Sequential Decision Making: Prophets and Secretaries I - Prophet Inequalities

Matt Weinberg

Princeton University

Online Selection Problems

Imagine you're trying to hire a secretary, find a job, select a life partner, etc.

• At each time step:

- A secretary* arrives.
 - *I'm really sorry, but for this talk the secretaries will be pokémon.
- You interview, learn their value.
- Immediately and irrevocably decide whether or not to hire.
- May only hire one secretary!

t = 1 2 3

An Impossible Problem

Offline:

- Every secretary i has a weight w_i (chosen by adversary, unknown to you).
- Adversary chooses order to reveal secretaries.

Online:

- Secretaries revealed one at a time. You learn their weight.
- Immediately and irrevocably decide to hire or not.
- May only hire one secretary!
- Goal: Maximize probability of selecting max-weight element.
 - Trivial lower bound: can't beat 1/n (hire random secretary).

Online Selection Problems: Secretary Problems

Offline:

- Every secretary i has a weight w_i (chosen by adversary, unknown to you).
- Secretaries permuted randomly.

Online:

- Secretaries revealed one at a time. You learn their weight.
- Immediately and irrevocably decide to hire or not.
- May only hire one secretary!

Goal: Maximize probability of selecting max-weight element.

Online Selection Problems: Secretary Problems

Offline:

- Every secretary i has a weight w_i (chosen by adversary, unknown to you).
- Secretaries permuted randomly.

Online:

- Secretaries revealed one at a time. You learn their weight.
- Immediately and irrevocably decide to hire or not.
- May only hire one secretary!

Goal: Maximize probability of selecting max-weight element.

t = 1 2 3

Online Selection Problems: Prophet Inequalities

Offline:

- Every secretary i has a weight w_i drawn independently from distribution D_i .
- Adversary chooses distributions and ordering (both known to you). Online:
- Secretaries revealed one at a time. You learn their weight.
- Immediately and irrevocably decide to hire or not.
- May only hire one secretary!

Goal: Maximize expected weight of selected element.

Online Selection Problems: Prophet Inequalities

Offline:

- Every secretary i has a weight w_i drawn independently from distribution D_i .
- Adversary chooses distributions and ordering (both known to you). **Online:**
- Secretaries revealed one at a time. You learn their weight.
- Immediately and irrevocably decide to hire or not.
- May only hire one secretary!

Goal: Maximize expected weight of selected element.

t = 1

Online Selection Problems: Prophet Inequalities

Offline:

- Every secretary i has a weight w_i drawn independently from distribution D_i .
- Adversary chooses distributions and ordering (both known to you). Online:
- Secretaries revealed one at a time. You learn their weight.
- Immediately and irrevocably decide to hire or not.
- May only hire one secretary!
- Goal: Maximize expected weight of selected element.
 - t = 1 2

Observation: can find optimal policy via dynamic programming/backwards induction.

- If we make it to Mewtwo, clearly we should accept.
- If we make it to Pikachu, we can either: Reject: Get 4.5 from Mewtwo. Accept: Get w(Pikachu). So accept iff w(Pikachu) > 4.5.
- If we make it to Charmander, we can either: Reject: Get 4.625 (from optimal policy starting @ Pikachu). Accept: Get w(Charmander).
 - So reject Charmander.
- Etc.

Observation: can find optimal policy via dynamic programming/backwards induction.

- Question 1: How well does this policy do compared to a "prophet?"
 - Exist c such that for all instances, $E[Gambler] \ge c \cdot E[Prophet]$?
- Question 2: How well do "simpler" policies do?
 - Ex: set threshold T, accept first element with weight > T?
 - Can we get the same c as above?

Gambler knows distributions, uses online policy VS.

Prophet knows weights, picks best element

Theorem [Krengel-Sucheston 78, Samuel-Cahn 86]: Uniform threshold guarantees $E[Gambler] \ge 1/2 \cdot E[Prophet]$. Best possible (for all policies).

