, Y_{t}\right)\right)
$$

View this as a repeated game between a player generating predictors $h_{t} \in \mathcal{H}$ and an opponent generating data $\left(X_{t}, Y_{t}\right)$

Summary

(1) My beautiful regret

(2) A supposedly fun game I'll play again

(3) The joy of convex

Theory of repeated games

James Hannan (1922-2010)

David Blackwell (1919-2010)

Learning to play a game (1956)

Play a game repeatedly against a possibly suboptimal opponent

Zero-sum 2-person games played more than once

	1	2	\ldots	M
1	$\ell(1,1)$	$\ell(1,2)$	\ldots	
2	$\ell(2,1)$	$\ell(2,2)$	\ldots	
\vdots	\vdots	\vdots	\ddots	
N				

$N \times M$ known loss matrix

- Row player (player) has N actions
- Column player (opponent) has M actions

For each game round $t=1,2, \ldots$

- Player chooses action i_{t} and opponent chooses action y_{t}
- The player suffers loss $\ell\left(i_{t}, y_{t}\right)$ (= gain of opponent)

Player can learn from opponent's history of past choices y_{1}, \ldots, y_{t-1}

Prediction with expert advice

Volodya Vovk

	$\mathrm{t}=1$	$\mathrm{t}=2$	\ldots
1	$\ell_{1}(1)$	$\ell_{2}(1)$	\cdots
2	$\ell_{1}(2)$	$\ell_{2}(2)$	\cdots
\vdots	\vdots	\vdots	\ddots
N	$\ell_{1}(\mathrm{~N})$	$\ell_{2}(\mathrm{~N})$	

Manfred Warmuth

Opponent's moves y_{1}, y_{2}, \ldots define a sequential prediction problem with a time-varying loss function $\ell\left(i_{t}, y_{t}\right)=\ell_{t}\left(i_{t}\right)$

Playing the experts game

A sequential decision problem

- N actions
- Unknown deterministic assignment of losses to actions $\ell_{t}=\left(\ell_{t}(1), \ldots, \ell_{t}(N)\right) \in[0,1]^{N}$ for $t=1,2, \ldots$
?

For $t=1,2, \ldots$

?

Playing the experts game

A sequential decision problem

- N actions
- Unknown deterministic assignment of losses to actions $\ell_{t}=\left(\ell_{t}(1), \ldots, \ell_{t}(N)\right) \in[0,1]^{N}$ for $t=1,2, \ldots$

For $t=1,2, \ldots$
(1) Player picks an action I_{t} (possibly using randomization) and incurs loss $\ell_{t}\left(\mathrm{I}_{\mathrm{t}}\right)$

Playing the experts game

A sequential decision problem

- N actions
- Unknown deterministic assignment of losses to actions $\ell_{t}=\left(\ell_{t}(1), \ldots, \ell_{t}(N)\right) \in[0,1]^{N}$ for $t=1,2, \ldots$

For $t=1,2, \ldots$
(1) Player picks an action I_{t} (possibly using randomization) and incurs loss $\ell_{t}\left(I_{t}\right)$
(2) Player gets feedback information: $\ell_{\mathrm{t}}(1), \ldots, \ell_{\mathrm{t}}(\mathrm{N})$

Regret analysis

Regret

$$
R_{T} \stackrel{\text { def }}{=} \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(I_{t}\right)\right]-\min _{i=1, \ldots, N} \sum_{t=1}^{T} \ell_{t}(i) \stackrel{\text { want }}{=} o(T)
$$

Regret analysis

Regret

$$
R_{T} \stackrel{\text { def }}{=} \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(I_{t}\right)\right]-\min _{i=1, \ldots, N} \sum_{t=1}^{T} \ell_{t}(i) \stackrel{\text { want }}{=} o(T)
$$

Lower bound using random losses

- $\ell_{t}(i) \rightarrow L_{t}(i) \in\{0,1\}$ independent random coin flip
- For any player strategy $\mathbb{E}\left[\sum_{t=1}^{T} L_{t}\left(I_{t}\right)\right]=\frac{T}{2}$
- Then the expected regret is

$$
\mathbb{E}\left[\max _{i=1, \ldots, N} \sum_{t=1}^{\mathrm{T}}\left(\frac{1}{2}-\mathrm{L}_{\mathrm{t}}(\mathrm{i})\right)\right]=(1-\mathrm{o}(1)) \sqrt{\frac{\mathrm{T} \ln \mathrm{~N}}{2}}
$$

for $\mathrm{N}, \mathrm{T} \rightarrow \infty$

Exponentially weighted forecaster (Hedge)

At time t pick action $I_{t}=i$ with probability proportional to

$$
\exp \left(-\eta \sum_{s=1}^{t-1} \ell_{s}(i)\right)
$$

the sum at the exponent is the total loss of action i up to now

Regret bound

[Experts' paper, 1997]

- If $\eta=\sqrt{(\ln N) /(8 T)}$ then

$$
\mathrm{R}_{\mathrm{T}} \leqslant \sqrt{\frac{\mathrm{~T} \ln \mathrm{~N}}{2}}
$$

- Matching lower bound including constants
- Dynamic choice $\quad \eta_{t}=\sqrt{(\ln N) /(8 t)} \quad$ only loses small constants

The nonstochastic bandit problem

The nonstochastic bandit problem

(1) Player picks an action I_{t} (possibly using randomization) and incurs loss $\ell_{t}\left(I_{t}\right)$

The nonstochastic bandit problem

(1) Player picks an action I_{t} (possibly using randomization) and incurs loss $\ell_{\mathrm{t}}\left(\mathrm{I}_{\mathrm{t}}\right)$
(2) Player gets partial information: Only $\ell_{t}\left(I_{t}\right)$ is revealed

The nonstochastic bandit problem

?

 For $t=1,2, \ldots$

(1) Player picks an action I_{t} (possibly using randomization) and incurs loss $\ell_{\mathrm{t}}\left(\mathrm{I}_{\mathrm{t}}\right)$
(2) Player gets partial information: Only $\ell_{t}\left(I_{t}\right)$ is revealed

Player still competing agaist best offline action

$$
R_{T}=\mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(I_{t}\right)\right]-\min _{i=1, \ldots, N} \sum_{t=1}^{T} \ell_{t}(i)
$$

The Exp3 algorithm

Hedge with estimated losses

- $\mathbb{P}_{t}\left(I_{t}=i\right) \quad \propto \quad \exp \left(-\eta \sum_{s=1}^{t-1} \widehat{\ell}_{s}(i)\right) \quad i=1, \ldots, N$
- $\widehat{\ell}_{t}(i)=\left\{\begin{array}{cl}\frac{\ell_{t}(i)}{\mathbb{P}_{t}\left(\ell_{t}(i) \text { observed }\right)} & \text { if } I_{t}=i \\ 0 & \text { otherwise }\end{array}\right.$

Only one non-zero component in $\widehat{\ell}_{t}$

The Exp3 algorithm

Hedge with estimated losses

$$
\begin{aligned}
& \text { - } \mathbb{P}_{t}\left(I_{t}=i\right) \propto \exp \left(-\eta \sum_{s=1}^{t-1} \widehat{\ell}_{s}(i)\right) \quad i=1, \ldots, N \\
& \text { - } \widehat{\ell}_{\mathrm{t}}(i)=\left\{\begin{array}{cl}
\frac{\ell_{t}(i)}{\mathbb{P}_{t}\left(\ell_{\mathrm{t}}(i) \text { observed }\right)} & \text { if } I_{t}=i \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Only one non-zero component in $\widehat{\ell}_{t}$

Properties of importance weighting estimator

$\mathbb{E}_{t}\left[\widehat{\ell}_{t}(i)\right]=\ell_{t}(i)$
$\mathbb{E}_{\mathrm{t}}\left[\widehat{\ell}_{\mathrm{t}}(\mathfrak{i})^{2}\right] \leqslant \frac{1}{\mathbb{P}_{\mathrm{t}}\left(\ell_{\mathrm{t}}(\mathfrak{i}) \text { observed }\right)}$
unbiasedness
variance control

