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Imagine you’re trying to hire a secretary, find a job, select a life partner, etc.

• At each time step:

• A secretary* arrives. 
– *I’m really sorry, but for this talk the secretaries will be pokémon.

• You interview, learn their value.

• Immediately and irrevocably decide whether or not to hire.

• May only hire one secretary!

Online Selection Problems

t =        1 2 3



Offline:

• Every secretary i has a weight 𝑤𝑖 (chosen by adversary, unknown to you).

• Adversary chooses order to reveal secretaries. 

Online:

• Secretaries revealed one at a time. You learn their weight.

• Immediately and irrevocably decide to hire or not.

• May only hire one secretary!

Goal: Maximize probability of selecting max-weight element.

Trivial lower bound: can’t beat 1/n (hire random secretary).

An Impossible Problem

w =        6 4 7 8 9



Offline:

• Every secretary i has a weight 𝑤𝑖 (chosen by adversary, unknown to you). 

• Secretaries permuted randomly.

Online:

• Secretaries revealed one at a time. You learn their weight.

• Immediately and irrevocably decide to hire or not.

• May only hire one secretary!

Goal: Maximize probability of selecting max-weight element.

Online Selection Problems: Secretary Problems

w =        6 4 7 8 9



Offline:

• Every secretary i has a weight 𝑤𝑖 (chosen by adversary, unknown to you). 

• Secretaries permuted randomly.

Online:

• Secretaries revealed one at a time. You learn their weight.

• Immediately and irrevocably decide to hire or not.

• May only hire one secretary!

Goal: Maximize probability of selecting max-weight element.

Online Selection Problems: Secretary Problems

t =       1 2 3

w =        7 6 8



Offline:

• Every secretary i has a weight 𝑤𝑖 drawn independently from distribution 𝐷𝑖 .

• Adversary chooses distributions and ordering (both known to you).

Online:

• Secretaries revealed one at a time. You learn their weight.

• Immediately and irrevocably decide to hire or not.

• May only hire one secretary!

Goal: Maximize expected weight of selected element.

Online Selection Problems: Prophet Inequalities

w =   U[4,6] U[0,8] U[3,4] U[4,5] U[0,9]



Offline:

• Every secretary i has a weight 𝑤𝑖 drawn independently from distribution 𝐷𝑖 .

• Adversary chooses distributions and ordering (both known to you).

Online:

• Secretaries revealed one at a time. You learn their weight.

• Immediately and irrevocably decide to hire or not.

• May only hire one secretary!

Goal: Maximize expected weight of selected element.

Online Selection Problems: Prophet Inequalities

w =       5 U[0,8] U[4,5] U[0,9]

t =        1

U[3,4]



Offline:

• Every secretary i has a weight 𝑤𝑖 drawn independently from distribution 𝐷𝑖 .

• Adversary chooses distributions and ordering (both known to you).

Online:

• Secretaries revealed one at a time. You learn their weight.

• Immediately and irrevocably decide to hire or not.

• May only hire one secretary!

Goal: Maximize expected weight of selected element.

Online Selection Problems: Prophet Inequalities

w =       5 7 U[4,5] U[0,9]

t =        1 2

U[3,4]



Observation: can find optimal policy via dynamic programming/backwards induction.

• If we make it to Mewtwo, clearly we should accept.

• If we make it to Pikachu, we can either:

Reject: Get 4.5 from Mewtwo.

Accept: Get w(Pikachu). 

So accept iff w(Pikachu) > 4.5.

• If we make it to Charmander, we can either:

Reject: Get 4.625 (from optimal policy starting @ Pikachu). 

Accept: Get w(Charmander).

So reject Charmander.

• Etc.

Prophet Inequalities

U[4,5] U[0,9]U[3,4]w =   U[4,6] U[0,8]



Observation: can find optimal policy via dynamic programming/backwards induction.

• Question 1: How well does this policy do compared to a “prophet?”

• Exist c such that for all instances, E[Gambler] ≥ c⋅E[Prophet]?

• Question 2: How well do “simpler” policies do?