Tight example:

- Prophet gets $1/\epsilon$ w.p. ϵ , 1 w. p. $1-\epsilon$. E[prophet] = 2ϵ .
- Gambler can accept Bulbasaur, get 1.
- Or reject and get Squirtle, also for 1. So E[gambler] = 1.

Theorem [Krengel-Sucheston 78, Samuel-Cahn 86]: Uniform threshold guarantees $E[Gambler] \ge 1/2 \cdot E[Prophet]$. Best possible (for all policies). (modified) Proof:

- Let $T = E[\max_{i} \{w_i\}/2]$, use threshold T (accept any element > T).
- Define $p = \Pr[\max_{i}\{w_i\} > T]$. Define $ALG_i = w_i \cdot I(Alg \ accepts \ i)$.

• Notation:
$$X^+ = \max\{X, 0\}$$
.

$$E[ALG] = \sum_{i} E[ALG_{i}] = \sum_{i} E[(T + w_{i} - T) \cdot I(Alg \ accepts \ i)].$$

= $pT + \sum_{i} E[(w_{i} - T) \cdot I(Alg \ accepts \ i)].$

$$= pT + \sum_{i} E[(w_i - T) \cdot I(w_i > T \text{ AND don't accept any } j < i)].$$

$$= pT + \sum_{i} E[(w_i - T)^+ \cdot I(\text{Don't accept any } j < i)].$$

$$= pT + \sum_{i} E[(w_i - T)^+] \cdot \Pr[\text{Don't accept any } j < i].$$

$$\geq pT + (1 - p) \sum_{i} E[(w_i - T)^+].$$

So: A)
$$E[ALG] \ge pT + (1-p)\sum_i E[(w_i - T)^+].$$

Theorem [Krengel-Sucheston 78, Samuel-Cahn 86]: Uniform threshold guarantees $E[Gambler] \ge 1/2 \cdot E[Prophet]$. Best possible (for all policies). (modified) Proof:

A) $E[ALG] \ge pT + (1-p)\sum_{i} E[(w_i - T)^+].$ So: Just need to bound $E\left[\max_{i}\{w_{i}\}\right]$. Recall $T = E\left[\max_{i}\{w_{i}\}\right]/2$. $E\left[\max_{i}\{w_{i}\}\right] \leq E\left[T + \left(\max_{i}\{w_{i}\} - T\right)^{+}\right].$ $\leq T + E[\max_{i}\{(w_i - T)^+\}].$ $\leq T + E[\sum_{i}(w_{i} - T)^{+}].$ $\Rightarrow \sum_{i} E[(w_{i} - T)^{+}] \ge E \left| \max_{i} \{w_{i}\} \right| - T = E[\max_{i} \{w_{i}\}]/2.$

So:

B) $T = E[max_i\{w_i\}]/2$, $\sum_i E[(w_i - T)^+] \ge E[max_i\{w_i\}]/2$. $\Rightarrow E[ALG] \ge E[max_i\{w_i\}]/2$. **Theorem [Krengel-Sucheston 78, Samuel-Cahn 86]:** Uniform threshold guarantees $E[Gambler] \ge 1/2 \cdot E[Prophet]$. Best possible (for all policies). (modified) Proof:

A)
$$E[ALG] \ge pT + (1-p)\sum_{i} E[(w_{i} - T)^{+}].$$

B) $T = E[max_{i}\{w_{i}\}]/2, \sum_{i} E[(w_{i} - T)^{+}] \ge E[max_{i}\{w_{i}\}]/2.$
 $\Rightarrow E[ALG] \ge E[max_{i}\{w_{i}\}]/2.$

Intuition: A) holds for any T. B) lets us get mileage from A). Because T **not too big**, $\sum_{i} E[(w_i - T)^+] \ge E\left[\max_{i}\{w_i\}\right]/2$. Because T **not too small**, $T \ge E\left[\max_{i}\{w_i\}\right]/2$.