Exp3 regret bound

$$
\begin{aligned}
R_{T} & \leqslant \frac{\ln N}{\eta}+\frac{\eta}{2} \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} \mathbb{P}_{t}\left(I_{t}=i\right) \mathbb{E}_{t}\left[\widehat{\ell}_{t}(i)^{2}\right]\right] \\
& \leqslant \frac{\ln N}{\eta}+\frac{\eta}{2} \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} \frac{\mathbb{P}_{t}\left(I_{t}=i\right)}{\mathbb{P}_{t}\left(\ell_{t}(i) \text { is observed }\right)}\right] \\
& =\frac{\ln N}{\eta}+\frac{\eta}{2} N T=\sqrt{N T \ln N} \quad \text { lower bound } \Omega(\sqrt{N T})
\end{aligned}
$$

Exp3 regret bound

$$
\begin{aligned}
R_{T} & \leqslant \frac{\ln N}{\eta}+\frac{\eta}{2} \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} \mathbb{P}_{t}\left(I_{t}=i\right) \mathbb{E}_{t}\left[\widehat{\ell}_{t}(i)^{2}\right]\right] \\
& \leqslant \frac{\ln N}{\eta}+\frac{\eta}{2} \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} \frac{\mathbb{P}_{t}\left(I_{t}=i\right)}{\mathbb{P}_{t}\left(\ell_{t}(i) \text { is observed }\right)}\right] \\
& =\frac{\ln N}{\eta}+\frac{\eta}{2} N T=\sqrt{N T \ln N} \quad \text { lower bound } \Omega(\sqrt{N T})
\end{aligned}
$$

Improved matching upper bound by [Audibért and Bubeck, 2009]

Exp3 regret bound

$$
\begin{aligned}
R_{T} & \leqslant \frac{\ln N}{\eta}+\frac{\eta}{2} \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} \mathbb{P}_{t}\left(I_{t}=i\right) \mathbb{E}_{t}\left[\widehat{\ell}_{t}(i)^{2}\right]\right] \\
& \leqslant \frac{\ln N}{\eta}+\frac{\eta}{2} \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} \frac{\mathbb{P}_{t}\left(I_{t}=i\right)}{\mathbb{P}_{t}\left(\ell_{t}(i) \text { is observed }\right)}\right] \\
& =\frac{\ln N}{\eta}+\frac{\eta}{2} N T=\sqrt{N T \ln N} \quad \text { lower bound } \Omega(\sqrt{N T})
\end{aligned}
$$

Improved matching upper bound by [Audibért and Bubeck, 2009]
The full information (experts) setting

- Player observes vector of losses ℓ_{t} after each play
- $\mathbb{P}_{t}\left(\ell_{t}(i)\right.$ is observed $)=1$
- $R_{T} \leqslant \sqrt{T \ln N}$

Nonoblivious opponents

The adaptive adversary

- The loss of action i at time t depends on the player's past m actions $\ell_{t}(i) \rightarrow \ell_{t}\left(I_{t-m}, \ldots, I_{t-1}, i\right)$

Nonoblivious opponents

The adaptive adversary

- The loss of action i at time t depends on the player's past m actions $\ell_{t}(i) \rightarrow \ell_{t}\left(I_{t-m}, \ldots, I_{t-1}, i\right)$
- Examples: bandits with switching cost

Nonoblivious opponents

The adaptive adversary

- The loss of action i at time t depends on the player's past m actions $\ell_{t}(i) \rightarrow \ell_{t}\left(I_{t-m}, \ldots, I_{t-1}, i\right)$
- Examples: bandits with switching cost

Nonoblivious regret

$$
R_{T}^{\text {non }}=\mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(I_{t-m}, \ldots, I_{t-1}, I_{t}\right)-\min _{i=1, \ldots, N} \sum_{t=1}^{T} \ell_{t}\left(I_{t-m}, \ldots, I_{t-1}, i\right)\right]
$$

Nonoblivious opponents

The adaptive adversary

- The loss of action i at time t depends on the player's past m actions $\ell_{t}(i) \rightarrow \ell_{t}\left(I_{t-m}, \ldots, I_{t-1}, i\right)$
- Examples: bandits with switching cost

Nonoblivious regret

$$
R_{T}^{\text {non }}=\mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(I_{t-m}, \ldots, I_{t-1}, I_{t}\right)-\min _{i=1, \ldots, N} \sum_{t=1}^{T} \ell_{t}\left(I_{t-m}, \ldots, I_{t-1}, i\right)\right]
$$

Policy regret

$$
R_{T}^{\text {pol }}=\mathbb{E}[\sum_{t=1}^{T} \ell_{t}\left(I_{t-m}, \ldots, I_{t-1}, I_{t}\right)-\min _{i=1, \ldots, N} \sum_{t=1}^{T} \ell_{t}(\underbrace{i, \ldots, i}_{m \text { times }}, i)]
$$

Bandits and reactive opponents

Bounds on the nonoblivious regret (even when m depends on T)

$$
\mathrm{R}_{\mathrm{T}}^{\text {non }}=\mathcal{O}(\sqrt{\mathrm{TN} \ln \mathrm{~N}})
$$

- Exp3 with biased loss estimates
- Is the $\sqrt{\ln N}$ factor necessary?

Bandits and reactive opponents

Bounds on the nonoblivious regret (even when m depends on T)

$$
\mathrm{R}_{\mathrm{T}}^{\text {non }}=\mathcal{O}(\sqrt{\mathrm{TN} \ln \mathrm{~N}})
$$

- Exp3 with biased loss estimates
- Is the $\sqrt{\ln N}$ factor necessary?

Bounds on the policy regret for any constant $m \geqslant 1$

$$
\mathrm{R}_{\mathrm{T}}^{\mathrm{pol}}=\mathcal{O}\left((\mathrm{N} \ln \mathrm{~N})^{1 / 3} \mathrm{~T}^{2 / 3}\right)
$$

- Achieved by a very simple player strategy
- Optimal up to log factors!
[Dekel, Koren, and Peres, 2014]

Partial monitoring: not observing any loss

Dynamic pricing: Perform as the best fixed price

(1) Post a T-shirt price

C Observe if next customer buys or not

- Adjust price

Feedback does not reveal the player's loss

	1	2	3	4	5
1	0	1	2	3	4
2	c	0	1	2	3
3	c	c	0	1	2
4	c	c	c	0	1
5	c	c	c	c	0

Loss matrix

	1	2	3	4	5
1	1	1	1	1	1
2	0	1	1	1	1
3	0	0	1	1	1
4	0	0	0	1	1
5	0	0	0	0	1

Feedback matrix

A characterization of minimax regret

Special case

Multiarmed bandits: loss and feedback matrix are the same

A characterization of minimax regret

Special case

Multiarmed bandits: loss and feedback matrix are the same

A general gap theorem [Bartok, Foster, Pál, Rakhlin and Szepesvári, 2013]

- A constructive characterization of the minimax regret for any pair of loss/feedback matrix
- Only three possible rates for nontrivial games:
(1) Easy games (e.g., bandits): $\Theta(\sqrt{T})$
(2) Hard games (e.g., revealing action): $\Theta\left(T^{2 / 3}\right)$
(3) Impossible games: $\Theta(T)$

A game equivalent to prediction with expert advice

Online linear optimization in the simplex
(1) Play p_{t} from the N-dimensional simplex Δ_{N}
(2) Incur linear loss $\mathbb{E}\left[\ell_{t}\left(I_{t}\right)\right]=\mathbf{p}_{t}^{\top} \ell_{t}$
(3) Observe loss gradient ℓ_{t}

Regret: compete against the best point in the simplex

$$
\begin{aligned}
\sum_{t=1}^{T} \boldsymbol{p}_{\mathrm{t}}^{\top} \ell_{\mathrm{t}} & -\underbrace{}_{\mathbf{q} \in \Delta_{N} \sum_{t=1}^{\min ^{T}} \mathbf{q}^{\top} \ell_{t}} \\
& =\min _{i=1, \ldots, N} \frac{1}{T} \sum_{\mathrm{t}=1}^{\mathrm{T}} \ell_{\mathrm{t}}(\mathrm{i})
\end{aligned}
$$

From game theory to machine learning

- Opponent's moves y_{t} are viewed as values or labels assigned to observations $\chi_{t} \in \mathbb{R}^{\text {d }}$ (e.g., categories of documents)
- A repeated game between the player choosing an element $\boldsymbol{w}_{\mathrm{t}}$ of a linear space and the opponent choosing a label y_{t} for x_{t}
- Regret with respect to best element in the linear space

