Online Learning and Online Convex Optimization

Nicolò Cesa-Bianchi

Università degli Studi di Milano

2 A supposedly fun game I'll play again

3 The joy of convex

N. Cesa-Bianchi (UNIMI)

1 My beautiful regret

A supposedly fun game I'll play again

3 The joy of convex

N. Cesa-Bianchi (UNIMI)

Classification/regression tasks

- Predictive models h mapping data instances X to labels Y (e.g., binary classifier)
- Training data $S_T = ((X_1, Y_1), ..., (X_T, Y_T))$ (e.g., email messages with spam vs. nonspam annotations)
- Learning algorithm A (e.g., Support Vector Machine) maps training data S_T to model $h = A(S_T)$

Evaluate the **risk** of the trained model **h** with respect to a given **loss** function

Two notions of risk

View data as a statistical sample: statistical risk

 $\mathbb{E}\left[\ell\left(A(S_{\mathsf{T}}),\underbrace{(X,Y)}_{\text{trained model}}\right)\right]$

Training set $S_T = ((X_1, Y_1), \dots, (X_T, Y_T))$ and test example (X, Y) drawn i.i.d. from the same unknown and fixed distribution

Two notions of risk

View data as a statistical sample: statistical risk

 $\mathbb{E}\left[\ell\left(\underbrace{A(S_{\mathsf{T}})}_{\text{trained model}},\underbrace{(X,Y)}_{\text{example}}\right)\right]$

Training set $S_T = ((X_1, Y_1), \dots, (X_T, Y_T))$ and test example (X, Y) drawn i.i.d. from the same unknown and fixed distribution

View data as an arbitrary sequence: sequential risk

$$\sum_{t=1}^{l} \ell\big(\underbrace{A(S_{t-1})}_{trained}, \underbrace{(X_t, Y_t)}_{test}\big)$$

Sequence of models trained on growing prefixes $S_t = ((X_1, Y_1), \dots, (X_t, Y_t))$ of the data sequence

Learning algorithm A maps datasets to models in a given class ${\boldsymbol{\mathfrak H}}$

Variance error in statistical learning

$$\mathbb{E}\Big[\ell\big(A(S_{\mathsf{T}}),(X,Y)\big)\Big] - \inf_{h \in \mathcal{H}} \mathbb{E}\Big[\ell\big(h,(X,Y)\big)\Big]$$

compare to expected loss of best model in the class

Learning algorithm A maps datasets to models in a given class ${\boldsymbol{\mathfrak H}}$

Variance error in statistical learning

$$\mathbb{E}\Big[\ell\big(A(S_{\mathsf{T}}),(X,Y)\big)\Big] - \inf_{h\in\mathcal{H}}\mathbb{E}\Big[\ell\big(h,(X,Y)\big)\Big]$$

compare to expected loss of best model in the class

Regret in online learning

$$\sum_{t=1}^{T} \ell \big(A(S_{t-1}), (X_t, Y_t) \big) - \inf_{h \in \mathcal{H}} \sum_{t=1}^{T} \ell \big(h, (X_t, Y_t) \big)$$

compare to cumulative loss of best model in the class

A natural blueprint for online learning algorithms

A natural blueprint for online learning algorithms

Goal: control regret $\sum_{t=1}^{T} \ell (h_{t-1}, (X_t, Y_t)) - \inf_{h \in \mathcal{H}} \sum_{t=1}^{T} \ell (h, (X_t, Y_t))$

A natural blueprint for online learning algorithms

For
$$t = 1, 2, ...$$
• Apply current model h_{t-1} to next data element (X_t, Y_t) • Update current model: $h_{t-1} \rightarrow h_t \in \mathcal{H}$ (local optimization)

Goal: control regret $\sum_{t=1}^{T} \ell (h_{t-1}, (X_t, Y_t)) - \inf_{h \in \mathcal{H}} \sum_{t=1}^{T} \ell (h, (X_t, Y_t))$

View this as a repeated game between a player generating predictors $h_t \in \mathcal{H}$ and an opponent generating data (X_t, Y_t)

1 My beautiful regret

2 A supposedly fun game I'll play again

3 The joy of convex

N. Cesa-Bianchi (UNIMI)

Theory of repeated games

James Hannan (1922–2010)

David Blackwell (1919–2010)

Learning to play a game (1956)

Play a game repeatedly against a possibly suboptimal opponent

N. Cesa-Bianchi (UNIMI)

Zero-sum 2-person games played more than once

$N \times M$ known loss matrix

- Row player (player) has N actions
- Column player (opponent) has M actions

For each game round t = 1, 2, ...

- Player chooses action it and opponent chooses action yt
- The player suffers loss $l(i_t, y_t)$

(= gain of opponent)

Player can learn from opponent's history of past choices y_1, \ldots, y_{t-1}

Prediction with expert advice

	t = 1	t = 2	
1	$\ell_1(1)$	$\ell_2(1)$	
2	$\ell_1(2)$	$\ell_2(2)$	
÷	:	:	÷.,
Ν	$\ell_1(N)$	$\ell_2(N)$	

Manfred Warmuth

Opponent's moves $y_1, y_2, ...$ define a sequential prediction problem with a time-varying loss function $\ell(i_t, y_t) = \ell_t(i_t)$

Playing the experts game

A sequential decision problem

- N actions
- Unknown deterministic assignment of losses to actions $\ell_t = (\ell_t(1), \dots, \ell_t(N)) \in [0, 1]^N$ for $t = 1, 2, \dots$

For t = 1, 2, ...

Playing the experts game

A sequential decision problem

- N actions
- Unknown deterministic assignment of losses to actions $\ell_t = (\ell_t(1), \dots, \ell_t(N)) \in [0, 1]^N$ for $t = 1, 2, \dots$

For t = 1, 2, ...

 $\hfill 0$ Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$

Playing the experts game

A sequential decision problem

- N actions
- Unknown deterministic assignment of losses to actions $\ell_t = (\ell_t(1), \dots, \ell_t(N)) \in [0, 1]^N$ for $t = 1, 2, \dots$

For t = 1, 2, ...

- $\textcircled{\sc 0}$ Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- ² Player gets feedback information: $l_t(1), \ldots, l_t(N)$

Regret analysis

Regret

$$R_{\mathsf{T}} \stackrel{\text{def}}{=} \mathbb{E}\left[\sum_{\mathsf{t}=1}^{\mathsf{T}} \ell_{\mathsf{t}}(\mathsf{I}_{\mathsf{t}})\right] - \min_{\mathsf{i}=1,\ldots,\mathsf{N}} \sum_{\mathsf{t}=1}^{\mathsf{T}} \ell_{\mathsf{t}}(\mathsf{i}) \stackrel{\text{want}}{=} \mathsf{o}(\mathsf{T})$$

Regret analysis

Regret

$$R_{T} \stackrel{\text{def}}{=} \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}(I_{t})\right] - \min_{i=1,\dots,N} \sum_{t=1}^{T} \ell_{t}(i) \stackrel{\text{want}}{=} o(T)$$

Lower bound using random losses

• $\ell_t(\mathfrak{i}) \to L_t(\mathfrak{i}) \in \{0,1\}$ independent random coin flip

• For any player strategy

$$\mathbb{E}\left[\sum_{t=1}^{I} L_t(I_t)\right] =$$

 $\frac{1}{2}$

• Then the expected regret is

$$\mathbb{E}\left[\max_{i=1,\dots,N}\sum_{t=1}^{T}\left(\frac{1}{2}-L_{t}(i)\right)\right] = (1-o(1))\sqrt{\frac{T\ln N}{2}}$$

for $N, T \rightarrow \infty$

[Experts' paper, 1997]

Exponentially weighted forecaster (Hedge)

At time t pick action $I_t = i$ with probability proportional to

$$\exp\left(-\eta\sum_{s=1}^{t-1}\ell_s(\mathfrak{i})\right)$$

the sum at the exponent is the total loss of action i up to now

$(?) \quad (?) \quad (?)$

$(?) \quad (?) \quad (?)$

For t = 1, 2, ...

