
Is Uniform Convergence Necessary?

Definition

A set of functions F has the uniform convergence property with respect to a domain Z
if there is a function mF (ε, δ) such that for any ε, δ > 0, m(ε, δ) <∞, and for any
distribution D on Z , a sample z1, . . . , zm of size m = mF (ε, δ) satisfies

Pr(sup
f ∈F
| 1
m

m∑
i=1

f (zi )− ED[f ]| ≤ ε) ≥ 1− δ.

The general supervised learning scheme:

• Let fh is the loss (error) function for hypothesis h

• Let FH = {fh | h ∈ H}.
• FH has the uniform convergence property ⇒ for any distribution D and

hypothesis h{C} we have a good estimate of the error of h

• An ERM (Empirical Risk Minimization) algorithm correctly identify an almost best
hypothesis in H.
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if there is a function mF (ε, δ) such that for any ε, δ > 0, m(ε, δ) <∞, and for any
distribution D on Z , a sample z1, . . . , zm of size m = mF (ε, δ) satisfies

Pr(sup
f ∈F
| 1
m

m∑
i=1

f (zi )− ED[f ]| ≤ ε) ≥ 1− δ.

• We don’t need uniform convergence for any distribution D, just for the input
(training set) distribution– Rademacher average.

• We don’t need tight estimate for all functions, only for functions in the
neighborhood of the optimal function – local Rademacher average.



Rademacher Complexity

Limitations of the VC-Dimension Approach:

• Hard to compute

• Combinatorial bound - ignores the distribution over the data.

Rademacher Averages:

• Incorporates the input distribution

• Applies to general functions not just classification

• For binary functions always at least as good bound as the VC-dimension

• Can be computed from a sample

• Still hard to compute



Rademacher Averages - Motivation

• Assume that S1 and S2 are two ”uniform convergence” samples, i.e. sufficiently
large for estimating the expectations of any function in F . Then, for any f ∈ F ,

1

|S1|
∑
x∈S1

f (x) ≈ 1

|S2|
∑
y∈S2

f (y) ≈ E [f (x)],

or

ES1,S2∼D

sup
f ∈F

 1

|S1|
∑
x∈S1

f (x)− 1

|S2|
∑
y∈S2

f (y)

 ≤ ε
• Rademacher Variables: Instead of two samples, we can take one sample

S = {z1, . . . , zm} and split it randomly.
• Let σ = σ1, . . . , σm i.i.d Pr(zi = −1) = Pr(zi = 1) = 1/2. The Empirical

Rademacher Average of F is defined as

R̃m(F ,S) = Eσ

[
sup
f ∈F

1

m

m∑
i=1

σi f (zi )

]



Rademacher Averages - Motivation II

• Assume that F is a collection of {−1, 1} functions.

• A rich concept class F can approximate (correlate with) any dichotomy - in
particular a random one - represented by the random variables σ = σ1, . . . , σm.

• Thus, the Rademacher Average

R̃m(F ,S) = Eσ

[
sup
f ∈F

1

m

m∑
i=1

σi f (zi )

]

represents the richness or expressiveness of the set F .



Rademacher Averages (Complexity)

Definition

The Empirical Rademacher Average of F with respect to a sample S = {z1, . . . , zm},
is defined as

R̃m(F , S) = Eσ

[
sup
f ∈F

1

m

m∑
i=1

σi f (zi )

]

Taking an expectation over the distribution D of the samples:

Definition

The Rademacher Average of F is defined as

Rm(F) = ES∼D[R̃m(F , S)] = ES∼DEσ

[
sup
f ∈F

1

m

m∑
i=1

σi f (zi )

]



The Major Results

The Rademacher Average indeed captures the expected error in estimating the
expectation of any function in a set of functions F (The Generalization Error).

• Let ED[f (z)] be the true expectation of a function f in distribution D.

• For a sample S = {z1, . . . , zm} the empirical estimate of ED[f (z)] using the
sample S is 1

m

∑m
i=1 f (zi ).

Theorem

ES∼D

[
sup
f ∈F

(
ED[f (z)]− 1

m

m∑
i=1

f (zi )

)]
≤ 2Rm(F).



Jensen’s Inequality

Definition

A function f : Rm → R is said to be convex if, for any x1, x2 and 0 ≤ λ ≤ 1,

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2).

Theorem (Jenssen’s Inequality)

If f is a convex function, then

E[f (X )] ≥ f (E[X ]).

In particular
sup
f ∈F

E [f ] ≤ E [sup
f ∈F

f ]



Proof
Pick a second sample S ′ = {z ′1, . . . , z ′m}.