Summary

(1) My beautiful regret

(2) A supposedly fun game I'll play again
(3) The joy of convex

Online convex optimization

(1) Play $\boldsymbol{w}_{\mathrm{t}}$ from a convex and compact subset S of a linear space
(2) Observe convex loss $\ell_{t}: S \rightarrow \mathbb{R}$ and pay $\ell_{t}\left(\boldsymbol{w}_{t}\right)$
(3) Update: $\boldsymbol{w}_{\mathrm{t}} \rightarrow \boldsymbol{w}_{\mathrm{t}+1} \in \mathrm{~S}$

Online convex optimization

(1) Play $\boldsymbol{w}_{\mathrm{t}}$ from a convex and compact subset S of a linear space
(2) Observe convex loss $\ell_{t}: S \rightarrow \mathbb{R}$ and pay $\ell_{t}\left(\boldsymbol{w}_{t}\right)$
(3) Update: $\boldsymbol{w}_{\mathrm{t}} \rightarrow \boldsymbol{w}_{\mathrm{t}+1} \in \mathrm{~S}$

Example

- Regression with square loss: $\ell_{t}(\boldsymbol{w})=\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{\mathrm{t}}-y_{t}\right)^{2} \quad y_{t} \in \mathbb{R}$
- Classification with hinge loss: $\ell_{\mathrm{t}}(\boldsymbol{w})=\left[1-y_{\mathrm{t}} \boldsymbol{w}^{\top} \boldsymbol{x}_{\mathrm{t}}\right]_{+}$ $y_{t} \in\{-1,+1\}$

Online convex optimization

(1) Play w_{t} from a convex and compact subset S of a linear space
(2) Observe convex loss $\ell_{t}: S \rightarrow \mathbb{R}$ and pay $\ell_{t}\left(\boldsymbol{w}_{t}\right)$
(3) Update: $\boldsymbol{w}_{\mathrm{t}} \rightarrow \boldsymbol{w}_{\mathrm{t}+1} \in \mathrm{~S}$

Example

- Regression with square loss: $\ell_{t}(\boldsymbol{w})=\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{\mathrm{t}}-y_{\mathrm{t}}\right)^{2} \quad y_{t} \in \mathbb{R}$
- Classification with hinge loss: $\ell_{\mathrm{t}}(\boldsymbol{w})=\left[1-y_{\mathrm{t}} \boldsymbol{w}^{\top} \boldsymbol{x}_{\mathrm{t}}\right]_{+}$ $y_{t} \in\{-1,+1\}$

Regret

$$
\mathrm{R}_{\mathrm{T}}(\mathbf{u})=\sum_{\mathrm{t}=1}^{\mathrm{T}} \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)-\sum_{\mathrm{t}=1}^{\mathrm{T}} \ell_{\mathrm{t}}(\mathbf{u}) \quad \mathbf{u} \in \mathrm{S}
$$

Finding a good online algorithm

Follow the leader

$$
\boldsymbol{w}_{\mathrm{t}+1}=\underset{\boldsymbol{w} \in \mathrm{S}}{\operatorname{arginf}} \sum_{\mathrm{s}=1}^{\mathrm{t}} \ell_{\mathrm{S}}(\boldsymbol{w})
$$

Regret can be linear due to lack of stability

$$
S=[-1,+1] \quad \ell_{1}(w)=\frac{w}{2} \quad \ell_{\mathrm{t}}(w)= \begin{cases}-w & \text { if } \mathrm{t} \text { is even } \\ +w & \text { if } \mathrm{t} \text { is odd }\end{cases}
$$

Finding a good online algorithm

Follow the leader

$$
\boldsymbol{w}_{\mathrm{t}+1}=\underset{\boldsymbol{w} \in \mathrm{S}}{\operatorname{arginf}} \sum_{\mathrm{s}=1}^{\mathrm{t}} \ell_{\mathrm{S}}(\boldsymbol{w})
$$

Regret can be linear due to lack of stability

$$
S=[-1,+1] \quad \ell_{1}(w)=\frac{w}{2} \quad \ell_{t}(w)= \begin{cases}-w & \text { if } t \text { is even } \\ +w & \text { if } t \text { is odd }\end{cases}
$$

- Note: $\sum_{s=1}^{t} \ell_{s}(w)= \begin{cases}-\frac{w}{2} & \text { if } t \text { is even } \\ +\frac{w}{2} & \text { if } t \text { is odd }\end{cases}$
- Hence $\ell_{t+1}\left(w_{t+1}\right)=1$ for all $t=1,2 \ldots$

Follow the regularized leader

[Shalev-Shwartz, 2007; Abernethy, Hazan and Rakhlin, 2008]

$$
\boldsymbol{w}_{\mathrm{t}+1}=\underset{\boldsymbol{w} \in \mathrm{S}}{\operatorname{argmin}}\left[\eta \sum_{\mathrm{s}=1}^{\mathrm{t}} \ell_{\mathrm{s}}(\boldsymbol{w})+\Phi(\boldsymbol{w})\right]
$$

Φ is a strongly convex regularizer and $\eta>0$ is a scale parameter

Convexity, smoothness, and duality

Strong convexity

$\Phi: S \rightarrow \mathbb{R}$ is β-strongly convex w.r.t. a norm $\|\cdot\|$ if for all $\boldsymbol{u}, \boldsymbol{v} \in S$

$$
\Phi(\boldsymbol{v}) \geqslant \Phi(\mathbf{u})+\nabla \Phi(\mathbf{u})^{\top}(\boldsymbol{v}-\mathbf{u})+\frac{\beta}{2}\|\mathbf{u}-\boldsymbol{v}\|^{2}
$$

Convexity, smoothness, and duality

Strong convexity

$\Phi: S \rightarrow \mathbb{R}$ is β-strongly convex w.r.t. a norm $\|\cdot\|$ if for all $\boldsymbol{u}, \boldsymbol{v} \in S$

$$
\Phi(\boldsymbol{v}) \geqslant \Phi(\mathbf{u})+\nabla \Phi(\mathbf{u})^{\top}(\boldsymbol{v}-\mathbf{u})+\frac{\beta}{2}\|\mathbf{u}-\boldsymbol{v}\|^{2}
$$

Smoothness

$\Phi: S \rightarrow \mathbb{R}$ is α-smooth w.r.t. a norm $\|\cdot\|$ if for all $\mathbf{u}, \boldsymbol{v} \in S$

$$
\Phi(\boldsymbol{v}) \leqslant \Phi(\mathbf{u})+\nabla \Phi(\mathbf{u})^{\top}(\boldsymbol{v}-\mathbf{u})+\frac{\alpha}{2}\|\mathbf{u}-\boldsymbol{v}\|^{2}
$$

Convexity, smoothness, and duality

Strong convexity

$\Phi: S \rightarrow \mathbb{R}$ is β-strongly convex w.r.t. a norm $\|\cdot\|$ if for all $\boldsymbol{u}, \boldsymbol{v} \in S$

$$
\Phi(\boldsymbol{v}) \geqslant \Phi(\mathbf{u})+\nabla \Phi(\mathbf{u})^{\top}(\boldsymbol{v}-\mathbf{u})+\frac{\beta}{2}\|\mathbf{u}-\boldsymbol{v}\|^{2}
$$

Smoothness

$\Phi: S \rightarrow \mathbb{R}$ is α-smooth w.r.t. a norm $\|\cdot\|$ if for all $\boldsymbol{u}, \boldsymbol{v} \in S$

$$
\Phi(\boldsymbol{v}) \leqslant \Phi(\mathbf{u})+\nabla \Phi(\mathbf{u})^{\top}(\boldsymbol{v}-\mathbf{u})+\frac{\alpha}{2}\|\mathbf{u}-\boldsymbol{v}\|^{2}
$$

- If Φ is β-strongly convex w.r.t. $\|\cdot\|_{2}$, then $\nabla^{2} \Phi \succeq \beta I$
- If Φ is α-smooth w.r.t. $\|\cdot\|_{2}$, then $\nabla^{2} \Phi \preceq \alpha \mathrm{I}$