0 Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$

$(?) \quad (3) \quad (?) \quad (?)$

For t = 1, 2, ...

- 0 Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- 2 Player gets partial information: Only $\ell_t(I_t)$ is revealed

$(?) \quad (3) \quad (?) \quad (?)$

For t = 1, 2, ...

- 0 Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- 2 Player gets partial information: Only $l_t(I_t)$ is revealed

Player still competing agaist best offline action

$$R_{T} = \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}(I_{t})\right] - \min_{i=1,\dots,N} \sum_{t=1}^{T} \ell_{t}(i)$$

The Exp3 algorithm

[Auer et al., 2002]

Hedge with estimated losses

•
$$\mathbb{P}_{t}(I_{t} = i) \propto \exp\left(-\eta \sum_{s=1}^{t-1} \hat{\ell}_{s}(i)\right)$$
 $i = 1, ..., N$
• $\hat{\ell}_{t}(i) = \begin{cases} \frac{\ell_{t}(i)}{\mathbb{P}_{t}(\ell_{t}(i) \text{ observed})} & \text{if } I_{t} = i\\ 0 & \text{otherwise} \end{cases}$
Only one non-zero component in $\hat{\ell}_{t}$

C

The Exp3 algorithm

Hedge with estimated losses

•
$$\mathbb{P}_{t}(I_{t} = i) \propto \exp\left(-\eta \sum_{s=1}^{t-1} \widehat{\ell}_{s}(i)\right)$$
 $i = 1, ..., N$
• $\widehat{\ell}_{t}(i) = \begin{cases} \frac{\ell_{t}(i)}{\mathbb{P}_{t}(\ell_{t}(i) \text{ observed})} & \text{if } I_{t} = i\\ 0 & \text{otherwise} \end{cases}$
Only one non-zero component in $\widehat{\ell}_{t}$

$$\begin{split} & \text{Properties of importance weighting estimator} \\ & \mathbb{E}_t \Big[\widehat{\ell}_t(i) \Big] = \ell_t(i) & \text{unbiasedness} \\ & \mathbb{E}_t \Big[\widehat{\ell}_t(i)^2 \Big] \leqslant \frac{1}{\mathbb{P}_t \big(\ell_t(i) \text{ observed} \big)} & \text{variance control} \end{split}$$

Exp3 regret bound

$$\begin{split} \mathsf{R}_\mathsf{T} &\leqslant \frac{\ln \mathsf{N}}{\eta} + \frac{\eta}{2} \, \mathbb{E} \left[\sum_{t=1}^\mathsf{T} \sum_{i=1}^\mathsf{N} \mathbb{P}_t(\mathsf{I}_t = i) \mathbb{E}_t \Big[\widehat{\ell}_t(i)^2 \Big] \right] \\ &\leqslant \frac{\ln \mathsf{N}}{\eta} + \frac{\eta}{2} \, \mathbb{E} \left[\sum_{t=1}^\mathsf{T} \sum_{i=1}^\mathsf{N} \frac{\mathbb{P}_t(\mathsf{I}_t = i)}{\mathbb{P}_t(\ell_t(i) \text{ is observed})} \right] \\ &= \frac{\ln \mathsf{N}}{\eta} + \frac{\eta}{2} \mathsf{N} \mathsf{T} = \frac{\sqrt{\mathsf{N}\mathsf{T}\ln\mathsf{N}}}{\sqrt{\mathsf{N}\mathsf{T}\ln\mathsf{N}}} \quad \text{lower bound } \Omega(\sqrt{\mathsf{N}\mathsf{T}}) \end{split}$$

Exp3 regret bound

$$\begin{split} \mathsf{R}_{\mathsf{T}} &\leqslant \frac{\ln \mathsf{N}}{\eta} + \frac{\eta}{2} \, \mathbb{E} \left[\sum_{t=1}^{\mathsf{T}} \sum_{i=1}^{\mathsf{N}} \mathbb{P}_{\mathsf{t}}(\mathsf{I}_t = \mathfrak{i}) \mathbb{E}_{\mathsf{t}} \left[\widehat{\ell}_{\mathsf{t}}(\mathfrak{i})^2 \right] \right] \\ &\leqslant \frac{\ln \mathsf{N}}{\eta} + \frac{\eta}{2} \, \mathbb{E} \left[\sum_{t=1}^{\mathsf{T}} \sum_{i=1}^{\mathsf{N}} \frac{\mathbb{P}_{\mathsf{t}}(\mathsf{I}_t = \mathfrak{i})}{\mathbb{P}_{\mathsf{t}}(\ell_{\mathsf{t}}(\mathfrak{i}) \text{ is observed})} \right] \\ &= \frac{\ln \mathsf{N}}{\eta} + \frac{\eta}{2} \mathsf{N} \mathsf{T} = \frac{\sqrt{\mathsf{NT} \ln \mathsf{N}}}{\sqrt{\mathsf{NT} \ln \mathsf{N}}} \quad \text{lower bound } \Omega(\sqrt{\mathsf{NT}}) \end{split}$$

Improved matching upper bound by [Audibért and Bubeck, 2009]

Exp3 regret bound

$$\begin{split} \mathsf{R}_\mathsf{T} &\leqslant \frac{\ln \mathsf{N}}{\eta} + \frac{\eta}{2} \, \mathbb{E} \bigg[\sum_{t=1}^\mathsf{T} \sum_{i=1}^\mathsf{N} \mathbb{P}_t(\mathsf{I}_t = i) \mathbb{E}_t \Big[\widehat{\ell}_t(i)^2 \Big] \bigg] \\ &\leqslant \frac{\ln \mathsf{N}}{\eta} + \frac{\eta}{2} \, \mathbb{E} \bigg[\sum_{t=1}^\mathsf{T} \sum_{i=1}^\mathsf{N} \frac{\mathbb{P}_t(\mathsf{I}_t = i)}{\mathbb{P}_t(\ell_t(i) \text{ is observed})} \bigg] \\ &= \frac{\ln \mathsf{N}}{\eta} + \frac{\eta}{2} \mathsf{N} \mathsf{T} = \frac{\sqrt{\mathsf{N} \mathsf{T} \ln \mathsf{N}}}{\sqrt{\mathsf{N} \mathsf{T} \ln \mathsf{N}}} \quad \text{lower bound } \Omega(\sqrt{\mathsf{N} \mathsf{T}}) \end{split}$$