• Ex: set threshold T, accept first element with weight > T?

• Can we get the same c as above?

Prophet Inequalities

vs.

Prophet
knows weights, 

picks best element

Gambler
knows distributions, 

uses online policy



Theorem [Krengel-Sucheston 78, Samuel-Cahn 86]: Uniform threshold guarantees 
E[Gambler] ≥ 1/2 ⋅E[Prophet]. Best possible (for all policies). 

Tight example:

• Prophet gets 1/𝜖 w.p. 𝜖, 1 w. p. 1-𝜖. E[prophet] = 2 − 𝜖. 

• Gambler can accept Bulbasaur, get 1. 

• Or reject and get Squirtle, also for 1. So E[gambler] = 1. 

Prophet Inequalities

w =       1 0, w.p. 1-𝜖
1/𝜖, w.p. 𝜖



Theorem [Krengel-Sucheston 78, Samuel-Cahn 86]: Uniform threshold guarantees 
E[Gambler] ≥ 1/2 ⋅E[Prophet]. Best possible (for all policies). 

(modified) Proof:

• Let T = 𝐸[max
𝑖

𝑤𝑖 /2], use threshold T (accept any element > T). 

• Define 𝑝 = Pr[max
𝑖

𝑤𝑖 > 𝑇]. Define 𝐴𝐿𝐺𝑖 = 𝑤𝑖 ⋅ 𝐼(𝐴𝑙𝑔 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑖).  

• Notation: 𝑋+ = max 𝑋, 0 .

𝐸 𝐴𝐿𝐺 =  𝑖 𝐸[𝐴𝐿𝐺𝑖] =  𝑖 𝐸[ 𝑇 + 𝑤𝑖 − 𝑇 ⋅ 𝐼 𝐴𝑙𝑔 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑖 ]. 

= 𝑝𝑇 +  𝑖 𝐸[ 𝑤𝑖 − 𝑇 ⋅ 𝐼(𝐴𝑙𝑔 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑖)] . 

= 𝑝𝑇 +  𝑖 𝐸[(𝑤𝑖 − 𝑇) ⋅ 𝐼 𝑤𝑖 > 𝑇 AND don′t accept any j < i ].

= 𝑝𝑇 +  𝑖 𝐸 𝑤𝑖 − 𝑇 + ⋅ 𝐼 Don′t accept any j < i .

= 𝑝𝑇 +  𝑖 𝐸 𝑤𝑖 − 𝑇 + ⋅ Pr[Don′t accept any j < i].

≥ 𝑝𝑇 + (1 − 𝑝) 𝑖 𝐸 𝑤𝑖 − 𝑇 + . 

So: A) 𝑬 𝑨𝑳𝑮 ≥ 𝒑𝑻 + (𝟏 − 𝒑) 𝒊𝑬 𝒘𝒊 − 𝑻 + .

Prophet Inequalities



Theorem [Krengel-Sucheston 78, Samuel-Cahn 86]: Uniform threshold guarantees 
E[Gambler] ≥ 1/2 ⋅E[Prophet]. Best possible (for all policies). 

(modified) Proof:

So: A) 𝑬 𝑨𝑳𝑮 ≥ 𝒑𝑻 + (𝟏 − 𝒑) 𝒊𝑬 𝒘𝒊 − 𝑻 + .

Just need to bound 𝐸 max
𝑖

𝑤𝑖 . Recall T = 𝐸 max
𝑖

𝑤𝑖 /2.

𝐸 max
𝑖
{𝑤𝑖} ≤ 𝐸 𝑇 + max

𝑖
{𝑤𝑖} − 𝑇

+
.

≤ 𝑇 + 𝐸[max
𝑖

𝑤𝑖 − 𝑇 + ] .

≤ 𝑇 + 𝐸[ 𝑖 𝑤𝑖 − 𝑇 +].

⇒  𝑖 𝐸 𝑤𝑖 − 𝑇 + ≥ 𝐸 max
𝑖

𝑤𝑖 − 𝑇 = 𝐸[max
𝑖

𝑤𝑖 ]/2.

