
Uniform Convergence for Learning Binary
Classifcation

• Given a concept class C, and a training set sampled from D,
{(xi , c(xi )) | i = 1, . . . ,m}.

• For any h ∈ C, let ∆(c, h) be the set of items on which the
two classifiers differ: ∆(c, h) = {x ∈ U | h(x) 6= c(x)}

• For the realizable case we need a training set (sample) that
with probability 1− δ intersects every set in

{∆(c, h) | Pr(∆(c, h)) ≥ ε} (ε-net)

• For the unrealizable case we need a training set that with
probability 1− δ estimates, within additive error ε, every set in

∆(c, h) = {x ∈ U | h(x) 6= c(x)} (ε-sample).

• Under what conditions can a finite sample achieve these
requirements?

• What sample size is needed?



Uniform Convergence Sets

Given a collection R of sets in a universe X , under what conditions
a finite sample N from an arbitrary distribution D over X , satisfies
with probability 1− δ,

1
∀r ∈ R, Pr

D
(r) ≥ ε⇒ r ∩ N 6= ∅ (ε-net)

2 for any r ∈ R,∣∣∣∣PrD (r)− |N ∩ r |
|N|

∣∣∣∣ ≤ ε (ε-sample)



Vapnik–Chervonenkis (VC) - Dimension

(X ,R) is called a "range space":

• X = finite or infinite set (the set of objects to learn)
• R is a family of subsets of X , R ⊆ 2X .
• For a finite set S ⊆ X , |S| = m, define the projection of R on
S,

ΠR(S) = {r ∩ S | r ∈ R}.

• If |ΠR(S)| = 2m we say that R shatters S.
• The VC-dimension of (X ,R) is the maximum size of S ⊆ X
that is shattered by R. If there is no maximum, the
VC-dimension is ∞.



The	VC-Dimension	of	a	Collec2on	of	
Intervals	

C	=	collec2ons	of	intervals	in	[A,B]	–	can	sha>er	2	point		
but	not	3.	No	interval	includes	only	the	two	red	points	
	

The	VC-dimension	of	C	is	2	



Collec&on	of	Half	Spaces	in	the	Plane	

C	–	all	half	space	par&&ons	in	the	plane.	Any	3	
points	can	be	sha:ered:	
	

•  Cannot	par&&on	the	red	from	the	blue	points	
•  The	VC-dimension	of	half	spaces	on	the	plane	is	3	
•  The	VC-dimension	of	half	spaces	in	d-dimension	

space	is	d+1	

	



	Axis-parallel	rectangles	on	the	plane		
	

4	points	that	define	a	convex	hull	can	be	sha8ered.		
	
No	five	points	can	be	sha8ered	since	one	of	the	points	
must	be	in	the	convex	hull	of	the	other	four.		



Convex	Bodies	in	the	Plane	

•  C	–	all	convex	bodies	on	the	plane		

Any	subset	of	the	point	can	be	included	in	a	convex	body.		
The	VC-dimension	of	C	is	∞	



A Few Examples

• C = set of intervals on the line. Any two points can be
shattered, no three points can be shattered.

• C = set of linear half spaces in the plane. Any three points
can be shattered but no set of 4 points. If the 4 points define
a convex hull let one diagonal be 0 and the other diagonal be
1. If one point is in the convex hull of the other three, let the
interior point be 1 and the remaining 3 points be 0.

• C = set of axis-parallel rectangles on the plane. 4 points that
define a convex hull can be shattered. No five points can be
shattered since one of the points must be in the convex hull of
the other four.

• C = all convex sets in R2. Let S be a set of n points on a
boundary of a cycle. Any subset Y ⊂ S defines a convex set
that doesn’t include S \ Y .



Estimating Probabilities - ε-sample

Definition
An ε-sample for a range space (X ,R), with respect to a probability
distribution D defined on X , is a subset N ⊆ X such that, for any
r ∈ R, ∣∣∣∣PrD (r)− |N ∩ r |

|N|

∣∣∣∣ ≤ ε .
Theorem
Let (X ,R) be a range space with VC dimension d and let D be a
probability distribution on X. For any 0 < ε, δ < 1/2, there is an

m = O
(
d
ε2

ln d
ε

+
1
ε2

ln 1
δ

)
such that a random sample from D of size greater than or equal to
m is an ε-sample for X with with probability at least 1− δ.



Sauer’s Lemma

For a finite set S ⊆ X , s = |S|, define the projection of R on S,

ΠR(S) = {r ∩ S | r ∈ R}.

Theorem
Let (X ,R) be a range space with VC-dimension d, for S ⊆ X, such
that |S| = m,

|ΠR(S)| ≤
d∑

i=0

(
m
i

)
.

For m = d , |ΠR(S)| = 2d , and for m > d ≥ 2, |ΠR(S)| ≤ md .