Improved matching upper bound by [Audibért and Bubeck, 2009]

The full information (experts) setting

- $\bullet\,$ Player observes vector of losses $\boldsymbol{\ell}_t$ after each play
- $\mathbb{P}_t(\ell_t(i) \text{ is observed}) = 1$
- $R_T \leqslant \sqrt{T \ln N}$

The adaptive adversary

• The loss of action i at time t depends on the player's past m actions $\ell_t(i) \to \ell_t(I_{t-m},\ldots,I_{t-1},i)$

The adaptive adversary

- The loss of action i at time t depends on the player's past m actions $\ell_t(i) \rightarrow \ell_t(I_{t-m}, \dots, I_{t-1}, i)$
- Examples: bandits with switching cost

The adaptive adversary

- The loss of action i at time t depends on the player's past m actions $\ell_t(i) \rightarrow \ell_t(I_{t-m}, \dots, I_{t-1}, i)$
- Examples: bandits with switching cost

Nonoblivious regret

$$R_T^{non} = \mathbb{E}\left[\sum_{t=1}^T \ell_t(I_{t-m}, \dots, I_{t-1}, \boldsymbol{I_t}) - \min_{i=1,\dots,N} \sum_{t=1}^T \ell_t(I_{t-m}, \dots, I_{t-1}, \boldsymbol{i})\right]$$

The adaptive adversary

- The loss of action i at time t depends on the player's past m actions $\ell_t(i) \rightarrow \ell_t(I_{t-m}, \dots, I_{t-1}, i)$
- Examples: bandits with switching cost

Nonoblivious regret

$$R_{T}^{non} = \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}(I_{t-m}, \dots, I_{t-1}, \boldsymbol{I_{t}}) - \min_{i=1,\dots,N} \sum_{t=1}^{T} \ell_{t}(I_{t-m}, \dots, I_{t-1}, \boldsymbol{i})\right]$$

Policy regret
$$R_{T}^{pol} = \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}(I_{t-m}, \dots, I_{t-1}, \mathbf{I}_{t}) - \min_{i=1,\dots,N} \sum_{t=1}^{T} \ell_{t}(\underbrace{i,\dots,i}_{m \text{ times}}, \mathbf{i})\right]$$

 $R_{\rm T}^{\rm non} = O\big(\sqrt{{\rm TN}\ln N}\big)$

- Exp3 with biased loss estimates
- Is the $\sqrt{\ln N}$ factor necessary?

 $R_{T}^{non} = O(\sqrt{TN \ln N})$

Exp3 with biased loss estimates

• Is the $\sqrt{\ln N}$ factor necessary?

Bounds on the policy regret for any constant $m \ge 1$

$$\mathbf{R}_{\mathrm{T}}^{\mathrm{pol}} = \mathcal{O}\left((\mathrm{N}\ln\mathrm{N})^{1/3}\mathrm{T}^{2/3}\right)$$

- Achieved by a very simple player strategy
- Optimal up to log factors!

[Dekel, Koren, and Peres, 2014]

Partial monitoring: not observing any loss

Dynamic pricing: Perform as the best fixed price

- Post a T-shirt price
- Observe if next customer buys or not
- Adjust price

Feedback does not reveal the player's loss

Loss matrix

Feedback matrix

A characterization of minimax regret

Special case

Multiarmed bandits: loss and feedback matrix are the same

A characterization of minimax regret

Special case

Multiarmed bandits: loss and feedback matrix are the same

A general gap theorem [Bartok, Foster, Pál, Rakhlin and Szepesvári, 2013]

- A constructive characterization of the minimax regret for any pair of loss/feedback matrix
- Only three possible rates for nontrivial games:
 - Easy games (e.g., bandits): $\Theta(\sqrt{T})$
 - 2 Hard games (e.g., revealing action): $\Theta(T^{2/3})$
 - 3 Impossible games: $\Theta(\mathsf{T})$

A game equivalent to prediction with expert advice

Online linear optimization in the simplex

- Play \mathbf{p}_t from the N-dimensional simplex Δ_N
- **2** Incur linear loss $\mathbb{E}[\ell_t(I_t)] = \mathbf{p}_t^\top \ell_t$
- Observe loss gradient l_t

Regret: compete against the best point in the simplex

$$\sum_{t=1}^{T} \mathbf{p}_{t}^{\top} \boldsymbol{\ell}_{t} - \underbrace{\min_{\mathbf{q} \in \Delta_{N}} \sum_{t=1}^{T} \mathbf{q}^{\top} \boldsymbol{\ell}_{t}}_{= \min_{i=1,\dots,N} \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{\ell}_{t}(i)}$$

From game theory to machine learning

- Opponent's moves y_t are viewed as values or labels assigned to observations $x_t \in \mathbb{R}^d$ (e.g., categories of documents)
- A repeated game between the player choosing an element w_t of a linear space and the opponent choosing a label y_t for x_t
- Regret with respect to best element in the linear space

1 My beautiful regret

A supposedly fun game I'll play again

3 The joy of convex

N. Cesa-Bianchi (UNIMI)

Online convex optimization

- Play w_t from a convex and compact subset S of a linear space
- **2** Observe convex loss $\ell_t : S \to \mathbb{R}$ and pay $\ell_t(w_t)$
- **3** Update: $w_t \rightarrow w_{t+1} \in S$

Online convex optimization

- Play w_t from a convex and compact subset S of a linear space
- **2** Observe convex loss $\ell_t : S \to \mathbb{R}$ and pay $\ell_t(w_t)$
- **③** Update: $w_t \rightarrow w_{t+1} \in S$

Example

- Regression with square loss: $\ell_t(\boldsymbol{w}) = (\boldsymbol{w}^\top \boldsymbol{x}_t \boldsymbol{y}_t)^2 \quad \boldsymbol{y}_t \in \mathbb{R}$
- Classification with hinge loss: $\ell_t(w) = [1 y_t w^\top x_t]_+ y_t \in \{-1, +1\}$

[Zinkevich, 2003]

Online convex optimization

- Play w_t from a convex and compact subset S of a linear space
- **2** Observe convex loss $l_t : S \to \mathbb{R}$ and pay $l_t(w_t)$
- **③** Update: $w_t \rightarrow w_{t+1} \in S$

Example

- Regression with square loss: $\ell_t(\boldsymbol{w}) = (\boldsymbol{w}^\top \boldsymbol{x}_t \boldsymbol{y}_t)^2 \quad \boldsymbol{y}_t \in \mathbb{R}$
- Classification with hinge loss: $\ell_t(w) = [1 y_t w^\top x_t]_+ y_t \in \{-1, +1\}$

Regret

$$R_{\mathsf{T}}(\mathfrak{u}) = \sum_{\mathsf{t}=1}^{\mathsf{T}} \ell_{\mathsf{t}}(\boldsymbol{w}_{\mathsf{t}}) - \sum_{\mathsf{t}=1}^{\mathsf{T}} \ell_{\mathsf{t}}(\mathfrak{u}) \qquad \mathsf{u} \in S$$