So: B) 𝑻 = 𝑬 𝒎𝒂𝒙𝒊 𝒘𝒊 /𝟐,  𝒊𝑬 𝒘𝒊 − 𝑻 + ≥ 𝑬[𝒎𝒂𝒙𝒊 𝒘𝒊 ]/𝟐.

⇒ 𝑬 𝑨𝑳𝑮 ≥ 𝑬[𝒎𝒂𝒙𝒊 𝒘𝒊 ]/𝟐.

Prophet Inequalities



Theorem [Krengel-Sucheston 78, Samuel-Cahn 86]: Uniform threshold guarantees 
E[Gambler] ≥ 1/2 ⋅E[Prophet]. Best possible (for all policies). 

(modified) Proof:

A) 𝑬 𝑨𝑳𝑮 ≥ 𝒑𝑻 + (𝟏 − 𝒑) 𝒊𝑬 𝒘𝒊 − 𝑻 + .

B) 𝑻 = 𝑬 𝒎𝒂𝒙𝒊 𝒘𝒊 /𝟐,  𝒊𝑬 𝒘𝒊 − 𝑻 + ≥ 𝑬[𝒎𝒂𝒙𝒊 𝒘𝒊 ]/𝟐.

⇒ 𝑬 𝑨𝑳𝑮 ≥ 𝑬[𝒎𝒂𝒙𝒊 𝒘𝒊 ]/𝟐.

Intuition: A) holds for any T. B) lets us get mileage from A). 

Because T not too big,  𝑖 𝐸 𝑤𝑖 − 𝑇 + ≥ 𝐸 max
𝑖

𝑤𝑖 /2.

Because T not too small, T ≥ 𝐸 max
𝑖

𝑤𝑖 /2.

T is a balanced threshold (not formal definition yet). 

Prophet Inequalities



We just saw:

• Simple description of optimal stopping rule.

• Tight competitive analysis, also achieved by uniform threshold.

Rest of talk: What if multiple choices? 

Offline:

• Secretary i has a weight 𝑤𝑖 drawn independently from distribution 𝐷𝑖 .

• Adversary chooses distributions, ordering, and feasibility constraints: which 
secretaries can simultaneously hire? (all known to you)

Online:

• Secretaries revealed one at a time. You learn their weight.

• Immediately and irrevocably decide to hire or not. 

• H = all hired secretaries. Must maintain H feasible at all times.

Goal: Maximize E  𝑖∈𝐻𝑤𝑖 - expected weight of hires.

Multiple Choice Prophet Inequalities



Examples: 

• Feasible to hire any k secretaries (k-uniform matroid).

• Associate each secretary with an edge in a graph. Feasible to hire any acyclic 
subgraph (graphic matroid).

• Associate each secretary with a vector in a vector space. Feasible to hire any 
linearly independent subset (representable matroid).

• Associate each secretary with an edge in a bipartite graph. Feasible to hire any 
matching (intersection of two partition matroids).

Multiple Choice Prophet Inequalities

U[4,5] U[0,9]U[3,4]w =   U[4,6] U[0,8]



Matroid: S, T feasible, |S|>|T|  ∃𝑖 ∈ 𝑆, 𝑇 ∪ 𝑖 feasible. Downwards closed.

Think: feasible ≈ linearly independent in a vector space.

Matroid Intersection: ∃ P matroids 𝑀1 , … ,𝑀𝑃 , S feasible ↔ S feasible in each 𝑀𝑖 . 

Bipartite matchings = intersection 2 matroids. 3D matchings = 3 matroids. 

State-of-the-art (non-exhaustive)

Feasibility Approximation Guarantee

k-Uniform Algorithm: 1+O(1/ 𝑘) [Alaei 11]. Lower Bound: 1+Ω(1/ 𝑘) [Kleinberg 05]. 

Matroids Algorithm: 2 [Kleinberg-W. 12]. Lower Bound: 2.

Intersection of P 
Matroids

Algorithm: 4P-2 [KW 12]. 
Lower Bound: P+1 [KW 12].