Examples

- Euclidean norm: $\Phi=\frac{1}{2}\|\cdot\|_{2}^{2}$ is 1-strongly convex w.r.t. $\|\cdot\|_{2}$

Examples

- Euclidean norm: $\Phi=\frac{1}{2}\|\cdot\|_{2}^{2}$ is 1-strongly convex w.r.t. $\|\cdot\|_{2}$
- p-norm: $\Phi=\frac{1}{2}\|\cdot\|_{p}^{2}$ is $(p-1)$-strongly convex w.r.t. $\|\cdot\|_{p}$ (for $1<p \leqslant 2$)

Examples

- Euclidean norm: $\Phi=\frac{1}{2}\|\cdot\|_{2}^{2}$ is 1 -strongly convex w.r.t. $\|\cdot\|_{2}$
- p-norm: $\Phi=\frac{1}{2}\|\cdot\|_{p}^{2}$ is $(p-1)$-strongly convex w.r.t. $\|\cdot\|_{p}$ (for $1<p \leqslant 2$)
- Entropy: $\Phi(\mathbf{p})=\sum_{i=1}^{\mathrm{d}} p_{i} \ln p_{i}$ is 1-strongly convex w.r.t. $\|\cdot\|_{1}$ (for p in the probability simplex)

Examples

- Euclidean norm: $\Phi=\frac{1}{2}\|\cdot\|_{2}^{2}$ is 1 -strongly convex w.r.t. $\|\cdot\|_{2}$
- p-norm: $\Phi=\frac{1}{2}\|\cdot\|_{p}^{2}$ is $(p-1)$-strongly convex w.r.t. $\|\cdot\|_{p}$ (for $1<p \leqslant 2$)
- Entropy: $\Phi(\mathbf{p})=\sum_{i=1}^{\mathrm{d}} p_{i} \ln p_{i}$ is 1-strongly convex w.r.t. $\|\cdot\|_{1}$ (for p in the probability simplex)
- Power norm: $\Phi(\boldsymbol{w})=\frac{1}{2} \boldsymbol{w}^{\top} A \boldsymbol{w}$ is 1-strongly convex w.r.t.

$$
\|w\|=\sqrt{w^{\top} A w}
$$

(for A symmetric and positive definite)

Convex duality

Definition

The convex dual of Φ is $\Phi^{*}(\boldsymbol{\theta})=\max _{\boldsymbol{w} \in \mathrm{S}}\left(\theta^{\top} \boldsymbol{w}-\Phi(\boldsymbol{w})\right)$

1-dimensional example

- Convex $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ such that $\mathrm{f}(0)=0$
- $f^{*}(\theta)=\max _{w \in \mathbb{R}}(w \times \theta-\mathrm{f}(w))$
- The maximizer is w_{0} such that $f^{\prime}\left(w_{0}\right)=\theta$
- This gives $f^{*}(\theta)=w_{0} \times f^{\prime}\left(w_{0}\right)-f\left(w_{0}\right)$
- As $f(0)=0, f^{*}(\theta)$ is the error in approximating $f(0)$ with a first-order expansion around $f\left(w_{0}\right)$

Convex duality

Convexity, smoothness, and duality

Examples

- Euclidean norm: $\Phi=\frac{1}{2}\|\cdot\|_{2}^{2}$ and $\Phi^{*}=\Phi$

Convexity, smoothness, and duality

Examples

- Euclidean norm: $\Phi=\frac{1}{2}\|\cdot\|_{2}^{2}$ and $\Phi^{*}=\Phi$
- p-norm: $\Phi=\frac{1}{2}\|\cdot\|_{p}^{2}$ and $\Phi^{*}=\frac{1}{2}\|\cdot\|_{q}^{2}$ where $\frac{1}{p}+\frac{1}{q}=1$

Convexity, smoothness, and duality

Examples

- Euclidean norm: $\Phi=\frac{1}{2}\|\cdot\|_{2}^{2}$ and $\Phi^{*}=\Phi$
- p-norm: $\Phi=\frac{1}{2}\|\cdot\|_{p}^{2}$ and $\Phi^{*}=\frac{1}{2}\|\cdot\|_{q}^{2}$ where $\frac{1}{p}+\frac{1}{q}=1$
- Entropy: $\Phi(\mathbf{p})=\sum_{i=1}^{d} p_{i} \ln p_{i}$ and $\Phi^{*}(\boldsymbol{\theta})=\ln \left(e^{\theta_{1}}+\cdots+e^{\theta_{d}}\right)$

Convexity, smoothness, and duality

Examples

- Euclidean norm: $\Phi=\frac{1}{2}\|\cdot\|_{2}^{2}$ and $\Phi^{*}=\Phi$
- p-norm: $\Phi=\frac{1}{2}\|\cdot\|_{p}^{2}$ and $\Phi^{*}=\frac{1}{2}\|\cdot\|_{q}^{2}$ where $\frac{1}{p}+\frac{1}{q}=1$
- Entropy: $\Phi(\mathbf{p})=\sum_{i=1}^{d} p_{i} \ln p_{i}$ and $\Phi^{*}(\boldsymbol{\theta})=\ln \left(e^{\theta_{1}}+\cdots+e^{\theta_{d}}\right)$
- Power norm: $\Phi(\boldsymbol{w})=\frac{1}{2} \boldsymbol{w}^{\top} A \boldsymbol{w}$ and $\Phi^{*}(\boldsymbol{\theta})=\frac{1}{2} \boldsymbol{\theta}^{\top} A^{-1} \boldsymbol{\theta}$

Some useful properties

If $\Phi: S \rightarrow \mathbb{R}$ is β-strongly convex w.r.t. $\|\cdot\|$, then

- Its convex dual Φ^{*} is everywhere differentiable and $\frac{1}{\beta}$-smooth w.r.t. $\|\cdot\|_{*}$ (the dual norm of $\|\cdot\|$)
- $\nabla \Phi^{*}(\boldsymbol{\theta})=\underset{\boldsymbol{w} \in \mathrm{S}}{\operatorname{argmax}}\left(\boldsymbol{\theta}^{\top} \boldsymbol{w}-\Phi(\boldsymbol{w})\right)$

Some useful properties

If $\Phi: S \rightarrow \mathbb{R}$ is β-strongly convex w.r.t. $\|\cdot\|$, then

- Its convex dual Φ^{*} is everywhere differentiable and $\frac{1}{\beta}$-smooth w.r.t. $\|\cdot\|_{*}$ (the dual norm of $\|\cdot\|$)
- $\nabla \Phi^{*}(\boldsymbol{\theta})=\underset{\boldsymbol{w} \in \mathrm{S}}{\operatorname{argmax}}\left(\boldsymbol{\theta}^{\top} \boldsymbol{w}-\Phi(\boldsymbol{w})\right)$

Recall: Follow the regularized leader (FTRL)

$$
\boldsymbol{w}_{\mathrm{t}+1}=\underset{\boldsymbol{w} \in \mathrm{S}}{\operatorname{argmin}}\left[\eta \sum_{\mathrm{s}=1}^{\mathrm{t}} \ell_{\mathrm{s}}(\boldsymbol{w})+\Phi(\boldsymbol{w})\right]
$$

Φ is a strongly convex regularizer and $\eta>0$ is a scale parameter

Using the loss gradient

Linearization of convex losses

$$
\boldsymbol{\ell}_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)-\boldsymbol{\ell}_{\mathrm{t}}(\mathbf{u}) \leqslant \underbrace{\nabla \boldsymbol{\ell}_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)^{\top}}_{\widetilde{\boldsymbol{\ell}}_{\mathrm{t}}} \boldsymbol{w}_{\mathrm{t}}-\underbrace{\nabla \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)^{\top}}_{\widetilde{\boldsymbol{\ell}}_{\mathrm{t}}} \mathbf{u}
$$

FTRL with linearized losses

$$
\begin{aligned}
\boldsymbol{w}_{\mathrm{t}+1}=\underset{\boldsymbol{w} \in \mathrm{S}}{\operatorname{argmin}}(\underbrace{\eta \sum_{s=1}^{\mathrm{t}} \widetilde{\boldsymbol{l}}_{s}^{\top}}_{-\boldsymbol{\theta}_{\mathrm{t}+1}} \boldsymbol{w}+\Phi(\boldsymbol{w})) & =\underset{\boldsymbol{w} \in \mathrm{S}}{\operatorname{argmax}}\left(\theta_{\mathrm{t}+1}^{\top} \boldsymbol{w}-\Phi(\boldsymbol{w})\right) \\
& =\nabla \Phi^{*}\left(\boldsymbol{\theta}_{\mathrm{t}+1}\right)
\end{aligned}
$$

