Sample Complexity and Uniform Convergence

Eli Upfal

Extracting Information from Data

Data science, machine learning, data mining, pattern recognition, statistical inference, "the scientific method",...

$DATA \Rightarrow ALGORITHM \Rightarrow MODEL$

Extracting Information from Data

Data science, machine learning, data mining, pattern recognition, statistical inference, "the scientific method",...

$\mathsf{DATA} \Rightarrow \mathsf{ALGORITHM} \Rightarrow \mathsf{MODEL}$

In CS we focus on the algorithm (efficiency, correctness with respect to the input)

 $\mathsf{DATA} \Rightarrow \mathsf{ALGORITHM} \Rightarrow \mathsf{MODEL}$

Extracting Information from Data

Data science, machine learning, data mining, pattern recognition, statistical inference, "the scientific method",...

$\mathsf{DATA} \Rightarrow \mathsf{ALGORITHM} \Rightarrow \mathsf{MODEL}$

In CS we focus on the algorithm (efficiency, correctness with respect to the input)

$\begin{array}{ll} \mathsf{DATA} \Rightarrow \mathsf{ALGORITHM} \Rightarrow \mathsf{MODEL} \\ {}_{\mathsf{but}} & f(garbage) = garbage \end{array}$

In data analysis we need to verify that the information is in the data:

 $DATA \Rightarrow ALGORITHM \Rightarrow MODEL$

Sample Complexity

Sample Complexity addresses the fundamental questions in data analysis:

- Does the data (training set) contains sufficient information to make a valid predictions (or fix a model)?
- Is the sample sufficiently large?
- How accurate is a prediction (model) inferred from a sample of a given size?

Standard statistics/probabilistic techniques do not give adequate soluions

Outline:

- Motivation: learning a binary classifier, the realizable and non-realizable case.
- Uniform convergence
- Uniform convergence through VC-dimension
- Applications: binary classification learning, data analysis
- Rademacher complexity
- Applications of Rademacher complexity in data analysis

Take home message:

- Beautiful theory
- Not just theory
- Not just machine learning

Learning a Binary Classifier

- An unknown probability distribution ${\mathcal D}$ on a domain ${\mathcal U}$
- An unknown correct classification a partition c of U to In and Out sets
- Input:
 - Concept class C a collection of possible classification rules (partitions of U).
 - A training set $\{(x_i, c(x_i)) \mid i = 1, ..., m\}$, where $x_1, ..., x_m$ are sampled from \mathcal{D} .
- Goal: With probability 1 − δ the algorithm generates a classification that is correct (on items generated from D) with probability opt(C) − ε, where opt(C) is the probability of the best classification in C.

Learning a Binary Classifier

 Out and In items, and a concept class C of possible classification rules

When does the sample identify the correct rule? - The realizable case

- The realizable case the correct classification $c \in C$.
- Algorithm: choose h^{*} ∈ C that agrees with all the training set (there must be at least one).
- For any h∈ C let Δ(c, h) be the set of items on which the two classifiers differ: Δ(c, h) = {x ∈ U | h(x) ≠ c(x)}
- If the sample (training set) intersects every set in

 $\{\Delta(c,h) \mid \Pr(\Delta(c,h)) \geq \epsilon\},\$

then

 $Pr(\Delta(c, h^*)) \leq \epsilon.$

Learning a Binary Classifier

 Red and blue items, possible classification rules, and the sample items (

When does the sample identify the correct rule? The unrealizable (agnostic) case

- The unrealizable case c may not be in C.
- For any h∈ C, let Δ(c, h) be the set of items on which the two classifiers differ: Δ(c, h) = {x ∈ U | h(x) ≠ c(x)}
- For the training set $\{(x_i, c(x_i)) \mid i = 1, \dots, m\}$, let

$$\tilde{\Pr}(\Delta(c,h)) = \frac{1}{m} \sum_{i=1}^{m} \mathbf{1}_{h(x_i) \neq c(x_i)}$$