Arbitrary 
Downwards
Closed

Algorithm: O(log n log r) [Rubinstein 16]. 
Lower Bound: Ω(log n/log log n) [Babaioff-Immorlica-Kleinberg 07].
n = #elements, r = size of largest feasible set.

Independent set 
in Graph

Algorithm: O(𝜌2log n) [Gobel-Hoefer-Kesselheim-Schleiden-Vocking 14].
Lower Bound: Ω(log n/log2(log n)) [GHKSV 14].
𝜌 = “inductive independence number” of graph.

Polymatroids Algorithm: 2 [Dutting-Kleinberg 15]. Lower Bound: 2. 



Goal: Introduce concept of “balanced thresholds” via:

• Formal definition.

• 2-approximation for k-uniform [Chawla-Hartline-Malec-Sivan 10].

• 2-approximation for matroids (partial analysis). 

Recall high level idea:

• Want thresholds big enough so that thresholds themselves contribute high weight.

• Want thresholds small enough so that expected surplus still high.

Rest of Talk – Balanced Thresholds



Notation: OPT(𝑤1 , … ,𝑤𝑛) = max-weight feasible set. 

• Will drop (𝑤1 , … ,𝑤𝑛 ), just remember that  OPT depends on weights.

Definition: Remainder(H,𝑤1 , … ,𝑤𝑛 ) = argmax
𝑆⊆𝑂𝑃𝑇,𝑆∪𝐻 feasible

{ 𝑖∈𝑆𝑤𝑖}.

• “Best subset of OPT that could have added to H.”

Definition: Cost(H,𝑤1 , … ,𝑤𝑛) = OPT – Remainder(H). 

• “What we lost from OPT by accepting H.”

• Will abuse notation. Use OPT, Remainder, Cost to refer to these sets. As well as 
their weights.

Balanced Thresholds – Cost and Remainder



Definition: Remainder(H,𝑤1 , … ,𝑤𝑛 ) = argmax
𝑆⊆𝑂𝑃𝑇,𝑆∪𝐻 feasible

{ 𝑖∈𝑆𝑤𝑖}.

• “Best subset of OPT that could have added to H.”

Definition: Cost(H,𝑤1 , … ,𝑤𝑛) = OPT – Remainder(H). 

• “What we lost from OPT by accepting H.”

Example: Sets of size 1 feasible. OPT = {Mewtwo}. 

Remainder({Charmander}) = ∅. Cost({Charmander}) = {Mewtwo}. 

Remainder(∅) = {Mewtwo}. Cost(∅) = ∅. 

Balanced Thresholds – Cost and Remainder

4 53w =     1 2



Definition: Remainder(H,𝑤1 , … ,𝑤𝑛 ) = argmax
𝑆⊆𝑂𝑃𝑇,𝑆∪𝐻 feasible

{ 𝑖∈𝑆𝑤𝑖}.

• “Best subset of OPT that could have added to H.”

Definition: Cost(H,𝑤1 , … ,𝑤𝑛) = OPT – Remainder(H). 

• “What we lost from OPT by accepting H.”

Example: Sets of size 2 feasible. OPT = {Mewtwo, Pikachu}. 

Remainder({Charmander}) = {Mewtwo}. Cost({Charmander}) = {Pikachu}. 

Remainder(∅) = {Mewtwo, Pikachu}. Cost(∅) = ∅. 

Remainder({Bulbasaur, Squirtle}) = ∅. Cost({Bulbasaur, Squirtle}) = {Mewtwo, Pikachu}.

Balanced Thresholds – Cost and Remainder

4 53w =     1 2



Definition: Remainder(H,𝑤1 , … ,𝑤𝑛 ) = argmax
𝑆⊆𝑂𝑃𝑇,𝑆∪𝐻 feasible

{ 𝑖∈𝑆𝑤𝑖}.

• “Best subset of OPT that could have added to H.”

Definition: Cost(H,𝑤1 , … ,𝑤𝑛) = OPT – Remainder(H). 

• “What we lost from OPT by accepting H.”