ES∼D

[
sup
f ∈F

(
ED[f (z)]− 1

m

m∑
i=1

f (zi )

)]

= ES∼D

[
sup
f ∈F

(
ES ′∼D

1

m

m∑
i=1

f (z ′i )−
1

m

m∑
i=1

f (zi )

)]

≤ ES ,S ′∼D

[
sup
f ∈F

(
1

m

m∑
i=1

f (z ′i )−
1

m

m∑
i=1

f (zi )

)]
Jensen’s Inequlity

= ES ,S ′,σ

[
sup
f ∈F

(
1

m

m∑
i=1

σi (f (zi )− f (z ′i )

)]

≤ ES ,σ

[
sup
f ∈F

1

m

m∑
i=1

σi (f (zi )

]
+ ES ′,σ

[
sup
f ∈F

1

m

m∑
i=1

σi (f (z ′i )

]
= 2Rm(F)



Deviation Bounds

Theorem

Let S = {z1, . . . , zn} be a sample from D and let δ ∈ (0, 1). If all f ∈ F satisfy
Af ≤ f (z) ≤ Af + c, then

1 Bounding the estimate error using the Rademacher complexity:

Pr(sup
f ∈F

(ED[f (z)]− 1

m

m∑
i=1

f (zi )) ≥ 2Rm(F) + ε) ≤ e−2mε
2/c2

2 Bounding the estimate error using the empirical Rademacher complexity:

Pr(sup
f ∈F

(ED[f (z)]− 1

m

m∑
i=1

f (zi )) ≥ 2R̃m(F) + 2ε) ≤ 2e−2mε
2/c2

Applying Azuma inequality to Doob’s martingale



McDiarmid’s Inequality

Applying Azuma inequality to Doob’s martingale:

Theorem

Let X1, . . . ,Xn be independent random variables and let h(x1, . . . , xn) be a function
such that a change in variable xi can change the value of the function by no more than
ci ,

sup
x1,...,xn,x ′i

|h(x1, . . . , xi , . . . , xn)− h(x1, . . . , x
′
i , . . . , xn)| ≤ ci .

For any ε > 0

Pr(h(X1, . . . ,Xn)− E [h(X1, . . . ,Xn)]| ≥ ε) ≤ e−2ε
2/

∑n
i=1 c

2
i .



Proof

• The generalization error

sup
f ∈F

(ED[f (z)]− 1

m

m∑
i=1

f (zi ))

is a function of z1, . . . , zm, and a change in one of the zi changes the value of
that function by no more than c/m.

• The Empirical Rademacher Average

R̃m(F ,S) = Eσ

[
sup
f ∈F

1

m

m∑
i=1

σi f (zi )

]

is a function of m random variables, z1, . . . , zm, and any change in one of these
variables can change the value of R̃m(F ,S) by no more than c/m.



Applications

• A bound on the sample size as a function of the Rademacher complexity (and
error parameters ε and δ):

Pr(sup
f ∈F

(ED[f (z)]− 1

m

m∑
i=1

f (zi )) ≥ 2Rm(F) + ε) ≤ e−2mε
2/c2 ≤ δ

• Approximating the Rademacher complexity using the empirical Rademacher
complexity:

Pr(sup
f ∈F

(ED[f (z)]− 1

m

m∑
i=1

f (zi )) ≥ 2R̃m(F) + 2ε) ≤ 2e−2mε
2/c2 ≤ δ



Estimating the Rademacher Complexity

Theorem (Massart’s Bound)

Assume that |F| is finite. Let S = {z1, . . . , zm} be a sample, and let

B = max
f ∈F

(
m∑
i=1

f 2(zi )

) 1
2

then

R̃m(F ,S) = Eσ

[
sup
f ∈F

1

m

m∑
i=1

σi f (zi )

]
≤ B

√
2 ln |F|
m

.



Hoeffding’s Inequality

Large deviation bound for more general random variables:

Theorem (Hoeffding’s Inequality)

Let X1, . . . ,Xn be independent random variables such that for all 1 ≤ i ≤ n, E [Xi ] = µ
and Pr(a ≤ Xi ≤ b) = 1. Then

Pr(|1
n

n∑
i=1

Xi − µ| ≥ ε) ≤ 2e−2nε
2/(b−a)2

Lemma

(Hoeffding’s Lemma) Let X be a random variable such that Pr(X ∈ [a, b]) = 1 and
E [X ] = 0. Then for every λ > 0,

E[EλX ] ≤ eλ
2(a−b)2/8.



Proof of Hoeffding’s Lemma

Since f (x) = eλx is a convex function, for any α ∈ (0, 1) and x ∈ [a, b],

f (X ) ≤ αf (a) + (1− α)f (b).