Proof
• By induction on d and (for each d) on n, obvious for d = 0, 1
with any n.

• Assume that the claim holds for all |S ′| ≤ n − 1 and
d ′ ≤ d − 1 and let |S| = n.

• Fix x ∈ S and let S ′ = S − {x}.

|ΠR(S)| = |{r ∩ S | r ∈ R}|
|ΠR(S ′)| = |{r ∩ S ′ | r ∈ R}|

|ΠR(x)(S ′)| = |{r ∩ S ′ | r ∈ R and x 6∈ r and r ∪ {x} ∈ R}|

• For r1 ∩ S 6= r2 ∩ S we have r1 ∩ S ′ = r2 ∩ S ′ iff r1 = r2 ∪ {x},
or r2 = r1 ∪ {x}. Thus,

|ΠR(S)| = |ΠR(S ′)|+ |ΠR(x)(S ′)|



Fix x ∈ S and let S ′ = S − {x}.

|ΠR(S)| = |{r ∩ S | r ∈ R}|
|ΠR(S ′)| = |{r ∩ S ′ | r ∈ R}|

|ΠR(x)(S ′)| = |{r ∩ S ′ | r ∈ R and x 6∈ r and r ∪ {x} ∈ R}|

• The VC-dimension of (S,ΠR(S)) is no more than the
VC-dimension of (X ,R), which is d .

• The VC-dimension of the range space (S ′,ΠR(S ′)) is no more
than the VC-dimension of (S,ΠR(S)) and |S ′| = n − 1, thus
by the induction hypothesis |ΠR(S ′)| ≤

∑d
i=0
(n−1

i
)
.

• For each r ∈ ΠR(x)(S ′) the range set ΠS(R) has two sets: r
and r ∪ {x}. If B is shattered by (S ′,ΠR(x)(S ′)) then B ∪ {x}
is shattered by (X ,R), thus (S ′,ΠR(x)(S ′)) has VC-dimension
bounded by d − 1, and |ΠR(x)(S ′)| ≤

∑d−1
i=0

(n−1
i
)
.



|ΠR(S)| = |ΠR(S ′)|+ |ΠR(x)(S ′)|

|ΠR(S)| ≤
d∑

i=0

(
n − 1
i

)
+

d−1∑
i=0

(
n − 1
i

)

= 1 +
d∑

i=1

((n − 1
i

)
+

(
n − 1
i − 1

))
=

d∑
i=0

(
n
i

)
≤

d∑
i=0

ni

i! ≤ nd

[We use
(n−1

i−1
)

+
(n−1

i
)

= (n−1)!
(i−1)!(n−i−1)!(

1
n−i + 1

i ) =
(n

i
)
]

The number of distinct concepts on n elements grows polynomially
in the VC-dimension!



ε-sample

Definition
An ε-sample for a range space (X ,R), with respect to a probability
distribution D defined on X , is a subset N ⊆ X such that, for any
r ∈ R, ∣∣∣∣PrD (r)− |N ∩ r |

|N|

∣∣∣∣ ≤ ε .
Theorem
Let (X ,R) be a range space with VC dimension d and let D be a
probability distribution on X. For any 0 < ε, δ < 1/2, there is an

m = O
(
d
ε2

ln d
ε

+
1
ε2

ln 1
δ

)
such that a random sample from D of size greater than or equal to
m is an ε-sample for X with with probability at least 1− δ.



Proof of the ε-Sample Theorem
Let N be a set of m independent samples from X according to D.
Let

E1 =

{
∃r ∈ R s.t.

∣∣∣∣ |N ∩ r |
m − Pr(r)

∣∣∣∣ > ε

}
.

We want to show that Pr(E1) ≤ δ.

Choose another set T of m independent samples from X according
to D. Let

E2 =

{
∃r ∈ R s.t.

∣∣∣∣ |N ∩ r |
m − Pr(r)

∣∣∣∣ > ε ∧
∣∣∣∣Pr(r)− |T ∩ r |

m

∣∣∣∣ ≤ ε/2}

Lemma

Pr(E2) ≤ Pr(E1) ≤ 2Pr(E2).



Lemma
Pr(E2) ≤ Pr(E1) ≤ 2Pr(E2).

E1 =

{
∃r ∈ R s.t.

∣∣∣∣ |N ∩ r |
m − Pr(r)

∣∣∣∣ > ε

}

E2 =

{
∃r ∈ R s.t.

∣∣∣∣ |N ∩ r |
m − Pr(r)

∣∣∣∣ > ε ∧
∣∣∣∣ |T ∩ r |

m − Pr(r)

∣∣∣∣ ≤ ε/2}

For m ≥ 24
ε ,

Pr(E2)

Pr(E1)
=

Pr(E1 ∩ E2)

Pr(E1)
= Pr(E2|E1) ≥ Pr(| |T ∩ r |

m − Pr(r)| ≤ ε/2)

≥ 1− 2e−εm/12 ≥ 1/2



Instead of bounding the probability of

E2 =

{
∃r ∈ R s.t.