Finding a good online algorithm

Follow the leader

$$w_{t+1} = \operatorname{arginf}_{w \in S} \sum_{s=1}^{t} \ell_s(w)$$

Regret can be linear due to lack of stability

$$S = [-1, +1] \qquad \ell_1(w) = \frac{w}{2} \qquad \ell_t(w) = \begin{cases} -w & \text{if t is even} \\ +w & \text{if t is odd} \end{cases}$$

Finding a good online algorithm

Follow the leader

$$w_{t+1} = \operatorname{arginf}_{w \in S} \sum_{s=1}^{t} \ell_s(w)$$

Regret can be linear due to lack of stability

$$S = [-1, +1] \qquad \ell_1(w) = \frac{w}{2} \qquad \ell_t(w) = \begin{cases} -w & \text{if t is even} \\ +w & \text{if t is odd} \end{cases}$$

• Note:
$$\sum_{s=1}^{t} \ell_s(w) = \begin{cases} -\frac{w}{2} & \text{if t is even} \\ +\frac{w}{2} & \text{if t is odd} \end{cases}$$

• Hence $\ell_{t+1}(w_{t+1}) = 1$ for all $t = 1, 2...$

Follow the regularized leader

[Shalev-Shwartz, 2007; Abernethy, Hazan and Rakhlin, 2008]

$$w_{t+1} = \underset{w \in S}{\operatorname{argmin}} \left[\eta \sum_{s=1}^{t} \ell_s(w) + \Phi(w) \right]$$

 Φ is a strongly convex regularizer and $\eta > 0$ is a scale parameter

Strong convexity

 $\Phi: S \to \mathbb{R}$ is β -strongly convex w.r.t. a norm $\|\cdot\|$ if for all $\mathbf{u}, \mathbf{v} \in S$

$$\Phi(\mathbf{v}) \ge \Phi(\mathbf{u}) + \nabla \Phi(\mathbf{u})^{\top} (\mathbf{v} - \mathbf{u}) + \frac{\beta}{2} \|\mathbf{u} - \mathbf{v}\|^2$$

Strong convexity

 Φ : $S \to \mathbb{R}$ is β -strongly convex w.r.t. a norm $\|\cdot\|$ if for all $\mathfrak{u}, \mathfrak{v} \in S$

$$\Phi(\mathbf{v}) \ge \Phi(\mathbf{u}) + \nabla \Phi(\mathbf{u})^{\top} (\mathbf{v} - \mathbf{u}) + \frac{\beta}{2} \|\mathbf{u} - \mathbf{v}\|^2$$

Smoothness

 $\Phi : S \to \mathbb{R}$ is α -smooth w.r.t. a norm $\|\cdot\|$ if for all $\mathbf{u}, \mathbf{v} \in S$

$$\Phi(\mathbf{v}) \leqslant \Phi(\mathbf{u}) + \nabla \Phi(\mathbf{u})^{\top} (\mathbf{v} - \mathbf{u}) + \frac{\alpha}{2} \|\mathbf{u} - \mathbf{v}\|^2$$

Strong convexity

 Φ : $S \to \mathbb{R}$ is β -strongly convex w.r.t. a norm $\|\cdot\|$ if for all $\mathfrak{u}, \mathfrak{v} \in S$

$$\Phi(\mathbf{v}) \ge \Phi(\mathbf{u}) + \nabla \Phi(\mathbf{u})^{\top}(\mathbf{v} - \mathbf{u}) + \frac{\beta}{2} \|\mathbf{u} - \mathbf{v}\|^2$$

Smoothness

 $\Phi: \mathbb{S} \to \mathbb{R}$ is α -smooth w.r.t. a norm $\|\cdot\|$ if for all $\mathbf{u}, \mathbf{v} \in \mathbb{S}$

$$\Phi(\mathbf{v}) \leq \Phi(\mathbf{u}) + \nabla \Phi(\mathbf{u})^{\top} (\mathbf{v} - \mathbf{u}) + \frac{\alpha}{2} \|\mathbf{u} - \mathbf{v}\|^2$$

• If Φ is β -strongly convex w.r.t. $\|\cdot\|_2$, then $\nabla^2 \Phi \succeq \beta I$

• If Φ is α -smooth w.r.t. $\|\cdot\|_2$, then $\nabla^2 \Phi \preceq \alpha I$

. BIST

• Euclidean norm: $\Phi = \frac{1}{2} \| \cdot \|_2^2$ is 1-strongly convex w.r.t. $\| \cdot \|_2$

Examples

• Euclidean norm: $\Phi = \frac{1}{2} \| \cdot \|_2^2$ is 1-strongly convex w.r.t. $\| \cdot \|_2$

• p-norm: $\Phi = \frac{1}{2} \| \cdot \|_p^2$ is (p-1)-strongly convex w.r.t. $\| \cdot \|_p$ (for 1)

• Euclidean norm: $\Phi = \frac{1}{2} \| \cdot \|_2^2$ is 1-strongly convex w.r.t. $\| \cdot \|_2$

- p-norm: $\Phi = \frac{1}{2} \| \cdot \|_p^2$ is (p-1)-strongly convex w.r.t. $\| \cdot \|_p$ (for 1)
- Entropy: $\Phi(\mathbf{p}) = \sum_{i=1}^{d} p_i \ln p_i$ is 1-strongly convex w.r.t. $\|\cdot\|_1$ (for **p** in the probability simplex)

• Euclidean norm: $\Phi = \frac{1}{2} \| \cdot \|_2^2$ is 1-strongly convex w.r.t. $\| \cdot \|_2$

- p-norm: $\Phi = \frac{1}{2} \| \cdot \|_p^2$ is (p-1)-strongly convex w.r.t. $\| \cdot \|_p$ (for 1)
- Entropy: $\Phi(\mathbf{p}) = \sum_{i=1}^{d} p_i \ln p_i$ is 1-strongly convex w.r.t. $\|\cdot\|_1$ (for **p** in the probability simplex)
- Power norm: $\Phi(w) = \frac{1}{2}w^{\top}Aw$ is 1-strongly convex w.r.t. $\|w\| = \sqrt{w^{\top}Aw}$

(for A symmetric and positive definite)

Convex duality

Definition

The convex dual of
$$\Phi$$
 is $\Phi^*(\theta) = \max_{w \in S} \left(\theta^\top w - \Phi(w) \right)$

1-dimensional example

- Convex $f : \mathbb{R} \to \mathbb{R}$ such that f(0) = 0
- $f^*(\theta) = \max_{w \in \mathbb{R}} (w \times \theta f(w))$
- The maximizer is w_0 such that $f'(w_0) = \theta$
- This gives $f^*(\theta) = w_0 \times f'(w_0) f(w_0)$
- As f(0) = 0, $f^*(\theta)$ is the error in approximating f(0) with a first-order expansion around $f(w_0)$

Convex duality

31/49

Examples

• Euclidean norm: $\Phi = \frac{1}{2} \| \cdot \|_2^2$ and $\Phi^* = \Phi$

Examples

- Euclidean norm: $\Phi = \frac{1}{2} \| \cdot \|_2^2$ and $\Phi^* = \Phi$
- p-norm: $\Phi = \frac{1}{2} \| \cdot \|_p^2$ and $\Phi^* = \frac{1}{2} \| \cdot \|_q^2$ where $\frac{1}{p} + \frac{1}{q} = 1$