T is a **balanced threshold** (not formal definition yet).

We just saw:

- Simple description of optimal stopping rule.
- Tight competitive analysis, also achieved by uniform threshold.

Rest of talk: What if multiple choices?

Offline:

- Secretary i has a weight w_i drawn independently from distribution D_i .
- Adversary chooses distributions, ordering, and **feasibility constraints**: which secretaries can simultaneously hire? (all known to you)

Online:

- Secretaries revealed one at a time. You learn their weight.
- Immediately and irrevocably decide to hire or not.
- H = all hired secretaries. Must maintain H feasible at all times.

Goal: Maximize $E[\sum_{i \in H} w_i]$ - expected weight of hires.

Examples:

- Feasible to hire any k secretaries (k-uniform matroid).
- Associate each secretary with an edge in a graph. Feasible to hire any acyclic subgraph (graphic matroid).
- Associate each secretary with a vector in a vector space. Feasible to hire any linearly independent subset (representable matroid).
- Associate each secretary with an edge in a bipartite graph. Feasible to hire any matching (intersection of two partition matroids).

State-of-the-art (non-exhaustive)

Feasibility	Approximation Guarantee
k-Uniform	Algorithm: 1+O($1/\sqrt{k}$) [Alaei 11]. Lower Bound: 1+ $\Omega(1/\sqrt{k})$ [Kleinberg 05].
Matroids	Algorithm: 2 [Kleinberg-W. 12]. Lower Bound: 2.
Intersection of P Matroids	Algorithm: 4P-2 [KW 12]. Lower Bound: P+1 [KW 12].
Arbitrary Downwards Closed	Algorithm: O(log n log r) [Rubinstein 16]. Lower Bound: Ω(log n/log log n) [Babaioff-Immorlica-Kleinberg 07]. n = #elements, r = size of largest feasible set.
Independent set in Graph	Algorithm: $O(\rho^2 \log n)$ [Gobel-Hoefer-Kesselheim-Schleiden-Vocking 14]. Lower Bound: $\Omega(\log n/\log^2(\log n))$ [GHKSV 14]. ρ = "inductive independence number" of graph.
Polymatroids	Algorithm: 2 [Dutting-Kleinberg 15]. Lower Bound: 2.

Matroid: S, T feasible, $|S| > |T| \rightarrow \exists i \in S, T \cup \{i\}$ feasible. Downwards closed.

Think: feasible \approx linearly independent in a vector space.

Matroid Intersection: \exists P matroids M_1, \dots, M_P , S feasible \leftrightarrow S feasible in each M_i .

Bipartite matchings = intersection 2 matroids. 3D matchings = 3 matroids.

Rest of Talk – Balanced Thresholds

Goal: Introduce concept of "balanced thresholds" via:

- Formal definition.
- 2-approximation for k-uniform [Chawla-Hartline-Malec-Sivan 10].
- 2-approximation for matroids (partial analysis).

Recall high level idea:

- Want thresholds **big enough** so that thresholds themselves contribute high weight.
- Want thresholds small enough so that expected surplus still high.

Notation: OPT($w_1, ..., w_n$) = max-weight feasible set.

• Will drop (w_1, \dots, w_n) , just remember that OPT depends on weights.

Definition: Remainder(H, w_1 , ..., w_n) = $\underset{S \subseteq OPT, S \cup H \text{ feasible}}{\operatorname{argmax}} \{\sum_{i \in S} w_i\}.$

"Best subset of OPT that could have added to H."

Definition: Cost(H, w_1 , ..., w_n) = OPT – Remainder(H).

- "What we lost from OPT by accepting H."
- Will abuse notation. Use OPT, Remainder, Cost to refer to these sets. As well as their weights.