Note: $\boldsymbol{w}_{\mathrm{t}+1} \in \mathrm{~S}$ always holds

The Mirror Descent algorithm [Nemirovsky and Yudin, 1983]

Recall: $\boldsymbol{w}_{\mathrm{t}+1}=\nabla \Phi^{*}\left(\boldsymbol{\theta}_{\mathrm{t}}\right)=\nabla \Phi^{*}\left(-\eta \sum_{\mathrm{s}=1}^{\mathrm{t}} \nabla \boldsymbol{\ell}_{\mathrm{s}}\left(\boldsymbol{w}_{\mathrm{s}}\right)\right)$

Online Mirror Descent (FTRL with linearized losses)

Parameters: Strongly convex regularizer Φ with domain $S, \eta>0$ Initialize: $\theta_{1}=\mathbf{0}$
// primal parameter
For $t=1,2, \ldots$
(1) Use $\boldsymbol{w}_{\mathrm{t}}=\nabla \Phi^{*}\left(\theta_{\mathrm{t}}\right)$ // dual parameter (via mirror step)
(2) Suffer loss $\ell_{t}\left(\boldsymbol{w}_{\mathrm{t}}\right)$
(3) Observe loss gradient $\nabla \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)$
(9) Update $\theta_{\mathrm{t}+1}=\theta_{\mathrm{t}}-\eta \nabla \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right) \quad / /$ gradient step

An equivalent formulation

Under some assumptions on the regularizer Φ, OMD can be equivalently written in terms of projected gradient descent

Online Mirror Descent (alternative version)

Parameters: Strongly convex regularizer Φ and learning rate $\eta>0$ Initialize: $\boldsymbol{z}_{1}=\nabla \Phi^{*}(\mathbf{0})$ and $\boldsymbol{w}_{1}=\operatorname{argmin} D_{\Phi}\left(\boldsymbol{w} \| \boldsymbol{z}_{1}\right)$

$$
\boldsymbol{w} \in \mathrm{S}
$$

For $t=1,2, \ldots$
(1) Use $\boldsymbol{w}_{\mathrm{t}}$ and suffer loss $\ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)$
(2) Observe loss gradient $\nabla \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)$
(3) Update $z_{\mathrm{t}+1}=\nabla \Phi^{*}\left(\nabla \Phi\left(\boldsymbol{z}_{\mathrm{t}}\right)-\eta \nabla \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)\right) \quad / /$ gradient step
(9) $\boldsymbol{w}_{\mathrm{t}+1}=\underset{w \in \mathrm{~S}}{\operatorname{argmin}} \mathrm{D}_{\Phi}\left(\boldsymbol{w} \| \boldsymbol{z}_{\mathrm{t}+1}\right)$ // projection step

An equivalent formulation

Under some assumptions on the regularizer Φ, OMD can be equivalently written in terms of projected gradient descent

Online Mirror Descent (alternative version)

Parameters: Strongly convex regularizer Φ and learning rate $\eta>0$ Initialize: $\boldsymbol{z}_{1}=\nabla \Phi^{*}(\mathbf{0})$ and $\boldsymbol{w}_{1}=\operatorname{argmin} \mathrm{D}_{\Phi}\left(\boldsymbol{w} \| \boldsymbol{z}_{1}\right)$

$$
w \in S
$$

For $t=1,2, \ldots$
(1) Use $\boldsymbol{w}_{\mathrm{t}}$ and suffer loss $\ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)$
(2) Observe loss gradient $\nabla \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)$
(3) Update $z_{\mathrm{t}+1}=\nabla \Phi^{*}\left(\nabla \Phi\left(\boldsymbol{z}_{\mathrm{t}}\right)-\eta \nabla \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)\right) \quad / /$ gradient step
(9) $\boldsymbol{w}_{\mathrm{t}+1}=\underset{\boldsymbol{a r g m i n}}{ } \mathrm{D}_{\Phi}\left(\boldsymbol{w} \| \boldsymbol{z}_{\mathrm{t}+1}\right)$ // projection step
D_{Φ} is the Bregman divergence induced by Φ

Some examples

Online Gradient Descent (OGD)

- $\Phi(\boldsymbol{w})=\frac{1}{2}\|\boldsymbol{w}\|^{2}$
- Update: $\boldsymbol{w}^{\prime}=\boldsymbol{w}_{\mathrm{t}}-\eta \nabla \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)$

[Zinkevich, 2003; Gentile, 2003]

$$
\begin{gathered}
\text { p-norm version: } \Phi(\boldsymbol{w})=\frac{1}{2}\|\boldsymbol{w}\|_{\mathrm{p}}^{2} \\
\boldsymbol{w}_{\mathrm{t}+1}=\underset{\boldsymbol{w} \in \mathrm{S}}{\operatorname{arginf}}\left\|\boldsymbol{w}-\boldsymbol{w}^{\prime}\right\|_{2}
\end{gathered}
$$

Some examples

Online Gradient Descent (OGD)

[Zinkevich, 2003; Gentile, 2003]

- $\Phi(\boldsymbol{w})=\frac{1}{2}\|\boldsymbol{w}\|^{2}$
p-norm version: $\Phi(\boldsymbol{w})=\frac{1}{2}\|\boldsymbol{w}\|_{p}^{2}$
- Update: $\boldsymbol{w}^{\prime}=\boldsymbol{w}_{\mathrm{t}}-\eta \nabla \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)$

$$
\boldsymbol{w}_{\mathrm{t}+1}=\underset{\boldsymbol{w} \in \mathrm{S}}{\operatorname{arginf}}\left\|\boldsymbol{w}-\boldsymbol{w}^{\prime}\right\|_{2}
$$

Exponentiated gradient (EG)

[Kivinen and Warmuth, 1997]

- $\Phi(\mathbf{p})=\sum_{i=1}^{\mathrm{d}} p_{i} \ln p_{i}$

$$
\mathbf{p} \in S \equiv \text { simplex }
$$

- $p_{t+1, i}=\frac{p_{t, i} e^{-\eta \nabla \ell_{\mathrm{t}}\left(p_{t}\right)_{i}}}{\sum_{j=1}^{d} p_{t, j} e^{-\eta \nabla \ell_{\mathrm{t}}\left(p_{\mathrm{t}}\right)_{j}}}$

Note: when losses are linear this is Hedge

Regret analysis

Regret bound

$$
\mathrm{R}_{\mathrm{T}}(\mathbf{u}) \leqslant \frac{\Phi(\mathbf{u})-\min _{w \in S} \Phi(\boldsymbol{w})}{\eta}+\frac{\eta}{2} \sum_{\mathrm{t}=1}^{\mathrm{T}} \frac{\left\|\nabla \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)\right\|_{*}^{2}}{\beta}
$$

for all $\mathbf{u} \in S$, where $\ell_{1}, \ell_{2}, \ldots$ are arbitrary convex losses

- $R_{T}(u) \leqslant G D \sqrt{T}$ for all $u \in S$ when η is tuned w.r.t.

$$
\sup _{\boldsymbol{w} \in \mathrm{S}}\left\|\nabla \ell_{\mathrm{t}}(\boldsymbol{w})\right\|_{*} \leqslant G \quad \sqrt{\sup _{\mathbf{u}, \boldsymbol{w} \in \mathrm{S}}(\Phi(\mathbf{u})-\Phi(\boldsymbol{w}))} \leqslant \mathrm{D}
$$

- Boundedness of gradients of ℓ_{t} w.r.t. $\|\cdot\|_{*}$ equivalent to Lipschitzess of ℓ_{t} w.r.t. $\|\cdot\|$
- Regret bound optimal for general convex losses ℓ_{t}