- Algorithm: choose $h^* = \arg \min_{h \in \mathcal{C}} \tilde{Pr}(\Delta(c, h))$.
- If for every set $\Delta(c, h)$,

$$|\Pr(\Delta(c,h)) - \tilde{\Pr}(\Delta(c,h))| \leq \epsilon,$$

then

$$Pr(\Delta(c,h^*)) \leq opt(\mathcal{C}) + 2\epsilon.$$

Uniform Convergence [Vapnik – Chervonenkis 1971]

Definition

A set of functions \mathcal{F} has the *uniform convergence* property with respect to a domain Z if there is a function $m_{\mathcal{F}}(\epsilon, \delta)$ such that

- for any $\epsilon, \delta > 0$, $m(\epsilon, \delta) < \infty$
- for any distribution D on Z, and a sample z_1, \ldots, z_m of size $m = m_{\mathcal{F}}(\epsilon, \delta)$,

$$\Pr(\sup_{f\in\mathcal{F}}|rac{1}{m}\sum_{i=1}^m f(z_i) - E_{\mathcal{D}}[f]| \le \epsilon) \ge 1 - \delta.$$

Let $f_E(z) = \mathbf{1}_{z \in E}$ then $\mathbf{E}[f_E(z)] = Pr(E)$.

Uniform Convergence and Learning

Definition

A set of functions \mathcal{F} has the *uniform convergence* property with respect to a domain Z if there is a function $m_{\mathcal{F}}(\epsilon, \delta)$ such that

- for any $\epsilon, \delta > 0$, $m(\epsilon, \delta) < \infty$
- for any distribution D on Z, and a sample z_1, \ldots, z_m of size $m = m_{\mathcal{F}}(\epsilon, \delta)$,

$$Pr(\sup_{f\in\mathcal{F}}|\frac{1}{m}\sum_{i=1}^{m}f(z_i)-E_{\mathcal{D}}[f]|\leq\epsilon)\geq 1-\delta.$$

- Let $\mathcal{F}_{\mathcal{H}} = \{f_h \mid h \in H\}$, where f_h is the loss function for hypothesis h.
- *F_H* has the uniform convergence property ⇒ an ERM (Empirical Risk Minimization) algorithm "learns" *H*.
- The sample complexity of learning $\mathcal H$ is bounded by $m_{\mathcal F_{\mathcal H}}(\epsilon,\delta)$

Uniform Convergence - 1971, PAC Learning - 1984

Definition

A set of functions \mathcal{F} has the *uniform convergence* property with respect to a domain Z if there is a function $m_{\mathcal{F}}(\epsilon, \delta)$ such that

- for any $\epsilon, \delta > 0$, $m(\epsilon, \delta) < \infty$
- for any distribution D on Z, and a sample z_1, \ldots, z_m of size $m = m_{\mathcal{F}}(\epsilon, \delta)$,

$$Pr(\sup_{f\in\mathcal{F}}|\frac{1}{m}\sum_{i=1}^{m}f(z_i)-E_{\mathcal{D}}[f]|\leq\epsilon)\geq 1-\delta.$$

- Let $\mathcal{F}_{\mathcal{H}} = \{f_h \mid h \in H\}$, where f_h is the loss function for hypothesis h.
- \mathcal{F}_H has the uniform convergence property \Rightarrow an ERM (Empirical Risk Minimization) algorithm "learns" \mathcal{H} . PAC efficiently learnable if there a polynomial time ϵ, δ -approximation for minimum ERM.

Uniform Convergence

Definition

A set of functions \mathcal{F} has the *uniform convergence* property with respect to a domain Z if there is a function $m_{\mathcal{F}}(\epsilon, \delta)$ such that

- for any $\epsilon, \delta > 0$, $m(\epsilon, \delta) < \infty$
- for any distribution D on Z, and a sample z_1, \ldots, z_m of size $m = m_{\mathcal{F}}(\epsilon, \delta)$,

$$Pr(\sup_{f\in\mathcal{F}}|\frac{1}{m}\sum_{i=1}^{m}f(z_i)-E_{\mathcal{D}}[f]|\leq\epsilon)\geq 1-\delta.$$