Definition: Remainder(H, w_1 , ..., w_n) = $\underset{S \subseteq OPT, S \cup H \text{ feasible}}{\operatorname{argmax}} \{\sum_{i \in S} w_i\}.$

"Best subset of OPT that could have added to H."

Definition: Cost(H, w_1 , ..., w_n) = OPT – Remainder(H).

• "What we lost from OPT by accepting H."

Example: Sets of size 1 feasible. OPT = {Mewtwo}.
Remainder({Charmander}) = Ø. Cost({Charmander}) = {Mewtwo}.
Remainder(Ø) = {Mewtwo}. Cost(Ø) = Ø.

Definition: Remainder(H, w_1 , ..., w_n) = $\underset{S \subseteq OPT, S \cup H \text{ feasible}}{\operatorname{argmax}} \{\sum_{i \in S} w_i\}.$

"Best subset of OPT that could have added to H."

Definition: Cost(H, w_1 , ..., w_n) = OPT – Remainder(H).

• "What we lost from OPT by accepting H."

Example: Sets of size 2 feasible. OPT = {Mewtwo, Pikachu}.

Remainder({Charmander}) = {Mewtwo}. Cost({Charmander}) = {Pikachu}.

Remainder(\emptyset) = {Mewtwo, Pikachu}. Cost(\emptyset) = \emptyset .

Remainder({Bulbasaur, Squirtle}) = Ø. Cost({Bulbasaur, Squirtle}) = {Mewtwo, Pikachu}.

Definition: Remainder(H, w_1 , ..., w_n) = $\underset{S \subseteq OPT, S \cup H \text{ feasible}}{\operatorname{argmax}} \{\sum_{i \in S} w_i\}.$

• "Best subset of OPT that could have added to H."

Definition: Cost(H, w_1 , ..., w_n) = OPT – Remainder(H).

• "What we lost from OPT by accepting H."

Example: Sets of size k feasible. OPT = top k elements.

Remainder(H) = top k-|H| elements.

Cost(H) = lowest |H| elements of top k.

Definition: Remainder(H, w_1 , ..., w_n) = $\underset{S \subseteq OPT, S \cup H \text{ feasible}}{\operatorname{argmax}} \{\sum_{i \in S} w_i\}.$

"Best subset of OPT that could have added to H."

Definition: Cost(H, w_1 , ..., w_n) = OPT – Remainder(H).

• "What we lost from OPT by accepting H."

OPT = {e, d, c}.

Definition: Remainder(H, w_1 , ..., w_n) = $\underset{S \subseteq OPT, S \cup H \text{ feasible}}{\operatorname{argmax}} \{\sum_{i \in S} w_i\}.$

• "Best subset of OPT that could have added to H."

Definition: Cost(H, w_1 , ..., w_n) = OPT – Remainder(H).

• "What we lost from OPT by accepting H."

OPT = {e, d, c}. Remainder({a}) = {e,c}. Cost({a}) = d.

Definition: Remainder(H, w_1 , ..., w_n) = $\underset{S \subseteq OPT, S \cup H \text{ feasible}}{\operatorname{argmax}} \{\sum_{i \in S} w_i\}.$

• "Best subset of OPT that could have added to H."

Definition: Cost(H, w_1 , ..., w_n) = OPT – Remainder(H).

• "What we lost from OPT by accepting H."

OPT = {e, d, c}. Remainder({a}) = {e,c}. Cost({a}) = d. Remainder({e}) = {d,c}. Cost({e}) = e.

Definition: Remainder(H, w_1 , ..., w_n) = $\underset{S \subseteq OPT, S \cup H \text{ feasible}}{\operatorname{argmax}} \{\sum_{i \in S} w_i\}.$

• "Best subset of OPT that could have added to H."

Definition: Cost(H, w_1 , ..., w_n) = OPT – Remainder(H).

• "What we lost from OPT by accepting H."