Thus, for α = b−x
b−a ∈ (0, 1),

eλx ≤ b − x

b − a
eλa +

x − a

b − a
eλb.

Taking expectation, and using E[X ] = 0, we have

E [eλX ] ≤ b

b − a
eλa +

a

b − a
eλb ≤ eλ

2(b−a)2/8.



Proof of Hoeffding’s Bound

Let Zi = Xi − E[Xi ] and Z = 1
n

∑n
i=1 Xi .

Pr(Z ≥ ε) ≤ e−λεE[eλZ ] ≤ e−λε
n∏

i=1

E[eλXi/n] ≤ e−λε+
λ2(b−a)2

8n

Set λ = 4nε
(b−a)2 gives

Pr(|1
n

n∑
i=1

Xi − µ| ≥ ε) = Pr(Z ≥ ε) ≤ 2e−2nε
2/(b−a)2



Proof of Massart’s Bound

For any s > 0,

esmR̃m(F ,S) = esEσ[supf∈F
∑m

i=1 σi f (zi )]

≤ Eσ
[
es supf∈F

∑m
i=1 σi f (zi )

]
Jensen’s Inequlity

= Eσ

[
sup
f ∈F

(
e
∑m

i=1 sσi f (zi )
)]

≤
∑
f ∈F

Eσ
[(

e
∑m

i=1 sσi f (zi )
)]

=
∑
f ∈F

Eσ

[
m∏
i=1

esσi f (zi )

]

=
∑
f ∈F

m∏
i=1

Eσ
[
esσi f (zi )

]



esmR̃m(F ,S) ≤
∑
f ∈F

m∏
i=1

Eσ
[
esσi f (zi )

]
Since E[σi f (zi )] = 0 and −f (zi ) ≤ σi f (zi ) ≤ f (zi ), we can apply Hoeffding’s Lemma
to obtain

E
[
esσi f (zi )

]
≤ es

2(2f (zi ))
2/8 = e

s2

2
f (zi )

2
.

Thus,

esmR̃m(F ,S) = esE[supf∈F
∑m

i=1 σi f (zi )]

≤
∑
f ∈F

m∏
i=1

e
s2

2
f (zi )

2

=
∑
f ∈F

e
s2

2

∑m
i=1 f (zi )

2

≤ |F|e s2B2

2 .



esmR̃m(F ,S) ≤ |F|e s2B2

2 .

Hence, for any s > 0,

R̃m(F , S) ≤ 1

m

(
ln |F|

s
+

sB2

2

)
.

Setting s =

√
2 ln |F|
B yields

R̃m(F ,S) = Eσ

[
sup
f ∈F

1

m

m∑
i=1

σi f (zi )

]
≤ B

√
2 ln |F|
m

.



Application: Learning a Binary Classification

Let C be a binary concept class defined on a domain X , and let D be a probability
distribution on X . For each x ∈ X let c(x) be the correct classification of x .
For each hypothesis h ∈ C we define a function fh(x) by

fh(x) =

{
1 if h(x) = c(x)
−1 otherwise

Let F = {fh | h ∈ C}. Our goal is to find h′ ∈ C such that with probability at least
1− δ

E[fh′ ] ≥ sup
fh∈F

E[fh]− ε.

We give an upper bound on the required size of the training set using Rademacher
complexity.



For each hypothesis h ∈ C we define a function fh(x) by

fh(x) =

{
1 if h(x) = c(x)
−1 otherwise

Let S be a sample of size m, then

B = max
f ∈F

(
m∑
i=1

f 2(zi )

) 1
2

=
√

m,

and

R̃m(F ,S) ≤
√

2 ln |F|
m

.

To use

Pr(sup
f ∈F

(ED[f (z)]− 1

m

m∑
i=1

f (zi )) ≥ 2R̃m(F) + 2ε) ≤ 2e−2mε
2/c2

We need
√

2 ln |F|
m ≤ ε

4 and 2e−2mε
2/64 ≤ δ.



Relation to VC-dimension

We express this bound in terms of the VC dimension of the concept class C.
Each function fh ∈ F corresponds to an hypothesis h ∈ C.
Let d be the VC dimension of C.
The projection of the range space (X , C) on a sample of size m has no more than md

different sets.
Thus, the set of different functions we need to consider is bounded by md , and

R̃m(F , S) ≤
√

2d ln m

m
.

Exercise: compare the the bounds obtained using the VC-dimension and the
Rademacher complexity methods.