Example: Sets of size k feasible. OPT = top k elements.

Remainder(H) = top k-|H| elements. 

Cost(H) = lowest |H| elements of top k. 

Balanced Thresholds – Cost and Remainder

4 53w =     1 2



Definition: Remainder(H,𝑤1 , … ,𝑤𝑛 ) = argmax
𝑆⊆𝑂𝑃𝑇,𝑆∪𝐻 feasible

{ 𝑖∈𝑆𝑤𝑖}.

• “Best subset of OPT that could have added to H.”

Definition: Cost(H,𝑤1 , … ,𝑤𝑛) = OPT – Remainder(H). 

• “What we lost from OPT by accepting H.”

OPT = {e, d, c}.

Balanced Thresholds – Cost and Remainder

a

b
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d
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Definition: Remainder(H,𝑤1 , … ,𝑤𝑛 ) = argmax
𝑆⊆𝑂𝑃𝑇,𝑆∪𝐻 feasible

{ 𝑖∈𝑆𝑤𝑖}.

• “Best subset of OPT that could have added to H.”

Definition: Cost(H,𝑤1 , … ,𝑤𝑛) = OPT – Remainder(H). 

• “What we lost from OPT by accepting H.”

OPT = {e, d, c}.

Remainder({a}) = {e,c}. Cost({a}) = d.

Balanced Thresholds – Cost and Remainder

a

b

c

d

e6

5

4

3

2



Definition: Remainder(H,𝑤1 , … ,𝑤𝑛 ) = argmax
𝑆⊆𝑂𝑃𝑇,𝑆∪𝐻 feasible

{ 𝑖∈𝑆𝑤𝑖}.

• “Best subset of OPT that could have added to H.”

Definition: Cost(H,𝑤1 , … ,𝑤𝑛) = OPT – Remainder(H). 

• “What we lost from OPT by accepting H.”

OPT = {e, d, c}.

Remainder({a}) = {e,c}. Cost({a}) = d.

Remainder({e}) = {d,c}. Cost({e}) =e. 

Balanced Thresholds – Cost and Remainder

a

b

c

d

e6

5

4

3

2



Definition: Remainder(H,𝑤1 , … ,𝑤𝑛 ) = argmax
𝑆⊆𝑂𝑃𝑇,𝑆∪𝐻 feasible

{ 𝑖∈𝑆𝑤𝑖}.

• “Best subset of OPT that could have added to H.”

Definition: Cost(H,𝑤1 , … ,𝑤𝑛) = OPT – Remainder(H). 

• “What we lost from OPT by accepting H.”

OPT = {e, d, c}.

Remainder({a}) = {e,c}. Cost({a}) = d.

Remainder({e}) = {d,c}. Cost({e}) =e. 

Remainder({a,b}) = {e}. Cost({a,b}) = {c,d}.

Balanced Thresholds – Cost and Remainder

a

b

c

d

e6

5

4

3

2



Definition: Remainder(H,𝑤1 , … ,𝑤𝑛 ) = argmax
𝑆⊆𝑂𝑃𝑇,𝑆∪𝐻 feasible

{ 𝑖∈𝑆𝑤𝑖}.

• “Best subset of OPT that could have added to H.”

Definition: Cost(H,𝑤1 , … ,𝑤𝑛) = OPT – Remainder(H). 

• “What we lost from OPT by accepting H.”

Definition: A thresholding algorithm defines thresholds 𝑇𝑖(𝑤1 , … , 𝑤𝑖−1), accepts i iff
𝑤𝑖 > 𝑇𝑖 and feasible to hire i.

Will just write 𝑇𝑖 , but remember can depend on 𝑤1 , … ,𝑤𝑖−1.

Definition: A thresholding algorithm has 𝛼-balanced thresholds if whenever it accepts 
set H when the weights are 𝑤1 , … , 𝑤𝑛, we have:

• Thresholds not too small:  𝑖∈𝐻 𝑇𝑖 ≥
1

𝛼
𝐸 Cost 𝐻,  𝑤1, … ,  𝑤𝑛 .

