Sequential Decision Making: Prophets and
 Secretaries I - Prophet Inequalities

Matt Weinberg
Princeton University

Online Selection Problems

Imagine you're trying to hire a secretary, find a job, select a life partner, etc.

- At each time step:
- A secretary* arrives.
- *I'm really sorry, but for this talk the secretaries will be pokémon.
- You interview, learn their value.
- Immediately and irrevocably decide whether or not to hire.
- May only hire one secretary!
$t=1$
2
3

An Impossible Problem

Offline:

- Every secretary i has a weight w_{i} (chosen by adversary, unknown to you).
- Adversary chooses order to reveal secretaries.

Online:

- Secretaries revealed one at a time. You learn their weight.
- Immediately and irrevocably decide to hire or not.
- May only hire one secretary!

Goal: Maximize probability of selecting max-weight element.
Trivial lower bound: can't beat $1 / n$ (hire random secretary).

w =
6

4

7

8

9

Online Selection Problems: Secretary Problems

Offline:

- Every secretary i has a weight w_{i} (chosen by adversary, unknown to you).
- Secretaries permuted randomly.

Online:

- Secretaries revealed one at a time. You learn their weight.
- Immediately and irrevocably decide to hire or not.
- May only hire one secretary!

Goal: Maximize probability of selecting max-weight element.

$\mathrm{w}=$
6

4

7

8

9

Online Selection Problems: Secretary Problems

Offline:

- Every secretary i has a weight w_{i} (chosen by adversary, unknown to you).
- Secretaries permuted randomly.

Online:

- Secretaries revealed one at a time. You learn their weight.
- Immediately and irrevocably decide to hire or not.
- May only hire one secretary!

Goal: Maximize probability of selecting max-weight element.

$w=7$

6
8

Online Selection Problems: Prophet Inequalities

Offline:

- Every secretary i has a weight w_{i} drawn independently from distribution D_{i}.
- Adversary chooses distributions and ordering (both known to you).

Online:

- Secretaries revealed one at a time. You learn their weight.
- Immediately and irrevocably decide to hire or not.
- May only hire one secretary!

Goal: Maximize expected weight of selected element.

$w=U[4,6]$

$\mathrm{U}[0,8]$

$\mathrm{U}[3,4]$
$\mathrm{U}[4,5]$
$\mathrm{U}[0,9]$

Online Selection Problems: Prophet Inequalities

Offline:

- Every secretary i has a weight w_{i} drawn independently from distribution D_{i}.
- Adversary chooses distributions and ordering (both known to you).

Online:

- Secretaries revealed one at a time. You learn their weight.
- Immediately and irrevocably decide to hire or not.
- May only hire one secretary!

Goal: Maximize expected weight of selected element.

$$
t=1
$$

$\mathrm{w}=$
5

$\mathrm{U}[0,8]$
$\mathrm{U}[3,4]$
$\mathrm{U}[4,5]$
$\mathrm{U}[0,9]$

Online Selection Problems: Prophet Inequalities

Offline:

- Every secretary i has a weight w_{i} drawn independently from distribution D_{i}.
- Adversary chooses distributions and ordering (both known to you).

Online:

- Secretaries revealed one at a time. You learn their weight.
- Immediately and irrevocably decide to hire or not.
- May only hire one secretary!

Goal: Maximize expected weight of selected element.
$t=1$
2

$w=$
5

7

$\mathrm{U}[3,4]$
$\mathrm{U}[4,5]$

$\mathrm{U}[0,9]$

Prophet Inequalities

Observation: can find optimal policy via dynamic programming/backwards induction.

- If we make it to Mewtwo, clearly we should accept.
- If we make it to Pikachu, we can either:

Reject: Get 4.5 from Mewtwo.
Accept: Get w(Pikachu).
So accept iff w(Pikachu) >4.5.

- If we make it to Charmander, we can either:

Reject: Get 4.625 (from optimal policy starting @ Pikachu).
Accept: Get w(Charmander).
So reject Charmander.

- Etc.

$w=U[4,6]$

$U[0,8]$
$\mathrm{U}[3,4]$
$\mathrm{U}[4,5]$
$\mathrm{U}[0,9]$

Prophet Inequalities

Observation: can find optimal policy via dynamic programming/backwards induction.

- Question 1: How well does this policy do compared to a "prophet?"
- Exist c such that for all instances, E[Gambler] $\geq \mathrm{c} \cdot \mathrm{E}[$ Prophet $]$?
- Question 2: How well do "simpler" policies do?
- Ex: set threshold T, accept first element with weight > T?
- Can we get the same c as above?