Advantage of Rademacher Complexity

• Can estimate the Rademacher complexity from a sample

• Apply Progressive Random Sampling:

At each iteration,

1 create sample S by drawing transactions from D uniformly and independently at
random

2 Check a stopping condition on S, by computing R̃m(F , S) and checking if it gives
an (ε, δ)-approximation

3 If stopping condition is satisfied, use that sample

4 Else, iterate with a larger sample



Back to Frequent Itemsets [Riondato and U. - KDD’15]

We define the task as an expectation estimation task:

• The domain is the dataset D (set of transactions)

• The family of functions is F = {1A,A ⊆ 2I}, where IA(τ) = 1 if A ⊆ τ , else
IA(τ) = 0.

• The distribution π is uniform over D: π(τ) = 1/|D|, for each τ ∈ D

Eπ[1A] =
∑
τ∈D

1A(τ)π(τ) =
∑
τ∈D

1A(τ)
1

|D| = fD(A)

Given a sample z1, . . . , zm of m transactions we need to bound the empirical
Rademacher average

R̃m(F ,S) = Eσ

[
sup
A⊆2I

1

m

m∑
i=1

σi1A(zi )

]



How can we bound the Rademacher average? (high level picture)

Efficiency Constraint: use only information that can be obtained with a single scan of S

How:

1 Prove a variant of Massart’s Theorem.

2 Show that it’s sufficient to consider only Closed Itemsets (CIs) in S (An itemset is
closed iff none of its supersets has the same frequency)

3 We use the frequency of the single items and the lengths of the transactions to
define a (conceptual) partitioning of the CIs into classes, and to compute upper
bounds to the size of each class and to the frequencies of the CIs in the class

4 We use these bounds to compute an upper bound to R(S) by minimizing a convex
function in R+ (no constraints)



Experimental Evaluation

Greatly improved runtime over exact algorithm, one-shot sampling (vc), and fixed
geometric schedules. Better and better than exact as D grows
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Figure: Running time for BMS-POS, θ = 0.015.

In 10K+ runs, the output was always an ε-approximation, not just with prob. ≥ 1− δ
supA⊆I |fD(A)− fS(A)| is 10x smaller than ε (50x smaller on average)



How does it compare to the VC-dimension algorithm?

Given a sample S and some δ ∈ (0, 1), what is the smallest ε such that FI(S, θ − ε/2)
is a (ε, δ)-approximation?
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Note that this comparison is unfavorable to our algorithm: as we are allowing the
VC-dimension approach to compute the d-index of D (but we don’t have access to D!)

We strongly believe that this is because we haven’t optimized all the aspects of the
bound to the Rademacher average. Once we do it, the Rademacher avg approach will
most probably always be better
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chapter fourteen

Sample Complexity,
VC Dimension, and

Rademacher Complexity

Sampling is a powerful technique, which is at the core of statistical data analysis and
machine learning. Using a !nite, often small, set of observations, we attempt to esti-
mate properties of an entire sample space. How good are estimates obtained from a
sample? Any rigorous application of sampling requires an understanding of the sample
complexity of the problem – the minimum size sample needed to obtain the required
results. In this chapter we focus on the sample complexity of two important applica-
tions of sampling: event detection and probability estimation. Our goal is to use one set
of samples to detect a set of events or estimate the probabilities of a family of events,
where the set of events is large, in fact possibly in!nite. For detection, we mean that we
want the sample to intersect with each event in the set, while for probability estimation,
we want the fraction of points in the sample that intersect with each event in the set to
approximate the probability of that event.

As an example, consider a sample x1, . . . , xm of m independent observations from
an unknown distribution D, where the values for our samples are in R. Given an
interval [a, b], if the probability of the interval is at least ε, i.e., Pr(x ∈ [a, b]) ≥ ε,
then the probability that a sample of size m = 1

ε
ln 1

δ
intersects (or, in this context,

detects) the interval [a, b] is at least 1 − (1 − ε)m ≥ 1 − δ. Given a set of k intervals,
each of which has probability at least ε, we can apply a union bound to show that the
probability that a sample of size m′ = 1

ε
ln k

δ
intersects each of the k intervals is at least

1 − k(1 − ε)m
′ ≥ 1 − δ.

Indeed, in many applications we need a sample that intersects with every interval
that has probability at least ε, and there can be an in!nite number of such intervals.
What sample size guarantees that? We cannot use a simple union bound to answer this
question, as our above analysis does not make sense when k is in!nite. However, if there
are many such intervals, there can be signi!cant overlap between them. For example,
consider samples chosen uniformly over [0, 1] with ε = 1/10; there are in!nitely many
intervals [a, b] of length at least 1/10, but the largest number of disjoint intervals of
size at least 1/10 is ten. A sample point may intersect with many intervals, and thus a
small sample may be suf!cient.
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