• Thresholds not too big:  𝑖∈𝑉 𝑇𝑖 ≤ 1 −
1

𝛼
𝐸 Remainder 𝐻,  𝑤1 , … ,  𝑤𝑛 , for all V 

disjoint from H such that 𝐻 ∪ 𝑉 is feasible. 

•  𝑤1 , … ,  𝑤𝑛 denote fresh samples from 𝐷1 , … , 𝐷𝑛. 

Balanced Thresholds



Definition: Remainder(H,𝑤1 , … ,𝑤𝑛 ) = argmax
𝑆⊆𝑂𝑃𝑇,𝑆∪𝐻 feasible

{ 𝑖∈𝑆𝑤𝑖}.

• “Best subset of OPT that could have added to H.”

Definition: Cost(H,𝑤1 , … ,𝑤𝑛) = OPT – Remainder(H). 

• “What we lost from OPT by accepting H.”

Example: Sets of size 1 feasible. E[OPT] = 5/6.

E[Remainder({Charmander})] = 0. E[Cost({Charmander})] = 5/6.

E[Remainder(∅)]= 5/6. E[Cost(∅)] = 0. 

Expected Cost and Remainder

U[0,1] U[0,1]U[0,1]w = U[0,1] U[0,1]



Definition: Remainder(H,𝑤1 , … ,𝑤𝑛 ) = argmax
𝑆⊆𝑂𝑃𝑇,𝑆∪𝐻 feasible

{ 𝑖∈𝑆𝑤𝑖}.

• “Best subset of OPT that could have added to H.”

Definition: Cost(H,𝑤1 , … ,𝑤𝑛) = OPT – Remainder(H). 

• “What we lost from OPT by accepting H.”

Example: Sets of size 2 feasible. E[OPT] = 5/6+2/3 = 3/2. 

E[Remainder({Charmander})] = 5/6. E[Cost({Charmander})] = 2/3.

E[Remainder(∅)] = 3/2. E[Cost(∅)] = 0. 

E[Remainder({Bulbasaur, Squirtle})] = 0. E[Cost({Bulbasaur, Squirtle})] = 3/2.

Expected Cost and Remainder

U[0,1] U[0,1]U[0,1]w = U[0,1] U[0,1]



Definition: Remainder(H,𝑤1 , … ,𝑤𝑛 ) = argmax
𝑆⊆𝑂𝑃𝑇,𝑆∪𝐻 feasible

{ 𝑖∈𝑆𝑤𝑖}.

• “Best subset of OPT that could have added to H.”

Definition: Cost(H,𝑤1 , … ,𝑤𝑛) = OPT – Remainder(H). 

• “What we lost from OPT by accepting H.”

Example: Sets of size k feasible. OPT = top k elements.

E[Remainder(H)] = Expected weight of top k-|H| elements. 

E[Cost(H)] = Expected weight of lowest |H| elements of top k. 

Expected Cost and Remainder

U[0,1] U[0,1]U[0,1]w = U[0,1] U[0,1]



Definition: A thresholding algorithm has 𝛼-balanced thresholds if whenever it accepts 
set H when the weights are 𝑤1 , … , 𝑤𝑛, we have:

• Thresholds not too small:  𝑖∈𝐻 𝑇𝑖 ≥
1

𝛼
𝐸 Cost 𝐻,  𝑤1, … ,  𝑤𝑛 .

• Thresholds not too big:  𝑖∈𝑉 𝑇𝑖 ≤ 1 −
1

𝛼
𝐸 Remainder 𝐻,  𝑤1 , … ,  𝑤𝑛 , for all V 

disjoint from H such that 𝐻 ∪ 𝑉 is feasible. 

Theorem [KW 12]: If a thresholding algorithm has 𝛼-balanced thresholds, then it 

guarantees 𝐸 𝐴𝐿𝐺 ≥
1

𝛼
𝐸 𝑂𝑃𝑇 .

Proof overview: Write E[OPT] = 𝐸[Cost 𝐻,  𝑤1 , … ,  𝑤𝑛 + Remainder 𝐻,  𝑤,… ,  𝑤𝑛 ].