Examples

- Euclidean norm: $\Phi = \frac{1}{2} \| \cdot \|_2^2$ and $\Phi^* = \Phi$
- p-norm: $\Phi = \frac{1}{2} \| \cdot \|_p^2$ and $\Phi^* = \frac{1}{2} \| \cdot \|_q^2$ where $\frac{1}{p} + \frac{1}{q} = 1$
- Entropy: $\Phi(\mathbf{p}) = \sum_{i=1}^{d} p_i \ln p_i$ and $\Phi^*(\theta) = \ln \left(e^{\theta_1} + \dots + e^{\theta_d} \right)$

Examples

- Euclidean norm: $\Phi = \frac{1}{2} \| \cdot \|_2^2$ and $\Phi^* = \Phi$
- p-norm: $\Phi = \frac{1}{2} \| \cdot \|_p^2$ and $\Phi^* = \frac{1}{2} \| \cdot \|_q^2$ where $\frac{1}{p} + \frac{1}{q} = 1$
- Entropy: $\Phi(\mathbf{p}) = \sum_{i=1}^{d} p_i \ln p_i$ and $\Phi^*(\theta) = \ln(e^{\theta_1} + \dots + e^{\theta_d})$
- Power norm: $\Phi(w) = \frac{1}{2}w^{\top}Aw$ and $\Phi^*(\theta) = \frac{1}{2}\theta^{\top}A^{-1}\theta$

Some useful properties

If $\Phi : S \to \mathbb{R}$ is β -strongly convex w.r.t. $\| \cdot \|$, then

Its convex dual Φ* is everywhere differentiable and ¹/_β-smooth w.r.t. || · ||_{*} (the dual norm of || · ||)

```
• \nabla \Phi^*(\theta) = \underset{w \in S}{\operatorname{argmax}} \left( \theta^\top w - \Phi(w) \right)
```


Some useful properties

If $\Phi : S \to \mathbb{R}$ is β -strongly convex w.r.t. $\| \cdot \|$, then

Its convex dual Φ* is everywhere differentiable and ¹/_β-smooth w.r.t. || · ||_{*} (the dual norm of || · ||)

•
$$\nabla \Phi^*(\theta) = \operatorname*{argmax}_{w \in S} \left(\theta^\top w - \Phi(w) \right)$$

Recall: Follow the regularized leader (FTRL)

$$w_{t+1} = \underset{w \in S}{\operatorname{argmin}} \left[\eta \sum_{s=1}^{t} \ell_s(w) + \Phi(w) \right]$$

 Φ is a strongly convex regularizer and $\eta>0$ is a scale parameter

Using the loss gradient

Linearization of convex losses

$$\ell_{t}(\boldsymbol{w}_{t}) - \ell_{t}(\boldsymbol{u}) \leqslant \underbrace{\nabla \ell_{t}(\boldsymbol{w}_{t})}_{\widetilde{\ell}_{t}}^{\top} \boldsymbol{w}_{t} - \underbrace{\nabla \ell_{t}(\boldsymbol{w}_{t})}_{\widetilde{\ell}_{t}}^{\top} \boldsymbol{u}$$

FTRL with linearized losses

$$w_{t+1} = \underset{w \in S}{\operatorname{argmin}} \left(\underbrace{\eta \sum_{s=1}^{t} \widetilde{\ell}_{s}^{\top} w}_{-\theta_{t+1}} + \Phi(w) \right) = \underset{w \in S}{\operatorname{argmax}} \left(\theta_{t+1}^{\top} w - \Phi(w) \right)$$
$$= \nabla \Phi^{*}(\theta_{t+1})$$

Note: $w_{t+1} \in S$ always holds

Constant of the second

The Mirror Descent algorithm

Recall:
$$\boldsymbol{w}_{t+1} = \nabla \Phi^* (\boldsymbol{\theta}_t) = \nabla \Phi^* \left(-\eta \sum_{s=1}^t \nabla \ell_s(\boldsymbol{w}_s) \right)$$

Online Mirror Descent (FTRL with linearized losses)

For t = 1, 2, ...

- Use $w_t = \nabla \Phi^*(\theta_t)$ // dual parameter (via mirror step)
 - 2 Suffer loss $\ell_t(w_t)$
- Observe loss gradient $\nabla \ell_t(w_t)$
- Update $\theta_{t+1} = \theta_t \eta \nabla \ell_t(w_t)$

// gradient step

An equivalent formulation

Under some assumptions on the regularizer Φ , OMD can be equivalently written in terms of projected gradient descent

Online Mirror Descent (alternative version)

Parameters: Strongly convex regularizer Φ and learning rate $\eta > 0$ **Initialize:** $z_1 = \nabla \Phi^*(\mathbf{0})$ and $w_1 = \underset{w \in S}{\operatorname{argmin}} D_{\Phi}(w || z_1)$

For t = 1, 2, ...

• Use w_t and suffer loss $\ell_t(w_t)$

2 Observe loss gradient $\nabla \ell_t(w_t)$

9 Update
$$z_{t+1} = \nabla \Phi^* \Big(\nabla \Phi(z_t) - \eta \nabla \ell_t(w_t) \Big)$$
 // gradient step
9 $w_{t+1} = \underset{w \in S}{\operatorname{argmin}} D_{\Phi} \Big(w \| z_{t+1} \Big)$ // projection step

An equivalent formulation

Under some assumptions on the regularizer Φ , OMD can be equivalently written in terms of projected gradient descent

Online Mirror Descent (alternative version)

Parameters: Strongly convex regularizer Φ and learning rate $\eta > 0$ **Initialize:** $z_1 = \nabla \Phi^*(\mathbf{0})$ and $w_1 = \underset{w \in S}{\operatorname{argmin}} D_{\Phi}(w || z_1)$

For t = 1, 2, ...

• Use w_t and suffer loss $\ell_t(w_t)$

2 Observe loss gradient $\nabla \ell_t(w_t)$

9 Update
$$z_{t+1} = \nabla \Phi^* \Big(\nabla \Phi(z_t) - \eta \nabla \ell_t(w_t) \Big)$$
 // gradient step
9 $w_{t+1} = \underset{w \in S}{\operatorname{argmin}} D_{\Phi}(w \| z_{t+1})$ // projection step

D_{Φ} is the Bregman divergence induced by Φ

Some examples

Some examples

Online Gradient Descent (OGD)

[Zinkevich, 2003; Gentile, 2003]

[Kivinen and Warmuth, 1997]

$$\Phi(\boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{w}\|^2$$
 p-norm version: $\Phi(\boldsymbol{w}) = \frac{1}{2}$

• Update:
$$w' = w_t - \eta \nabla \ell_t(w_t)$$

$$p\text{-norm version: } \Phi(w) = \frac{1}{2} \|w\|_{\mathfrak{p}}^{2}$$
$$w_{t+1} = \underset{w \in S}{\operatorname{arginf}} \|w - w'\|_{2}$$

Exponentiated gradient (EG)