Analysis relies on smoothness of Φ^{*}

$$
\Phi^{*}\left(\boldsymbol{\theta}_{\mathrm{t}+1}\right)-\Phi^{*}\left(\boldsymbol{\theta}_{\mathrm{t}}\right) \leqslant \underbrace{\nabla \Phi^{*}\left(\boldsymbol{\theta}_{\mathrm{t}}\right)^{\top}}_{\boldsymbol{w}_{\mathrm{t}}}(\underbrace{\theta_{\mathrm{t}+1}-\boldsymbol{\theta}_{\mathrm{t}}}_{-\eta \nabla \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)})+\frac{1}{2 \beta}\left\|\boldsymbol{\theta}_{\mathrm{t}+1}-\boldsymbol{\theta}_{\mathrm{t}}\right\|_{*}^{2}
$$

Analysis relies on smoothness of Φ^{*}

$$
\Phi^{*}\left(\boldsymbol{\theta}_{\mathrm{t}+1}\right)-\Phi^{*}\left(\boldsymbol{\theta}_{\mathrm{t}}\right) \leqslant \underbrace{\nabla \Phi^{*}\left(\boldsymbol{\theta}_{\mathrm{t}}\right)^{\top}}_{\boldsymbol{w}_{\mathrm{t}}}(\underbrace{\theta_{\mathrm{t}+1}-\theta_{\mathrm{t}}}_{-\eta \nabla \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)})+\frac{1}{2 \beta}\left\|\theta_{\mathrm{t}+1}-\theta_{\mathrm{t}}\right\|_{*}^{2}
$$

$$
\sum_{\mathrm{t}=1}^{\mathrm{T}}-\eta \mathbf{u}^{\top} \nabla \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)-\Phi(\mathbf{u})=\mathbf{u}^{\top} \boldsymbol{\theta}_{\mathrm{T}+1}-\Phi(\mathbf{u})
$$

$$
\leqslant \Phi^{*}\left(\theta_{\mathrm{T}+1}\right) \quad \text { Fenchel-Young inequality }
$$

$$
=\sum_{\mathrm{t}=1}^{\mathrm{T}}\left(\Phi^{*}\left(\theta_{\mathrm{t}+1}\right)-\Phi^{*}\left(\theta_{\mathrm{t}}\right)\right)+\Phi^{*}\left(\theta_{1}\right)
$$

$$
\leqslant \sum_{\mathrm{t}=1}^{\mathrm{T}}\left(-\eta \boldsymbol{w}_{\mathrm{t}}^{\top} \nabla \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)+\frac{\eta^{2}}{2 \beta}\left\|\nabla \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)\right\|_{*}^{2}\right)+\Phi^{*}(\mathbf{0})
$$

Analysis relies on smoothness of Φ^{*}

$$
\begin{aligned}
\Phi^{*}\left(\boldsymbol{\theta}_{\mathrm{t}+1}\right)- & \Phi^{*}\left(\boldsymbol{\theta}_{\mathrm{t}}\right)
\end{aligned} \underbrace{\nabla \Phi^{*}\left(\boldsymbol{\theta}_{\mathrm{t}}\right.}_{\boldsymbol{w}_{\mathrm{t}}}{ }^{\top}(\underbrace{\theta_{\mathrm{t}+1}-\boldsymbol{\theta}_{\mathrm{t}}}_{-\eta \nabla \mathfrak{t}_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)})+\frac{1}{2 \beta}\left\|\boldsymbol{\theta}_{\mathrm{t}+1}-\boldsymbol{\theta}_{\mathrm{t}}\right\|_{*}^{2} .
$$

Some examples

$\ell_{t}(\boldsymbol{w}) \rightarrow \ell_{t}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{\mathrm{t}}\right) \quad \max _{\mathrm{t}}\left|\ell_{\mathrm{t}}^{\prime}\right| \leqslant \mathrm{L} \quad \max _{\mathrm{t}}\left\|\boldsymbol{x}_{\mathrm{t}}\right\|_{\mathrm{p}} \leqslant X_{p}$

Some examples

$\ell_{t}(\boldsymbol{w}) \rightarrow \ell_{t}\left(w^{\top} \boldsymbol{x}_{\mathrm{t}}\right) \quad \max _{\mathrm{t}}\left|\ell_{\mathrm{t}}^{\prime}\right| \leqslant \mathrm{L} \quad \max _{\mathrm{t}}\left\|\boldsymbol{x}_{\mathrm{t}}\right\|_{\mathrm{p}} \leqslant X_{p}$
Bounds for OGD with convex losses

$$
\mathrm{R}_{\mathrm{T}}(\mathbf{u}) \leqslant \mathrm{BL} X_{2} \sqrt{\mathrm{~T}}=\mathcal{O}(\mathrm{dL} \sqrt{\mathrm{~T}})
$$

for all \mathfrak{u} such that $\|\mathfrak{u}\|_{2} \leqslant B$

Some examples

$\ell_{t}(\boldsymbol{w}) \rightarrow \ell_{t}\left(\boldsymbol{w}^{\top} x_{t}\right) \quad \max _{t}\left|\ell_{t}^{\prime}\right| \leqslant L \quad \max _{t}\left\|x_{t}\right\|_{p} \leqslant X_{p}$

Bounds for OGD with convex losses

$$
\mathrm{R}_{\mathrm{T}}(\mathbf{u}) \leqslant \mathrm{BLX}_{2} \sqrt{\mathrm{~T}}=\mathcal{O}(\mathrm{dL} \sqrt{\mathrm{~T}})
$$

for all \mathbf{u} such that $\|\mathbf{u}\|_{2} \leqslant B$

Bounds logarithmic in the dimension

- Regret bound for EG run in the simplex, $S=\Delta_{d}$

$$
\mathrm{R}_{\mathrm{T}}(\mathbf{q}) \leqslant \mathrm{LX}_{\infty} \sqrt{(\ln \mathrm{d}) \mathrm{T}}=\mathcal{O}(\mathrm{L} \sqrt{(\ln \mathrm{~d}) \mathrm{T}}) \quad \mathrm{p} \in \Delta_{\mathrm{d}}
$$

- Same bound for p-norm regularizer with $p=\frac{\ln d}{\ln d-1}$
- If losses are linear with $[0,1]$ coefficients then we recover the bound for Hedge

Exploiting curvature: minimization of SVM objective

- Training set $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right) \in \mathbb{R}^{d} \times\{-1,+1\}$
- SVM objective $F(\boldsymbol{w})=\frac{1}{m} \sum_{t=1}^{m} \underbrace{\left[1-y_{t} \boldsymbol{w}^{\top} \boldsymbol{x}_{\mathrm{t}}\right]_{+}}_{\text {hinge loss } h_{t}(\boldsymbol{w})}+\frac{\lambda}{2}\|\boldsymbol{w}\|^{2} \quad$ over \mathbb{R}^{d}
- Rewrite $F(\boldsymbol{w})=\frac{1}{m} \sum_{t=1}^{m} \ell_{t}(\boldsymbol{w}) \quad$ where $\ell_{t}(\boldsymbol{w})=h_{t}(\boldsymbol{w})+\frac{\lambda}{2}\|\boldsymbol{w}\|^{2}$
- Each loss ℓ_{t} is λ-strongly convex

Exploiting curvature: minimization of SVM objective

- Training set $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right) \in \mathbb{R}^{\mathrm{d}} \times\{-1,+1\}$
- SVM objective $F(\boldsymbol{w})=\frac{1}{m} \sum_{t=1}^{m} \underbrace{\left[1-y_{t} \boldsymbol{w}^{\top} x_{t}\right]_{+}}_{\text {hinge loss } h_{t}(\boldsymbol{w})}+\frac{\lambda}{2}\|\boldsymbol{w}\|^{2} \quad$ over \mathbb{R}^{d}
- Rewrite $F(\boldsymbol{w})=\frac{1}{m} \sum_{t=1}^{m} \ell_{t}(w) \quad$ where $\ell_{t}(\boldsymbol{w})=h_{t}(w)+\frac{\lambda}{2}\|w\|^{2}$
- Each loss ℓ_{t} is λ-strongly convex

The Pegasos algorithm

- Run OGD on random sequence of T training examples
- $\mathbb{E}\left[F\left(\frac{1}{\mathrm{~T}} \sum_{\mathrm{t}=1}^{\mathrm{T}} \boldsymbol{w}_{\mathrm{t}}\right)\right] \leqslant \min _{\boldsymbol{w} \in \mathbb{R}^{\mathrm{d}}} \mathrm{F}(\boldsymbol{w})+\frac{\mathrm{G}^{2}}{2 \lambda} \frac{\ln \mathrm{~T}+1}{\mathrm{~T}}$
- $\mathcal{O}(\ln T)$ rates hold for any sequence of strongly convex losses