Just partitions OPT( 𝑤1, … ,  𝑤𝑛) into Cost(H) and Remainder(H).

• “Not too small” guarantees 𝐸  𝑖∈𝐻 𝑇𝑖 ≥ 1/𝛼 𝐸[Cost 𝐻,  𝑤1 , … ,  𝑤𝑛 ].

• “Not too big” guarantees 𝐸  𝑖∈𝐻(𝑤𝑖 − 𝑇𝑖) ≥ 1/𝛼 𝐸[Remainder 𝐻,  𝑤1 , … ,  𝑤𝑛 ].

• Summing yields 𝐸  𝑖∈𝐻𝑤𝑖 ≥ 𝐸[𝑂𝑃𝑇]/𝛼. 

Balanced Thresholds Imply Prophet Inequalities



Definition: A thresholding algorithm has 𝛼-balanced thresholds if whenever it accepts 
set H when the weights are 𝑤1 , … , 𝑤𝑛, we have:

• Thresholds not too small:  𝑖∈𝐻 𝑇𝑖 ≥
1

𝛼
𝐸 Cost 𝐻,  𝑤1, … ,  𝑤𝑛 .

• Thresholds not too big:  𝑖∈𝑉 𝑇𝑖 ≤ 1 −
1

𝛼
𝐸 Remainder 𝐻,  𝑤1 , … ,  𝑤𝑛 , for all V 

disjoint from H such that 𝐻 ∪ 𝑉 is feasible. 

Theorem [KW 12]: If a thresholding algorithm has 𝛼-balanced thresholds, then it 

guarantees 𝐸 𝐴𝐿𝐺 ≥
1

𝛼
𝐸 𝑂𝑃𝑇 .

Observation: For 1-uniform matroids, 𝑇 = 𝐸 max
𝑖
{𝑤𝑖} /2 are 2-balanced.

• Any hired element i has 𝐸 Cost 𝑖 = 2𝑇, so not too small.

• If nothing accepted, all possible V have |V| = 1, 𝐸 Remainder ∅ = 2𝑇.

• If something accepted, possible V = ∅, constraint becomes 0 ≤ 0. So not too big.

Proving Thresholds are Balanced: 1-uniform



Theorem [(modified) CHMS 10]: 2-balanced thresholds exist for k-uniform matroids.

• Set 𝑇𝑖 =
𝐸 𝑂𝑃𝑇

2𝑘
, for all i.

Proof:

• What is Remainder(H)? Highest weight k-|H| elements.

• What is Cost(H)? |H| lowest weight items in the top k. 

• So 𝐸 Remainder 𝐻 ≥
𝑘− 𝐻

𝑘
𝐸[𝑂𝑃𝑇].

• 𝐸 𝐶𝑜𝑠𝑡 𝐻 ≤
𝐻

𝑘
𝐸 𝑂𝑃𝑇 .

• ⇒  𝑖∈𝐻 𝑇𝑖 =
𝐻

2𝑘
𝐸 𝑂𝑃𝑇 ≥ 𝐸[Cost 𝐻 ]/2, not too small.

• ⇒  𝑖∈𝑉 𝑇𝑖 ≤
𝑘−|𝐻|

2𝑘
𝐸 𝑂𝑃𝑇 ≤ 𝐸[Remainder 𝐻 ]/2, not too big.

Proving Thresholds are Balanced: k-uniform



Theorem [(modified) CHMS 10]: 2-balanced thresholds exist for k-uniform matroids.

• Set 𝑇𝑖 =
𝐸 𝑂𝑃𝑇𝑘−|𝐻𝑖−1|

2
, for all i.  𝐻𝑖−1 = hired secretaries from {1,… , 𝑖 − 1}.

• 𝑂𝑃𝑇𝑐 = expected weight of 𝑐th highest element. 

Alternative Proof:

• What is Remainder(H)? Highest weight k-|H| elements.

• What is Cost(H)? |H| lowest weight items in the top k. 