OPT = {e, d, c}.
Remainder({a}) = {e,c}. Cost({a}) = d.
Remainder({e}) = {d,c}. Cost({e}) =e.
Remainder({a,b}) = {e}. Cost({a,b}) = {c,d}.

Balanced Thresholds

Definition: Remainder(H, w_1 , ..., w_n) = $\underset{S \subseteq OPT, S \cup H \text{ feasible}}{\operatorname{argmax}} \{\sum_{i \in S} w_i\}.$

"Best subset of OPT that could have added to H."

Definition: Cost(H, w_1 , ..., w_n) = OPT – Remainder(H).

• "What we lost from OPT by accepting H."

Definition: A thresholding algorithm defines thresholds $T_i(w_1, ..., w_{i-1})$, accepts i iff $w_i > T_i$ and feasible to hire i.

Will just write T_i , but remember can depend on w_1, \ldots, w_{i-1} .

Definition: A thresholding algorithm has α -balanced thresholds if whenever it accepts set H when the weights are $w_1, ..., w_n$, we have:

- Thresholds **not too small**: $\sum_{i \in H} T_i \ge \frac{1}{\alpha} E[\text{Cost}(H, \widehat{w}_1, ..., \widehat{w}_n)].$
- Thresholds **not too big**: $\sum_{i \in V} T_i \leq (1 \frac{1}{\alpha}) E[\text{Remainder}(H, \widehat{w}_1, \dots, \widehat{w}_n)]$, for all V disjoint from H such that $H \cup V$ is feasible.
- $\widehat{w}_1, \dots, \widehat{w}_n$ denote fresh samples from D_1, \dots, D_n .

Expected Cost and Remainder

Definition: Remainder(H, w_1 , ..., w_n) = $\underset{S \subseteq OPT, S \cup H \text{ feasible}}{\operatorname{argmax}} \{\sum_{i \in S} w_i\}.$

"Best subset of OPT that could have added to H."

Definition: Cost(H, w_1 , ..., w_n) = OPT – Remainder(H).

• "What we lost from OPT by accepting H."

Example: Sets of size 1 feasible. E[OPT] = 5/6. E[Remainder({Charmander})] = 0. E[Cost({Charmander})] = 5/6. E[Remainder(Ø)]= 5/6. E[Cost(Ø)] = 0.

Expected Cost and Remainder

Definition: Remainder(H, w_1 , ..., w_n) = $\underset{S \subseteq OPT, S \cup H \text{ feasible}}{\operatorname{argmax}} \{\sum_{i \in S} w_i\}.$

"Best subset of OPT that could have added to H."

Definition: Cost(H, w_1 , ..., w_n) = OPT – Remainder(H).

• "What we lost from OPT by accepting H."

Example: Sets of size 2 feasible. E[OPT] = 5/6+2/3 = 3/2. $E[Remainder({Charmander})] = 5/6$. $E[Cost({Charmander})] = 2/3$. $E[Remainder(\emptyset)] = 3/2$. $E[Cost(\emptyset)] = 0$.

E[Remainder({Bulbasaur, Squirtle})] = 0. E[Cost({Bulbasaur, Squirtle})] = 3/2.

Expected Cost and Remainder

Definition: Remainder(H, w_1 , ..., w_n) = $\underset{S \subseteq OPT, S \cup H \text{ feasible}}{\operatorname{argmax}} \{\sum_{i \in S} w_i\}.$

• "Best subset of OPT that could have added to H."

Definition: Cost(H, w_1 , ..., w_n) = OPT – Remainder(H).

• "What we lost from OPT by accepting H."

Example: Sets of size k feasible. OPT = top k elements.
E[Remainder(H)] = Expected weight of top k-|H| elements.
E[Cost(H)] = Expected weight of lowest |H| elements of top k.