Exp-concave losses

Exp-concavity (strong convexity along the gradient direction)

- A convex $\ell: S \rightarrow \mathbb{R}$ is α-exp-concave when $g(\boldsymbol{w})=e^{-\alpha \ell(\boldsymbol{w})}$ is concave
- For twice-differentiable losses:
$\nabla^{2} \ell(\boldsymbol{w}) \succeq \alpha \nabla \ell(\boldsymbol{w}) \nabla \ell(w)^{\top}$ for all $\boldsymbol{w} \in S$
- $\ell_{\mathrm{t}}(\boldsymbol{w})=-\ln \left(\boldsymbol{w}^{\top} \boldsymbol{x}_{\mathrm{t}}\right)$ is exp-concave

Online Newton Step

[Hazan, Agarwal and Kale, 2007]

- Update: $\boldsymbol{w}^{\prime}=A_{\mathrm{t}}^{-1} \nabla \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right) \quad \boldsymbol{w}_{\mathrm{t}+1}=\underset{\boldsymbol{w} \in \mathrm{S}}{\operatorname{argmin}}\left\|\boldsymbol{w}-\boldsymbol{w}^{\prime}\right\|_{\mathrm{A}_{\mathrm{t}}}$
- Where $A_{t}=\varepsilon I+\sum_{s=1}^{t} \nabla \ell_{s}\left(w_{s}\right) \nabla \ell_{s}\left(\boldsymbol{w}_{s}\right)^{\top}$

Note: Not an instance of OMD

Online Newton Step

[Hazan, Agarwal and Kale, 2007]

- Update: $\quad \boldsymbol{w}^{\prime}=A_{\mathrm{t}}^{-1} \nabla \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right) \quad \boldsymbol{w}_{\mathrm{t}+1}=\underset{\boldsymbol{w} \in \mathrm{S}}{\operatorname{argmin}}\left\|\boldsymbol{w}-\boldsymbol{w}^{\prime}\right\|_{\mathrm{A}_{\mathrm{t}}}$
- Where $A_{t}=\varepsilon I+\sum_{s=1}^{t} \nabla \ell_{s}\left(\boldsymbol{w}_{s}\right) \nabla \ell_{s}\left(\boldsymbol{w}_{s}\right)^{\top}$

Note: Not an instance of OMD
Logarithmic regret bound for exp-concave losses

$$
\mathrm{R}_{\mathrm{T}}(\mathbf{u}) \leqslant 5 \mathrm{~d}\left(\frac{1}{\alpha}+\mathrm{GD}\right) \ln (\mathrm{T}+1) \quad \mathbf{u} \in \mathrm{S}
$$

Online Newton Step

- Update: $\quad \boldsymbol{w}^{\prime}=A_{\mathrm{t}}^{-1} \nabla \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right) \quad \boldsymbol{w}_{\mathrm{t}+1}=\underset{\boldsymbol{w} \in \mathrm{S}}{\operatorname{argmin}}\left\|\boldsymbol{w}-\boldsymbol{w}^{\prime}\right\|_{\mathrm{A}_{\mathrm{t}}}$
- Where $A_{t}=\varepsilon I+\sum_{s=1}^{t} \nabla \ell_{s}\left(w_{s}\right) \nabla \ell_{s}\left(w_{s}\right)^{\top}$

Note: Not an instance of OMD
Logarithmic regret bound for exp-concave losses

$$
\mathrm{R}_{\mathrm{T}}(\mathbf{u}) \leqslant 5 \mathrm{~d}\left(\frac{1}{\alpha}+\mathrm{GD}\right) \ln (\mathrm{T}+1) \quad \mathbf{u} \in \mathrm{S}
$$

Extension of ONS to convex losses [Luo, Agarwal, C-B, Langford, 2016]
$\ell_{t}(\boldsymbol{w}) \rightarrow \ell_{t}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{\mathrm{t}}\right) \quad \max _{\mathrm{t}}\left|\ell_{\mathrm{t}}^{\prime}\right| \leqslant \mathrm{L}$

$$
\mathrm{R}_{\mathrm{T}}(\mathbf{u}) \leqslant \widetilde{\mathcal{O}}(\mathrm{CL} \sqrt{\mathrm{dT}}) \quad \text { for all } \mathbf{u} \text { s.t. }\left|\mathbf{u}^{\top} \boldsymbol{x}_{\mathrm{t}}\right| \leqslant \mathrm{C}
$$

Invariance to linear transformations of the data

Online Ridge Regression [Vovk, 2001; Azoury and Warmuth, 2001]

Logarithmic regret for square loss

$\ell_{\mathfrak{t}}(\mathbf{u})=\left(\mathbf{u}^{\top} \boldsymbol{x}_{\mathrm{t}}-y_{\mathrm{t}}\right)^{2} \quad Y=\max _{\mathrm{t}=1, \ldots, \mathrm{~T}}\left|y_{\mathrm{t}}\right| \quad X=\max _{\mathrm{t}=1, \ldots, \mathrm{~T}}\left\|\boldsymbol{x}_{\mathrm{t}}\right\|$

- OMD with adaptive regularizer $\Phi_{t}(\boldsymbol{w})=\frac{1}{2}\|\boldsymbol{w}\|_{A_{t}}^{2}$
- Where $A_{t}=I+\sum_{s=1}^{t} x_{s} x_{s}^{\top}$ and $\theta_{t}=\sum_{s=1}^{t}-y_{s} x_{s}$
- Regret bound (oracle inequality)

$$
\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right) \leqslant \inf _{\mathbf{u} \in \mathbb{R}^{d}}\left(\sum_{t=1}^{T} \ell_{t}(\mathbf{u})+\|\mathbf{u}\|^{2}\right)+d Y^{2} \ln \left(1+\frac{T X^{2}}{d}\right)
$$

- Parameterless
- Scale-free: unbounded comparison set

Scale free algorithm for convex losses [Orabona and Pál, 2015]

Scale free algorithm for convex losses

- OMD with adaptive regularizer

$$
\Phi_{\mathrm{t}}(\boldsymbol{w})=\Phi_{0}(\boldsymbol{w}) \sqrt{\sum_{s=1}^{\mathrm{t}-1}\left\|\nabla \ell_{s}\left(\boldsymbol{w}_{\mathrm{s}}\right)\right\|_{*}^{2}}
$$

- Φ_{0} is a β-strongly convex base regularizer
- Regret bound (oracle inequality) for convex loss functions ℓ_{t}

$$
\sum_{\mathrm{t}=1}^{\mathrm{T}} \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right) \leqslant \inf _{\mathbf{u} \in \mathbb{R}^{\mathrm{d}}} \sum_{\mathrm{t}=1}^{\mathrm{T}} \ell_{\mathrm{t}}(\mathbf{u})+\left(\Phi_{0}(\mathbf{u})+\frac{1}{\beta}+\max _{\mathrm{t}}\left\|\nabla \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)\right\|_{*}\right) \sqrt{\mathrm{T}}
$$

Regularization via stochastic smoothing

$$
\boldsymbol{w}_{\mathrm{t}+1}=\mathbb{E}_{\mathrm{Z}}\left[\underset{\boldsymbol{w} \in \mathrm{~S}}{\operatorname{argmin}} \sum_{s=1}^{\mathrm{t}}\left(\eta \nabla \ell_{\mathrm{s}}\left(\boldsymbol{w}_{\mathrm{s}}\right)+\mathbf{Z}\right)^{\top} \boldsymbol{w}\right]
$$

- The distribution of Z must be "stable" (small variance and small average sensitivity)
- Regret bound similar to FTRL/OMD
- For some choices of Z, FPL becomes equivalent to OMD [Abernethy, Lee, Sinha and Tewari, 2014]
- Linear losses: Follow the Perturbed Leader algorithm [Kalai and Vempala, 2005]

Shifting regret

Nonstationarity

- If data source is not fitted well by any model in the class, then comparing to the best model $\mathbf{u} \in S$ is trivial
- Compare instead to the best sequence $\boldsymbol{u}_{1}, \mathfrak{u}_{2}, \cdots \in S$ of models