• So 𝐸 Remainder 𝐻 =  𝑐=1
𝑘−|𝐻|

𝐸[𝑂𝑃𝑇𝑐].

• 𝐸 𝐶𝑜𝑠𝑡 𝐻 =  𝑐=0
𝐻 −1𝐸[𝑂𝑃𝑇𝑘−𝑐] .

• ⇒  𝑖∈𝐻 𝑇𝑖 =  𝑐=0
𝐻 −1𝐸 𝑂𝑃𝑇𝑘−𝑐 /2 = 𝐸[Cost 𝐻 ]/2, not too small.

• ⇒  𝑖∈𝑉 𝑇𝑖 ≤ 𝑘 − 𝐻 ⋅ 𝐸 𝑂𝑃𝑇𝑘−|𝐻| /2 ≤ 𝐸[Remainder 𝐻 ]/2, not too big.

Proving Adaptive Thresholds are Balanced: k-uniform



Theorem [KW 12]: 2-balanced thresholds exist for all matroids.

• Set 𝑇𝑖 =
𝐸 Cost 𝐻𝑖−1∪{𝑖}, 𝑤1,…, 𝑤𝑛 −𝐸[Cost 𝐻𝑖−1,  𝑤1,…, 𝑤𝑛 ]

2
for all i.

Omit proof. Intuition for thresholds – Imagine two worlds:

• Clearly, World A is better. 

• If you are a prophet, by exactly 𝐸[Cost 𝐻𝑖−1 ∪ {𝑖} − Cost 𝐻𝑖−1 ]. 

• So in order to prefer World B, 𝑤𝑖 should be Ω(𝐸 Cost 𝐻𝑖−1 ∪ {𝑖} − Cost 𝐻𝑖−1 ).

• Dividing by 2 just makes the math work out. 

Proving Thresholds are Balanced: Matroids

A: All weights redrawn 
fresh, game restarted, 
but already hired 
secretaries 𝐻𝑖−1. 

B: All weights redrawn 
fresh, game restarted, 
but already hired 
secretaries 𝐻𝑖−1 ∪ {𝑖}.



• Not too small = Thresholds themselves cover part of expected OPT.

• Not too big = Expected surplus above thresholds still large.

Another kind of balanced thresholds, by probability [Samuel-Cahn 86, CHMS 10]:

• Not too small = unlikely to block any element.

• Not too big = accept enough elements in expectation.

• Related to “contention resolution schemes” [Feldman-Svensson-Zenklusen 16].

Not all proofs follow this methodology, but it’s a good way to think about the 
“challenge” of prophet inequalities. 

Recap - Balanced Thresholds



What if you get to choose the order?

• Improve to e/(e-1) approximation for all matroids (tight) [Yan 11]. 

Algorithm:

• Compute 𝑞𝑖 = Pr[𝑖 ∈ 𝑂𝑃𝑇] for all i. 

• Set 𝑇𝑖 such that Pr 𝑤𝑖 > 𝑇𝑖 = 𝑞𝑖 .

• Sort i in decreasing order of 𝑇𝑖 . 

• Hire every i with 𝑤𝑖 > 𝑇𝑖 , (and feasible to hire i).

Proof Overview: Uses “Correlation Gap Inequalities.” 

Related Results/Problems



What if you have limited access to 𝐷𝑖?

• 1 + 𝑂(1/ 𝑘) for k-uniform with 1 sample from each [Azar-Kleinberg-W. 14]. 

• Open: What is the best ratio for 1-uniform with 1 sample?

• Set T = highest sample gets <4-approximation. 

• Open: O(1) approximation for matroids with 1 sample from each?

What if an adversary adaptively chooses the ordering?

• Most results hold even if adversary “is a prophet” (knows weights).

• Exception: [KW 12], holds if adversary “is a gambler” (knows what you know).

Applications to Bayesian Mechanism Design

• Good prophet inequalities against appropriate adversaries immediately imply good 
mechanisms in certain Bayesian settings [CHMS 10].

• See Anna’s talk on Friday for more details!

Related Results/Problems



Related Results/Problems