∣∣∣∣ |N ∩ r |
m − Pr(r)

∣∣∣∣ > ε ∧
∣∣∣∣ |T ∩ r |

m − Pr(r)

∣∣∣∣ ≤ ε/2}
we bound the probability of

E ′2 = {∃r ∈ R | ||r ∩ N| − |r ∩ T || ≥ ε

2m}.

Since

||r ∩N|− |r ∩T || ≥ ||r ∩N|−mPr
D

(r)|− ||r ∩T |−mPr
D

(r)| ≥ ε

2m.



Lemma

Pr(E1) ≤ 2Pr(E2) ≤ 2Pr(E ′2) ≤ 2(2m)de−ε2m/8.

• Since N and T are random samples, we can first choose a
random sample of 2m elements Z = z1, . . . , z2m and then
partition it randomly into two sets of size m each.

• Since Z is a random sample, any partition that is independent
of the actual values of the elements generates two random
samples.

• We will use the following partition: for each pair of sampled
items z2i−1 and z2i , i = 1, . . . ,m, with probability 1/2
(independent of other choices) we place z2i−1 in T and z2i in
N, otherwise we place z2i−1 in N and z2i in T .



For r ∈ R, let Br be the event

Br =
{
||r ∩ N| − |r ∩ T || ≥ ε

2m
}
. E ′2 =

⋃
r∈R

Br

The event Br depends only on the random partition of Z into N
and T . Its doesn’t depend on the selection of Z .

• If z2i−1, z2i ∈ r or z2i−1, z2i 6∈ r they don’t contribute to the
value of ||r ∩ N| − |r ∩ T ||.

• If just one of the pair z2i−1 and z2i is in r then their
contribution is +1 or −1 with equal probabilities.

• There are at least εm/2 pairs that contribute +1 or −1 with
equal probabilities. Applying the Chernoff bound we have

Pr(Er ) ≤ e−ε2m/8.



Pr(Er ) ≤ e−ε2m/8.

E ′2 = {∃r ∈ R | ||r ∩ N| − |r ∩ T || ≥ ε
2m} =

⋃
r∈R

Br .

Since the projection of R on T ∪ N has no more than (2m)d

different ranges, we have

Pr(E1) ≤ 2Pr(E ′2) ≤ 2(2m)de−ε2m/8.

To complete the proof we need to show that for

m ≥ 32d
ε2

ln 64d
ε2

+
16
ε2

ln 1
δ

we have
(2m)de−ε2m/8 ≤ δ.



To complete the proof we show that for

m ≥ 32d
ε2

ln 64d
ε2

+
16
ε2

ln 1
δ

we have
(2m)de−ε2m/8 ≤ δ.

Equivalently, we require

ε2m/8 ≥ ln(1/δ) + d ln(2m).

Clearly ε2m/16 ≥ ln(1/δ), since m > 16
ε2 ln 1

δ .

To show that ε2m/16 ≥ d ln(2m) we use:



Lemma
If y ≥ x ln x > e, then 2y

ln y ≥ x .

Proof.
For y = x ln x we have ln y = ln x + ln ln x ≤ 2 ln x . Thus

2y
ln y ≥

2x ln x
2 ln x = x .

Differentiating f (y) = ln y
2y we find that f (y) is monotonically

decreasing when y ≥ x ln x ≥ e, and hence 2y
ln y is monotonically

increasing on the same interval, proving the lemma.

Let y = 2m ≥ 64d
ε2 ln 64d

ε2 and x = 64d
ε2 , we have 4m

ln(2m) ≥
64d
ε2 , so

ε2m
16 ≥ d ln(2m) as required.



Application: Unrealizable (Agnostic) Learning

• We are given a training set {(x1, c(x1)), . . . , (xm, c(xm))}, and
a concept class C

• No hypothesis in the concept class C is consistent with all the
training set (c 6∈ C).

• Relaxed goal: Let c be the correct concept. Find c ′ ∈ C such
that

Pr
D

(c ′(x) 6= c(x)) ≤ inf
h∈C

Pr
D

(h(x) 6= c(x)) + ε.

• An ε/2-sample of the range space (X ,∆(c, c ′)) gives enough
information to identify an hypothesis that is within ε of the
best hypothesis in the concept class.

• The range spaces (X , C) and (X ,∆(c, c ′)) have the same
VC-dimension.



Uniform Convergence

Definition
A range space (X ,R) has the uniform convergence property if for
every ε, δ > 0 there is a sample size m = m(ε, δ) such that for
every distribution D over X, if S is a random sample from D of
size m then, with probability at least 1− δ, S is an ε-sample for X
with respect to D.