•
$$\Phi(\mathbf{p}) = \sum_{i=1}^{d} p_i \ln p_i$$

•
$$p_{t+1,i} = \frac{p_{t,i}e^{-\eta \nabla \ell_t(\mathbf{p}_t)_i}}{\sum_{i=1}^{d} p_{t,i}e^{-\eta \nabla \ell_t(\mathbf{p}_t)_j}}$$

$$\mathbf{p} \in S \equiv \text{simplex}$$

Note: when losses are linear this is Hedge

-

Regret analysis

Regret bound

[Kakade, Shalev-Shwartz and Tewari, 2012]

$$R_{\mathsf{T}}(\mathfrak{u}) \leqslant \frac{\Phi(\mathfrak{u}) - \min_{\mathfrak{w} \in S} \Phi(\mathfrak{w})}{\eta} + \frac{\eta}{2} \sum_{t=1}^{\mathsf{T}} \frac{\|\nabla \ell_t(\mathfrak{w}_t)\|_*^2}{\beta}$$

for all $u \in S$, where l_1, l_2, \ldots are arbitrary convex losses

- $\mathbb{R}_{\mathsf{T}}(\mathbf{u}) \leq \mathsf{GD}\sqrt{\mathsf{T}} \text{ for all } \mathbf{u} \in \mathsf{S}$ when η is tuned w.r.t. $\sup_{w \in \mathsf{S}} \|\nabla \ell_{\mathsf{t}}(w)\|_{*} \leq \mathsf{G}$ $\sqrt{\sup_{\mathbf{u}, w \in \mathsf{S}} \left(\Phi(\mathbf{u}) - \Phi(w)\right)} \leq \mathsf{D}$ • Boundedness of gradients of ℓ_{t} w.r.t. $\|\mathbf{u}\|_{*}$ equivalent to
- Boundedness of gradients of ℓ_t w.r.t. $\|\cdot\|_*$ equivalent to Lipschitzess of ℓ_t w.r.t. $\|\cdot\|$
- Regret bound optimal for general convex losses l_t

Analysis relies on smoothness of Φ^*

$$\Phi^{*}(\boldsymbol{\theta}_{t+1}) - \Phi^{*}(\boldsymbol{\theta}_{t}) \leq \underbrace{\nabla \Phi^{*}(\boldsymbol{\theta}_{t})}_{\boldsymbol{w}_{t}}^{\top} \left(\underbrace{\boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_{t}}_{-\eta \nabla \ell_{t}(\boldsymbol{w}_{t})} \right) + \frac{1}{2\beta} \left\| \boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_{t} \right\|_{*}^{2}$$

Analysis relies on smoothness of Φ^*

$$\begin{split} \Phi^*(\boldsymbol{\theta}_{t+1}) - \Phi^*(\boldsymbol{\theta}_t) &\leq \underbrace{\nabla \Phi^*(\boldsymbol{\theta}_t)}_{\boldsymbol{w}_t}^\top \left(\underbrace{\boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_t}_{-\eta \nabla \ell_t(\boldsymbol{w}_t)} \right) + \frac{1}{2\beta} \left\| \boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_t \right\|_*^2 \\ &\sum_{t=1}^T - \eta \mathbf{u}^\top \nabla \ell_t(\boldsymbol{w}_t) - \Phi(\mathbf{u}) = \mathbf{u}^\top \boldsymbol{\theta}_{T+1} - \Phi(\mathbf{u}) \\ &\leq \Phi^*(\boldsymbol{\theta}_{T+1}) \quad \text{Fenchel-Young inequality} \end{split}$$

$$= \sum_{t=1}^{T} \left(\Phi^*(\boldsymbol{\theta}_{t+1}) - \Phi^*(\boldsymbol{\theta}_{t}) \right) + \Phi^*(\boldsymbol{\theta}_{1})$$

$$\leq \sum_{t=1}^{T} \left(-\eta \boldsymbol{w}_t^\top \nabla \ell_t(\boldsymbol{w}_t) + \frac{\eta^2}{2\beta} \left\| \nabla \ell_t(\boldsymbol{w}_t) \right\|_*^2 \right) + \Phi^*(\boldsymbol{0})$$

Analysis relies on smoothness of Φ^*

$$\begin{split} \Phi^*(\boldsymbol{\theta}_{t+1}) - \Phi^*(\boldsymbol{\theta}_t) &\leqslant \underbrace{\nabla \Phi^*(\boldsymbol{\theta}_t)}_{\boldsymbol{w}_t}^\top \left(\underbrace{\boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_t}_{-\eta \nabla \ell_t(\boldsymbol{w}_t)} \right) + \frac{1}{2\beta} \left\| \boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_t \right\|_*^2 \\ &\sum_{t=1}^T - \eta \mathbf{u}^\top \nabla \ell_t(\boldsymbol{w}_t) - \Phi(\mathbf{u}) = \mathbf{u}^\top \boldsymbol{\theta}_{T+1} - \Phi(\mathbf{u}) \\ &\leqslant \Phi^*(\boldsymbol{\theta}_{T+1}) \quad \text{Fenchel-Young inequality} \\ &= \sum_{t=1}^T \left(\Phi^*(\boldsymbol{\theta}_{t+1}) - \Phi^*(\boldsymbol{\theta}_t) \right) + \Phi^*(\boldsymbol{\theta}_1) \\ &\leqslant \sum_{t=1}^T \left(-\eta \boldsymbol{w}_t^\top \nabla \ell_t(\boldsymbol{w}_t) + \frac{\eta^2}{2\beta} \left\| \nabla \ell_t(\boldsymbol{w}_t) \right\|_*^2 \right) + \Phi^*(\mathbf{0}) \end{split}$$

 $\Phi^*(\mathbf{0}) = \max_{\boldsymbol{w} \in S} \left(\boldsymbol{w}^\top \mathbf{0} - \Phi(\boldsymbol{w}) \right) = -\min_{\boldsymbol{w} \in S} \Phi(\boldsymbol{w})$

Some examples

$\ell_{t}(\boldsymbol{w}) \rightarrow \ell_{t}\left(\boldsymbol{w}^{\top}\boldsymbol{x}_{t}\right) \qquad \max_{t} |\ell_{t}'| \leqslant L \qquad \max_{t} \left\|\boldsymbol{x}_{t}\right\|_{p} \leqslant X_{p}$

 $\ell_{t}(\boldsymbol{w}) \rightarrow \ell_{t}\left(\boldsymbol{w}^{\top}\boldsymbol{x}_{t}\right) \qquad \max_{t} \left|\ell_{t}'\right| \leqslant L \qquad \max_{t} \left\|\boldsymbol{x}_{t}\right\|_{p} \leqslant X_{p}$

Bounds for OGD with convex losses

 $R_T(u) \leqslant BLX_2 \sqrt{T} = \mathbb{O} \big(dL \sqrt{T} \big)$

for all **u** such that $||\mathbf{u}||_2 \leq B$

 $\ell_{t}(\boldsymbol{w}) \rightarrow \ell_{t}\left(\boldsymbol{w}^{\top}\boldsymbol{x}_{t}\right) \qquad \max_{t} |\ell_{t}'| \leqslant L \qquad \max_{t} \left\|\boldsymbol{x}_{t}\right\|_{p} \leqslant X_{p}$