Shifting Regret for OMD

[Zinkevich, 2003]
$\underbrace{\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right)}_{\text {cumulative loss }} \leqslant \inf _{\mathbf{u}_{1}, \ldots, \mathbf{u}_{T} \in S} \underbrace{\sum_{t=1}^{T} \ell_{t}\left(\mathbf{u}_{t}\right)}_{\text {model fit }}+\underbrace{\sum_{t=1}^{T}\left\|\mathbf{u}_{t}-\mathbf{u}_{t-1}\right\|}_{\text {shifting model cost }}+\operatorname{diam}(S)+\square$

Strongly adaptive regret [Daniely, Gonen, Shalev-Shwartz, 2015]

Definition

For all intervals $I=\{r, \ldots, s\}$ with $1 \leqslant r<s \leqslant T$

$$
\mathrm{R}_{\mathrm{T}, \mathrm{I}}(\mathbf{u})=\sum_{\mathrm{t} \in \mathrm{I}} \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)-\sum_{\mathrm{t} \in \mathrm{I}} \ell_{\mathrm{t}}(\mathbf{u})
$$

Strongly adaptive regret [Daniely, Gonen, Shalev-Shwartz, 2015]

Definition

For all intervals $\mathrm{I}=\{\mathrm{r}, \ldots, \mathrm{s}\}$ with $1 \leqslant \mathrm{r}<\mathrm{s} \leqslant \mathrm{T}$

$$
\mathrm{R}_{\mathrm{T}, \mathrm{I}}(\mathbf{u})=\sum_{\mathrm{t} \in \mathrm{I}} \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)-\sum_{\mathrm{t} \in \mathrm{I}} \ell_{\mathrm{t}}(\mathbf{u})
$$

Regret bound for strongly adaptive OGD

$$
\mathrm{R}_{\mathrm{T}, \mathrm{I}}(\mathbf{u}) \leqslant\left(\mathrm{BLX}_{2}+\ln (\mathrm{T}+1)\right) \sqrt{|\mathrm{I}|} \quad \text { for all } \mathbf{u} \text { such that }\|\mathbf{u}\|_{2} \leqslant \mathrm{~B}
$$

Strongly adaptive regret

Definition

For all intervals $\mathrm{I}=\{\mathrm{r}, \ldots, \mathrm{s}\}$ with $1 \leqslant \mathrm{r}<\mathrm{s} \leqslant \mathrm{T}$

$$
\mathrm{R}_{\mathrm{T}, \mathrm{I}}(\mathbf{u})=\sum_{\mathrm{t} \in \mathrm{I}} \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)-\sum_{\mathrm{t} \in \mathrm{I}} \ell_{\mathrm{t}}(\mathbf{u})
$$

Regret bound for strongly adaptive OGD

$$
\mathrm{R}_{\mathrm{T}, \mathrm{I}}(\mathbf{u}) \leqslant\left(\mathrm{BLX}_{2}+\ln (\mathrm{T}+1)\right) \sqrt{|\mathrm{I}|} \quad \text { for all } \mathbf{u} \text { such that }\|\mathbf{u}\|_{2} \leqslant \mathrm{~B}
$$

Remarks

- Generic black-box reduction applicable to any online learning algorithm
- It runs a logarithmic number of instances of the base learner

Online bandit convex optimization

(1) Play w_{t} from a convex and compact subset S of a linear space
(2) Observe $\ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)$, where $\ell: S \rightarrow \mathbb{R}$ is unobserved convex loss
(3) Update: $\boldsymbol{w}_{\mathrm{t}} \rightarrow \boldsymbol{w}_{\mathrm{t}+1} \in \mathrm{~S}$

Regret: $\quad R_{T}(\mathbf{u})=\sum_{\mathrm{t}=1}^{\mathrm{T}} \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)-\sum_{\mathrm{t}=1}^{\mathrm{T}} \ell_{\mathrm{t}}(\mathbf{u}) \quad \mathbf{u} \in \mathrm{S}$

Online bandit convex optimization

(1) Play w_{t} from a convex and compact subset S of a linear space
(2) Observe $\ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)$, where $\ell: S \rightarrow \mathbb{R}$ is unobserved convex loss
(3) Update: $\boldsymbol{w}_{\mathrm{t}} \rightarrow \boldsymbol{w}_{\mathrm{t}+1} \in \mathrm{~S}$

Regret: $\quad R_{T}(\mathbf{u})=\sum_{\mathrm{t}=1}^{\mathrm{T}} \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)-\sum_{\mathrm{t}=1}^{\mathrm{T}} \ell_{\mathrm{t}}(\mathbf{u}) \quad \mathbf{u} \in \mathrm{S}$

Results

- Linear losses: $\Omega(\mathrm{d} \sqrt{\mathrm{T}})$
[Dani, Hayes, and Kakade, 2008]

Online bandit convex optimization

(1) Play w_{t} from a convex and compact subset S of a linear space
(2) Observe $\ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)$, where $\ell: S \rightarrow \mathbb{R}$ is unobserved convex loss
(3) Update: $\boldsymbol{w}_{\mathrm{t}} \rightarrow \boldsymbol{w}_{\mathrm{t}+1} \in \mathrm{~S}$

Regret: $\quad R_{T}(\mathbf{u})=\sum_{\mathrm{t}=1}^{\mathrm{T}} \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)-\sum_{\mathrm{t}=1}^{\mathrm{T}} \ell_{\mathrm{t}}(\mathbf{u}) \quad \mathbf{u} \in \mathrm{S}$

Results

- Linear losses: $\Omega(\mathrm{d} \sqrt{\mathrm{T}})$
- Linear losses: $\widetilde{O}(d \sqrt{T})$
[Dani, Hayes, and Kakade, 2008]
[Bubeck, C-B, and Kakade, 2012]

Online bandit convex optimization

(1) Play w_{t} from a convex and compact subset S of a linear space
(2) Observe $\ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)$, where $\ell: S \rightarrow \mathbb{R}$ is unobserved convex loss
(3) Update: $\boldsymbol{w}_{\mathrm{t}} \rightarrow \boldsymbol{w}_{\mathrm{t}+1} \in \mathrm{~S}$

Regret: $\quad R_{T}(\mathbf{u})=\sum_{\mathrm{t}=1}^{\mathrm{T}} \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)-\sum_{\mathrm{t}=1}^{\mathrm{T}} \ell_{\mathrm{t}}(\mathbf{u}) \quad \mathbf{u} \in \mathrm{S}$

Results

- Linear losses: $\Omega(\mathrm{d} \sqrt{\mathrm{T}})$
- Linear losses: $\widetilde{O}(d \sqrt{T})$
- Strongly convex and smooth losses: $\widetilde{O}\left(d^{3 / 2} \sqrt{T}\right)$
[Hazan and Levy, 2014]

Online bandit convex optimization

(1) Play w_{t} from a convex and compact subset S of a linear space
(2) Observe $\ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)$, where $\ell: S \rightarrow \mathbb{R}$ is unobserved convex loss
(3) Update: $\boldsymbol{w}_{\mathrm{t}} \rightarrow \boldsymbol{w}_{\mathrm{t}+1} \in \mathrm{~S}$

Regret: $\quad R_{T}(\mathbf{u})=\sum_{\mathrm{t}=1}^{\mathrm{T}} \ell_{\mathrm{t}}\left(\boldsymbol{w}_{\mathrm{t}}\right)-\sum_{\mathrm{t}=1}^{\mathrm{T}} \ell_{\mathrm{t}}(\mathbf{u}) \quad \mathbf{u} \in \mathrm{S}$

Results

- Linear losses: $\Omega(\mathrm{d} \sqrt{\mathrm{T}})$
- Linear losses: $\widetilde{O}(d \sqrt{T})$
- Strongly convex and smooth losses: $\widetilde{O}\left(d^{3 / 2} \sqrt{T}\right)$
[Hazan and Levy, 2014]
- Convex losses: $\widetilde{O}\left(d^{9.5} \sqrt{T}\right)$
[Dani, Hayes, and Kakade, 2008]
[Bubeck, C-B, and Kakade, 2012]
[Bubeck, Eldan, and Lee, 2016]