Balanced Thresholds Imply Prophet Inequalities

Definition: A thresholding algorithm has α -balanced thresholds if whenever it accepts set H when the weights are w_1, \ldots, w_n , we have:

- Thresholds **not too small**: $\sum_{i \in H} T_i \ge \frac{1}{\alpha} E[\text{Cost}(H, \widehat{w}_1, ..., \widehat{w}_n)].$
- Thresholds **not too big**: $\sum_{i \in V} T_i \leq (1 \frac{1}{\alpha}) E[\text{Remainder}(H, \widehat{w}_1, \dots, \widehat{w}_n)]$, for all V disjoint from H such that $H \cup V$ is feasible.

Theorem [KW 12]: If a thresholding algorithm has α -balanced thresholds, then it guarantees $E[ALG] \ge \frac{1}{\alpha} E[OPT]$.

Proof overview: Write E[OPT] = $E[Cost(H, \hat{w}_1, ..., \hat{w}_n) + Remainder(H, \hat{w}, ..., \hat{w}_n)]$. Just partitions OPT($\hat{w}_1, ..., \hat{w}_n$) into Cost(H) and Remainder(H).

- "Not too small" guarantees $E[\sum_{i \in H} T_i] \ge 1/\alpha E[\operatorname{Cost}(H, \widehat{w}_1, \dots, \widehat{w}_n)].$
- "Not too big" guarantees $E[\sum_{i \in H} (w_i T_i)] \ge 1/\alpha E[\text{Remainder}(H, \widehat{w}_1, \dots, \widehat{w}_n)].$
- Summing yields $E[\sum_{i \in H} w_i] \ge E[OPT]/\alpha$.

Proving Thresholds are Balanced: 1-uniform

Definition: A thresholding algorithm has α -balanced thresholds if whenever it accepts set H when the weights are w_1, \ldots, w_n , we have:

- Thresholds **not too small**: $\sum_{i \in H} T_i \ge \frac{1}{\alpha} E[\text{Cost}(H, \widehat{w}_1, ..., \widehat{w}_n)].$
- Thresholds **not too big**: $\sum_{i \in V} T_i \leq (1 \frac{1}{\alpha}) E[\text{Remainder}(H, \widehat{w}_1, \dots, \widehat{w}_n)]$, for all V disjoint from H such that $H \cup V$ is feasible.

Theorem [KW 12]: If a thresholding algorithm has α -balanced thresholds, then it guarantees $E[ALG] \ge \frac{1}{\alpha} E[OPT]$.

Observation: For 1-uniform matroids, $T = E \left[\max_{i} \{w_i\} \right] / 2$ are 2-balanced.

- Any hired element i has E[Cost(i)] = 2T, so **not too small**.
- If nothing accepted, all possible V have |V| = 1, $E[\text{Remainder}(\emptyset)] = 2T$.
- If something accepted, possible $V = \emptyset$, constraint becomes $0 \le 0$. So **not too big**.

Proving Thresholds are Balanced: k-uniform

Theorem [(modified) CHMS 10]: 2-balanced thresholds exist for k-uniform matroids.

• Set $T_i = \frac{E[OPT]}{2k}$, for all i.

Proof:

- What is Remainder(H)? Highest weight k-|H| elements.
- What is Cost(H)? |H| lowest weight items in the top k.
- So $E[\text{Remainder}(H)] \ge \left(\frac{k-|H|}{k}\right) E[OPT].$
- $E[Cost(H)] \leq \frac{|H|}{k} E[OPT].$
- $\Rightarrow \sum_{i \in H} T_i = \frac{|H|}{2k} E[OPT] \ge E[\operatorname{Cost}(H)]/2$, not too small.
- $\Rightarrow \sum_{i \in V} T_i \leq \frac{k |H|}{2k} E[OPT] \leq E[\text{Remainder}(H)]/2$, not too big.

Proving Adaptive Thresholds are Balanced: k-uniform

Theorem [(modified) CHMS 10]: 2-balanced thresholds exist for k-uniform matroids.