Bounds for OGD with convex losses

 $R_{T}(u) \leqslant BLX_{2}\sqrt{T} = O\left(dL\sqrt{T}\right)$

for all **u** such that $||\mathbf{u}||_2 \leq B$

Bounds logarithmic in the dimension

- Regret bound for EG run in the simplex, $S = \Delta_d$ $R_T(q) \leq LX_{\infty} \sqrt{(\ln d)T} = O(L\sqrt{(\ln d)T})$ $p \in \Delta_d$
- Same bound for p-norm regularizer with $p = \frac{\ln d}{\ln d 1}$
- If losses are linear with [0, 1] coefficients then we recover the bound for Hedge

Exploiting curvature: minimization of SVM objective

- Training set $(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_m, \mathbf{y}_m) \in \mathbb{R}^d \times \{-1, +1\}$
- SVM objective $F(w) = \frac{1}{m} \sum_{t=1}^{m} \underbrace{\left[1 y_t w^\top x_t\right]_+}_{\text{hinge loss } h_t(w)} + \frac{\lambda}{2} \|w\|^2 \text{ over } \mathbb{R}^d$

• Rewrite
$$F(w) = \frac{1}{m} \sum_{t=1}^{m} \ell_t(w)$$

where
$$\ell_t(w) = h_t(w) + \frac{\lambda}{2} \|w\|^2$$

• Each loss ℓ_t is λ -strongly convex

Exploiting curvature: minimization of SVM objective

- Training set $(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_m, \mathbf{y}_m) \in \mathbb{R}^d \times \{-1, +1\}$
- SVM objective $F(w) = \frac{1}{m} \sum_{t=1}^{m} \underbrace{\left[1 y_t w^\top x_t\right]_+}_{\text{hinge loss } h_t(w)} + \frac{\lambda}{2} \|w\|^2 \text{ over } \mathbb{R}^d$

• Rewrite
$$F(w) = \frac{1}{m} \sum_{t=1}^{m} \ell_t(w)$$

where
$$\ell_{t}(\boldsymbol{w}) = h_{t}(\boldsymbol{w}) + \frac{\lambda}{2} \|\boldsymbol{w}\|^{2}$$

• Each loss ℓ_t is λ -strongly convex

The Pegasos algorithm

• Run OGD on random sequence of T training examples

•
$$\mathbb{E}\left[F\left(\frac{1}{\mathsf{T}}\sum_{t=1}^{\mathsf{T}}\boldsymbol{w}_{t}\right)\right] \leq \min_{\boldsymbol{w}\in\mathbb{R}^{d}}F(\boldsymbol{w}) + \frac{\mathsf{G}^{2}}{2\lambda}\frac{\ln\mathsf{T}+1}{\mathsf{T}}$$

• $O(\ln T)$ rates hold for any sequence of strongly convex losses

Exp-concavity (strong convexity along the gradient direction)

- A convex $\ell : S \to \mathbb{R}$ is α -exp-concave when $g(w) = e^{-\alpha \ell(w)}$ is concave
- For twice-differentiable losses: $\nabla^2 \ell(w) \succeq \alpha \nabla \ell(w) \nabla \ell(w)^\top$ for all $w \in S$
- $l_t(w) = -\ln(w^T x_t)$ is exp-concave

Online Newton Step

• Update: $w' = A_t^{-1} \nabla \ell_t(w_t)$ $w_{t+1} = \underset{w \in S}{\operatorname{argmin}} ||w - w'||_{A_t}$ • Where $A_t = \varepsilon I + \sum_{s=1}^t \nabla \ell_s(w_s) \nabla \ell_s(w_s)^\top$ Note: Not an instance of OMD

Online Newton Step

• Update: $w' = A_t^{-1} \nabla \ell_t(w_t)$ $w_{t+1} = \underset{w \in S}{\operatorname{argmin}} \|w - w'\|_{A_t}$ • Where $A_t = \varepsilon I + \sum_{s=1}^t \nabla \ell_s(w_s) \nabla \ell_s(w_s)^\top$ Note: Not an instance of OMD

Logarithmic regret bound for exp-concave losses

$$R_{T}(\mathbf{u}) \leq 5d\left(\frac{1}{\alpha} + GD\right) \ln(T+1) \qquad \mathbf{u} \in S$$

Online Newton Step

• Update: $w' = A_t^{-1} \nabla \ell_t(w_t)$ $w_{t+1} = \underset{w \in S}{\operatorname{argmin}} \|w - w'\|_{A_t}$ • Where $A_t = \varepsilon I + \sum_{s=1}^t \nabla \ell_s(w_s) \nabla \ell_s(w_s)^\top$ Note: Not an instance of OMD

Logarithmic regret bound for exp-concave losses

$$R_{\mathsf{T}}(\mathfrak{u}) \leqslant 5d\left(\frac{1}{\alpha} + \mathsf{GD}\right)\ln(\mathsf{T}+1) \qquad \mathfrak{u} \in \mathsf{S}$$

Extension of ONS to convex losses [Luo, Agarwal, C-B, Langford, 2016]

$$\ell_t(\boldsymbol{w}) \to \ell_t\big(\boldsymbol{w}^\top \boldsymbol{x}_t\big) \qquad \max_t |\ell_t'| \leqslant L$$

 $R_{\mathsf{T}}(\mathfrak{u}) \leqslant \widetilde{\mathbb{O}}\big(\mathsf{CL}\,\sqrt{\mathsf{dT}}\big) \quad \text{for all } \mathfrak{u} \text{ s.t. } \left|\mathfrak{u}^{\top} \mathbf{x}_{\mathsf{t}}\right| \leqslant \mathsf{C}$

Invariance to linear transformations of the data

N. Cesa-Bianchi (UNIMI)

Online Ridge Regression [Vovk, 2001; Azoury and Warmuth, 2001]

Logarithmic regret for square loss

$$\ell_{t}(\mathbf{u}) = \left(\mathbf{u}^{\mathsf{T}}\mathbf{x}_{t} - \mathbf{y}_{t}\right)^{2} \qquad \mathbf{Y} = \max_{t=1,\dots,T} |\mathbf{y}_{t}| \qquad \mathbf{X} = \max_{t=1,\dots,T} \|\mathbf{x}_{t}\|$$

• OMD with adaptive regularizer $\Phi_t(w) = \frac{1}{2} \|w\|_{A_t}^2$

• Where
$$A_t = I + \sum_{s=1}^t x_s x_s^{\top}$$
 and $\theta_t = \sum_{s=1}^t -y_s x_s$

• Regret bound (oracle inequality)

$$\sum_{t=1}^{T} \ell_t(\boldsymbol{w}_t) \leq \inf_{\boldsymbol{u} \in \mathbb{R}^d} \left(\sum_{t=1}^{T} \ell_t(\boldsymbol{u}) + \|\boldsymbol{u}\|^2 \right) + dY^2 \ln\left(1 + \frac{TX^2}{d}\right)$$

Parameterless

• Scale-free: unbounded comparison set

Scale free algorithm for convex losses [Orabona and Pál, 2015]

Scale free algorithm for convex losses

• OMD with adaptive regularizer

$$\Phi_{\mathbf{t}}(\boldsymbol{w}) = \Phi_{0}(\boldsymbol{w}) \sqrt{\sum_{s=1}^{\mathbf{t}-1} \|
abla \ell_{s}(\boldsymbol{w}_{s}) \|_{*}^{2}}$$