VC-dimension and Rademacher complexity are the two major techniques to

- prove that a set of functions $\boldsymbol{\mathcal{F}}$ has the uniform convergence property
- charaterize the function $m_{\mathcal{F}}(\epsilon, \delta)$

Some Background

- Let z_1, \ldots, z_m i.i.d. observation from distribution F(x), and $F_m(x) = \frac{1}{m} \sum_{i=1}^m \mathbf{1}_{z_i \le x}$ (empirical distribution function)
- Strong Law of Large Numbers: for a given x,

 $F_m(x) \rightarrow_{a.s} F(x) = Pr(z \leq x).$

 Glivenko-Cantelli Theorem (uniform convergence of {*F*(*x*) | *x* ∈ **R**}):

$$\sup_{x\in\mathbf{R}}|F_m(x)-F(x)|\to_{a.s}0.$$

• Dvoretzky-Keifer-Wolfowitz Inequality (Kolmogorov-Smirnov ditribution)

$$Pr(\sup_{x\in\mathbf{R}}|F_m(x)-F(x)|\geq\epsilon)\leq 2e^{-2m\epsilon^2}.$$

• VC-dimension characterizes uniform convergence property for arbitrary sets of events.

Simplest Uniform Convergence - Union Bound

Theorem

In the realizable case, any concept class C can be learned with $m = \frac{1}{\epsilon} (\ln |C| + \ln \frac{1}{\delta})$ samples.

Proof.

We need a sample that intersects every set in the family of sets

 $\{\Delta(c,c') \mid \Pr(\Delta(c,c')) \geq \epsilon\}.$

There are at most $|\mathcal{C}|$ such sets, and the probability that a sample is chosen inside a set is $\geq \epsilon$.

The probability that m random samples did not intersect with at least one of the sets is bounded by

$$|\mathcal{C}|(1-\epsilon)^m \leq |\mathcal{C}|e^{-\epsilon m} \leq |\mathcal{C}|e^{-(\ln|\mathcal{C}|+\ln\frac{1}{\delta})} \leq \delta.$$

How Good is This Bound? - Learning an Interval

- A distribution *D* is defined on universe that is an interval [*A*, *B*].
- The true classification rule is defined by a sub-interval $[a, b] \subseteq [A, B]$.
- The concept class $\mathcal C$ is the collection of all intervals,

 $\mathcal{C} = \{[c,d] \mid [c,d] \subseteq [A,B]\}$

Theorem

There is a learning algorithm that given a sample from \mathcal{D} of size $m = \frac{2}{\epsilon} \ln \frac{2}{\delta}$, with probability $1 - \delta$, returns a classification rule (interval) [x, y] that is correct with probability $1 - \epsilon$.

Note that the sample size is independent of the size of the concept class $|\mathcal{C}|$, which is infinite.

Learning an Interval

If the classification error is ≥ ε then the sample missed at least one of the the intervals [a,a'] or [b',b] each of probability ≥ ε/2

Each sample excludes many possible intervals. The union bound sums over overlapping hypothesis. Need better characterization of concept's complexity!

Proof.

Algorithm: Choose the smallest interval [x, y] that includes all the "In" sample points.

- Clearly a ≤ x < y ≤ b, and the algorithm can only err in classifying "In" points as "Out" points.
- Fix a < a' and b' < b such that $Pr([a, a']) = \epsilon/2$ and $Pr([b, b']) = \epsilon/2$.
- If the probability of error when using the classification [x, y] is $\geq \epsilon$ then either $a' \leq x$ or $y \leq b'$ or both.
- The probability that the sample of size $m = \frac{2}{\epsilon} \ln \frac{2}{\delta}$ did not intersect with one of these intervals is bounded by

$$2(1-\frac{\epsilon}{2})^m \le e^{-\frac{\epsilon m}{2}+\ln 2} \le \delta$$

- The union bound is far too loose for our applications. It sums over overlapping hypothesis.
- Each sample excludes many possible intervals.
- Need better characterization of concept's complexity!