- Set $T_i = \frac{E[OPT_{k-|H_{i-1}|}]}{2}$, for all i. H_{i-1} = hired secretaries from $\{1, \dots, i-1\}$.
 - OPT_c = expected weight of c^{th} highest element.

Alternative Proof:

- What is Remainder(H)? Highest weight k-|H| elements.
- What is Cost(H)? |H| lowest weight items in the top k.
- So $E[\text{Remainder}(H)] = \sum_{c=1}^{k-|H|} E[OPT_c].$
- $E[Cost(H)] = \sum_{c=0}^{|H|-1} E[OPT_{k-c}].$
- $\Rightarrow \sum_{i \in H} T_i = \sum_{c=0}^{|H|-1} E[OPT_{k-c}]/2 = E[\operatorname{Cost}(H)]/2$, not too small.
- $\Rightarrow \sum_{i \in V} T_i \leq (k |H|) \cdot E[OPT_{k-|H|}]/2 \leq E[\text{Remainder}(H)]/2$, not too big.

Proving Thresholds are Balanced: Matroids

Theorem [KW 12]: 2-balanced thresholds exist for all matroids.

• Set $T_i = \frac{E[\operatorname{Cost}(H_{i-1} \cup \{i\}, \widehat{w}_1, \dots, \widehat{w}_n)] - E[\operatorname{Cost}(H_{i-1}, \widehat{w}_1, \dots, \widehat{w}_n)]}{2}$ for all i.

Omit proof. Intuition for thresholds – Imagine two worlds:

A: All weights redrawn fresh, game restarted, but already hired secretaries H_{i-1} .

B: All weights redrawn fresh, game restarted, but already hired secretaries $H_{i-1} \cup \{i\}$.

- Clearly, World A is better.
 - If you are a prophet, by exactly $E[Cost(H_{i-1} \cup \{i\}) Cost(H_{i-1})]$.
- So in order to prefer World B, w_i should be $\Omega(E[\text{Cost}(H_{i-1} \cup \{i\}) \text{Cost}(H_{i-1})])$.
 - Dividing by 2 just makes the math work out.

Recap - Balanced Thresholds

- **Not too small** = Thresholds themselves cover part of expected OPT.
- **Not too big** = Expected surplus above thresholds still large.

Another kind of balanced thresholds, by probability [Samuel-Cahn 86, CHMS 10]:

- Not too small = unlikely to block any element.
- Not too big = accept enough elements in expectation.
- Related to "contention resolution schemes" [Feldman-Svensson-Zenklusen 16].

Not all proofs follow this methodology, but it's a good way to think about the "challenge" of prophet inequalities.

Related Results/Problems

What if you get to choose the order?

• Improve to e/(e-1) approximation for all matroids (tight) [Yan 11].

Algorithm:

- Compute $q_i = \Pr[i \in OPT]$ for all i.
- Set T_i such that $\Pr[w_i > T_i] = q_i$.
- Sort i in decreasing order of T_i .
- Hire every i with $w_i > T_i$, (and feasible to hire i).

Proof Overview: Uses "Correlation Gap Inequalities."

Related Results/Problems

What if you have limited access to D_i ?

- $1 + O(1/\sqrt{k})$ for k-uniform with 1 sample from each [Azar-Kleinberg-W. 14].
- Open: What is the best ratio for 1-uniform with 1 sample?
 - Set T = highest sample gets <4-approximation.
- Open: O(1) approximation for matroids with 1 sample from each?

What if an adversary adaptively chooses the ordering?

- Most results hold even if adversary "is a prophet" (knows weights).
 - Exception: [KW 12], holds if adversary "is a gambler" (knows what you know).
- Applications to Bayesian Mechanism Design
- Good prophet inequalities against appropriate adversaries immediately imply good mechanisms in certain Bayesian settings [CHMS 10].
- See Anna's talk on Friday for more details!

Related Results/Problems

Thanks for listening!