- Φ_0 is a β -strongly convex base regularizer
- Regret bound (oracle inequality) for convex loss functions ℓ_t

$$\sum_{t=1}^{T} \ell_t(\boldsymbol{w}_t) \leqslant \inf_{\boldsymbol{u} \in \mathbb{R}^d} \sum_{t=1}^{T} \ell_t(\boldsymbol{u}) + \left(\Phi_0(\boldsymbol{u}) + \frac{1}{\beta} + \max_t \left\|\nabla \ell_t(\boldsymbol{w}_t)\right\|_*\right) \sqrt{T}$$

$$\boldsymbol{w}_{t+1} = \mathbb{E}_{\boldsymbol{Z}} \left[\operatorname{argmin}_{\boldsymbol{w} \in S} \sum_{s=1}^{t} \left(\eta \nabla \ell_{s}(\boldsymbol{w}_{s}) + \boldsymbol{Z} \right)^{\mathsf{T}} \boldsymbol{w} \right]$$

- The distribution of Z must be "stable" (small variance and small average sensitivity)
- Regret bound similar to FTRL/OMD
- For some choices of Z, FPL becomes equivalent to OMD [Abernethy, Lee, Sinha and Tewari, 2014]
- Linear losses: Follow the Perturbed Leader algorithm [Kalai and Vempala, 2005]

Nonstationarity

- If data source is not fitted well by any model in the class, then comparing to the best model $u \in S$ is trivial
- Compare instead to the best sequence $\mathbf{u}_1, \mathbf{u}_2, \dots \in S$ of models

Strongly adaptive regret

Definition

For all intervals $I = \{r, \dots, s\}$ with $1 \le r < s \le T$

$$R_{\mathsf{T},\mathrm{I}}(\mathfrak{u}) = \sum_{\mathsf{t}\in\mathrm{I}} \ell_{\mathsf{t}}(\mathfrak{w}_{\mathsf{t}}) - \sum_{\mathsf{t}\in\mathrm{I}} \ell_{\mathsf{t}}(\mathfrak{u})$$

Definition

For all intervals $I = \{r, ..., s\}$ with $1 \le r < s \le T$

$$R_{\mathsf{T},\mathsf{I}}(\mathfrak{u}) = \sum_{\mathsf{t}\in\mathsf{I}} \ell_{\mathsf{t}}(\boldsymbol{w}_{\mathsf{t}}) - \sum_{\mathsf{t}\in\mathsf{I}} \ell_{\mathsf{t}}(\mathfrak{u})$$

Regret bound for strongly adaptive OGD

 $R_{T,I}(\mathbf{u}) \leq (BLX_2 + \ln(T+1))\sqrt{|I|}$ for all \mathbf{u} such that $\|\mathbf{u}\|_2 \leq B$

Definition

For all intervals $I = \{r, ..., s\}$ with $1 \le r < s \le T$

$$R_{\mathsf{T},\mathsf{I}}(\mathsf{u}) = \sum_{\mathsf{t}\in\mathsf{I}} \ell_{\mathsf{t}}(w_{\mathsf{t}}) - \sum_{\mathsf{t}\in\mathsf{I}} \ell_{\mathsf{t}}(\mathsf{u})$$

Regret bound for strongly adaptive OGD

 $R_{\mathsf{T},I}(\mathfrak{u}) \leqslant \left(\mathsf{BLX}_2 + \ln(\mathsf{T}+1)\right) \sqrt{|I|} \qquad \text{for all } \mathfrak{u} \text{ such that } \|\mathfrak{u}\|_2 \leqslant \mathsf{B}$

Remarks

- Generic black-box reduction applicable to any online learning algorithm
- It runs a logarithmic number of instances of the base learner

- Play w_t from a convex and compact subset S of a linear space
- ② Observe $\ell_t(w_t)$, where $\ell: S \to \mathbb{R}$ is unobserved convex loss
- **3** Update: $w_t \rightarrow w_{t+1} \in S$

Regret:
$$R_T(\mathbf{u}) = \sum_{t=1}^T \ell_t(\mathbf{w}_t) - \sum_{t=1}^T \ell_t(\mathbf{u}) \qquad \mathbf{u} \in S$$

- Play w_t from a convex and compact subset S of a linear space
- **2** Observe $\ell_t(w_t)$, where $\ell: S \to \mathbb{R}$ is unobserved convex loss
- **3** Update: $w_t \rightarrow w_{t+1} \in S$

Regret:
$$R_T(\mathbf{u}) = \sum_{t=1}^T \ell_t(\mathbf{w}_t) - \sum_{t=1}^T \ell_t(\mathbf{u}) \qquad \mathbf{u} \in S$$

Results

• Linear losses: $\Omega(d\sqrt{T})$

[Dani, Hayes, and Kakade, 2008]

- If w_t from a convex and compact subset S of a linear space
- Observe $\ell_t(w_t)$, where $\ell: S \to \mathbb{R}$ is unobserved convex loss
- **3** Update: $w_t \rightarrow w_{t+1} \in S$

Regret:
$$R_T(\mathbf{u}) = \sum_{t=1}^T \ell_t(w_t) - \sum_{t=1}^T \ell_t(\mathbf{u}) \qquad \mathbf{u} \in S$$

Results

- Linear losses: $\Omega(d\sqrt{T})$
- Linear losses: $\tilde{O}(d\sqrt{T})$

[Dani, Hayes, and Kakade, 2008] [Bubeck, C-B, and Kakade, 2012]

- If w_t from a convex and compact subset S of a linear space
- **2** Observe $\ell_t(w_t)$, where $\ell: S \to \mathbb{R}$ is unobserved convex loss
- **3** Update: $w_t \rightarrow w_{t+1} \in S$

Regret:
$$R_T(\mathbf{u}) = \sum_{t=1}^T \ell_t(w_t) - \sum_{t=1}^T \ell_t(\mathbf{u}) \qquad \mathbf{u} \in S$$

Results

- Linear losses: $\Omega(d\sqrt{T})$
- Linear losses: $\tilde{O}(d\sqrt{T})$

[Dani, Hayes, and Kakade, 2008]

[Bubeck, C-B, and Kakade, 2012]

• Strongly convex and smooth losses: $\widetilde{O}(d^{3/2}\sqrt{T})$

[Hazan and Levy, 2014]

- If w_t from a convex and compact subset S of a linear space
- **2** Observe $\ell_t(w_t)$, where $\ell: S \to \mathbb{R}$ is unobserved convex loss
- **3** Update: $w_t \rightarrow w_{t+1} \in S$

Regret:
$$R_T(\mathbf{u}) = \sum_{t=1}^T \ell_t(\mathbf{w}_t) - \sum_{t=1}^T \ell_t(\mathbf{u}) \qquad \mathbf{u} \in S$$

Results

 Linear losses: Ω(d√T) [Dani, Hayes, and Kakade, 2008]
 Linear losses: Õ(d√T) [Bubeck, C-B, and Kakade, 2012]
 Strongly convex and smooth losses: Õ(d^{3/2}√T) [Hazan and Levy, 2014]
 Convex losses: Õ(d^{9.5}√T) [Bubeck, Eldan, and Lee, 2016]