Theorem
The following three conditions are equivalent:

1 A concept class C over a domain X is agnostic PAC learnable.
2 The range space (X , C) has the uniform convergence property.
3 The range space (X , C) has a finite VC dimension.



Is VC-Dimension "Just a Theory"?

Two issues:
• Hard to prove an efficient bound on VC-dimension
• VC-dimension is a "worst case" bound

A quick example:
• Very easy to compute bound on VC-dimension
• Better than union bound
• Not a machine learning problem



Frequent Itemsets Mining (FIM)
Frequent Itemsets Mining: classic data mining problem with many
applications. Settings:

Dataset D

bread, milk
bread
milk, eggs
bread, milk, apple
bread, milk, eggs

Each line is a transaction, made of items from an
alphabet I
An itemset is a subset of I. E.g., the itemset
{bread,milk}
The frequency fD(A) of A ⊆ I in D is the fraction of
transactions of D that A is a subset of.
E.g., fD({bread,milk}) = 3/5 = 0.6

Problem: Frequent Itemsets Mining (FIM)
Given θ ∈ [0, 1] find (i.e., mine) all itemsets A ⊆ I with

fD(A) ≥ θ
I.e., compute the set FI(D, θ) = {A ⊆ I : fD(A) ≥ θ}

FI mining algorithms (Apriori, FP-Growth, . . . ) require significant
computation time and space (≥ quadratic in number of
transactions). What can be done with a sample?



What can we get with a Union Bound?
For any itemset A, the number of transactions that include A is
distributed

|S|fS(A) ∼ Binomial(|S|, fD(A))

Applying Chernoff bound

Pr(|fS(A)− fD(A)| > ε/2) ≤ 2e−|S|ε2/12

We then apply the union bound over all the itemsets to obtain
uniform convergence

There are 2|I| itemsets, a priori. We need

2e−|S|ε2/12 ≤ δ/2|I|

Thus
|S| ≥ 12

ε2

(
|I|+ ln 2 + ln 1

δ

)



Assume that we have a bound ` on the maximum transaction size.

There are
∑

i≤`
(|I|

i
)
≤ |I|` possible itemsets. We need

2e−|S|ε2/12 ≤ δ/|I|`

Thus,
|S| ≥ 12

ε2

(
` log |I|+ ln 2 + ln 1

δ

)

The sample size still depends on |I|, which can be very large - all
products sold by Amazon, all the pages on the Web, . . .

Can we have a smaller sample size?



How do we get a smaller sample size?

[Riondato and U. 2014, 2015]: Let’s use VC-dimension!

• The domain is the dataset D (set of transactions)
• For each itemset A ⊆ 2I we have the set of transactions that
contain A

TA = {τ ∈ D : A ⊆ τ}

• We we need to estimate the probabilities (sizes) of all ranges
in the range space

(D, {TA,A ⊆ 2I})

We need an efficient-to-compute upper bound to the VC-dimension



How do we bound the VC-dimension?

Definition
The d-index of a dataset D is the maximum integer d such that D
contains at least d different transactions with at least d items

Example: The following dataset has d-index 3

bread beer milk coffee
chips coke pasta
bread coke chips
milk coffee
pasta milk

It can be computed easily with a single scan of the dataset

Theorem
The VC-dimension of D is bounded by the d-index of D



How do we prove the bound?

Theorem: The VC-dimension is less or equal to the d-index d of D

Proof:
• Let ` > d and assume it is possible shatter a set T ⊆ D with
|T | = `.

• Then any τ ∈ T appears in at least 2`−1 ranges TA (there are
2`−1 subsets of T containing τ)

• But any τ only appears in the ranges TA such that A ⊆ τ . So
it appears in 2|τ | − 1 ranges

• From the definition of d , T must contain a transaction τ∗ of
length |τ∗| < `

• This implies 2|τ∗| − 1 < 2`−1, so τ∗ can not appear in 2`−1

ranges
• Then T can not be shattered.



How good is the bound?

Definition
The d-index of a dataset D is the maximum integer d such that D
contains at least d different transactions with at least d items

If all transactions have exactly ` elements , then d = `.

If we have n transactions, the largest transaction has ` elements,
and the number of elements in a transaction follows a power law
distribution

Pr(X ≥ x) ∼ cx−α, for α > 1,

then d satisfies Pr(X ≥ d) ∼ d
n , and ` satisfies Pr(X ≥ `) ∼ 1

n ,
which gives,

d ∼ `
α

1+α



Frequent Itemset Estimation Using VC-dimension
The VC-dimension is bounded by the maximum d such that D
contains at least d different transactions with at least d items.
Sample size

|S| = O
(
d
ε2

ln d
ε

+
1
ε2

ln 1
δ

)

Figure: Frequent itemsets: Sample size based on VC-dimension vs. union
bound