Gambler
knows distributions, uses online policy

Prophet
knows weights, picks best element

Prophet Inequalities

Theorem [Krengel-Sucheston 78, Samuel-Cahn 86]: Uniform threshold guarantees $\mathrm{E}[$ Gambler $] \geq 1 / 2 \cdot \mathrm{E}[$ Prophet]. Best possible (for all policies).

Tight example:

- Prophet gets $1 / \epsilon$ w.p. $\epsilon, 1$ w. p. 1- ϵ. E[prophet] $=2-\epsilon$.
- Gambler can accept Bulbasaur, get 1.
- Or reject and get Squirtle, also for 1. So E[gambler] = 1 .

$$
\begin{array}{rl}
\mathrm{w}=\quad 1 & 0, \text { w.p. 1- } \epsilon \\
& 1 / \epsilon, \text { w.p. } \epsilon
\end{array}
$$

Prophet Inequalities

Theorem [Krengel-Sucheston 78, Samuel-Cahn 86]: Uniform threshold guarantees $\mathrm{E}[$ Gambler $] \geq 1 / 2 \cdot \mathrm{E}[$ Prophet $]$. Best possible (for all policies). (modified) Proof:

- Let $\mathrm{T}=E\left[\max _{i}\left\{w_{i}\right\} / 2\right]$, use threshold T (accept any element $>\mathrm{T}$).
- Define $p=\operatorname{Pr}\left[\max _{i}\left\{w_{i}\right\}>T\right]$. Define $A L G_{i}=w_{i} \cdot I($ Alg accepts $i)$.
- Notation: $X^{+}=\max \{X, 0\}$.
$E[A L G]=\sum_{i} E\left[A L G_{i}\right]=\sum_{i} E\left[\left(T+w_{i}-T\right) \cdot I(\right.$ Alg accepts $\left.i)\right]$.
$=p T+\sum_{i} E\left[\left(w_{i}-T\right) \cdot I(\right.$ Alg accepts $\left.i)\right]$.
$=p T+\sum_{i} E\left[\left(w_{i}-T\right) \cdot I\left(w_{i}>T\right.\right.$ AND don't accept any $\left.\left.\mathrm{j}<\mathrm{i}\right)\right]$.
$=p T+\sum_{i} E\left[\left(w_{i}-T\right)^{+} \cdot I\left(\right.\right.$ Don't $^{\prime}$ accept any $\left.\left.\mathrm{j}<\mathrm{i}\right)\right]$.
$=p T+\sum_{i} E\left[\left(w_{i}-T\right)^{+}\right] \cdot \operatorname{Pr}\left[\right.$ Don't accept any $\left.\mathrm{j}^{\mathrm{i}} \mathrm{i}\right]$.
$\geq p T+(1-p) \sum_{i} E\left[\left(w_{i}-T\right)^{+}\right]$.

So:
A) $E[A L G] \geq p \boldsymbol{T}+(\mathbf{1}-\boldsymbol{p}) \sum_{i} E\left[\left(\boldsymbol{w}_{\boldsymbol{i}}-\boldsymbol{T}\right)^{+}\right]$.

Prophet Inequalities

Theorem [Krengel-Sucheston 78, Samuel-Cahn 86]: Uniform threshold guarantees $\mathrm{E}[$ Gambler $] \geq 1 / 2 \cdot \mathrm{E}[$ Prophet]. Best possible (for all policies).
(modified) Proof:
So:
A) $E[A L G] \geq p T+(1-p) \sum_{i} E\left[\left(w_{i}-T\right)^{+}\right]$.

Just need to bound $E\left[\max _{i}\left\{w_{i}\right\}\right]$. Recall $\mathrm{T}=E\left[\max _{i}\left\{w_{i}\right\}\right] / 2$.
$E\left[\max _{i}\left\{w_{i}\right\}\right] \leq E\left[T+\left(\max _{i}\left\{w_{i}\right\}-T\right)^{+}\right]$.
$\leq T+E\left[\max _{i}\left\{\left(w_{i}-T\right)^{+}\right\}\right]$.
$\leq T+E\left[\sum_{i}\left(w_{i}-T\right)^{+}\right]$.
$\Rightarrow \sum_{i} E\left[\left(w_{i}-T\right)^{+}\right] \geq E\left[\max _{i}\left\{w_{i}\right\}\right]-T=E\left[\max _{i}\left\{w_{i}\right\}\right] / 2$.

So:
B) $T=E\left[\max _{i}\left\{w_{i}\right\}\right] / 2, \quad \sum_{i} E\left[\left(w_{i}-T\right)^{+}\right] \geq E\left[\max _{i}\left\{w_{i}\right\}\right] / 2$.
$\Rightarrow E[A L G] \geq E\left[\max _{i}\left\{w_{i}\right\}\right] / 2$.

Prophet Inequalities

Theorem [Krengel-Sucheston 78, Samuel-Cahn 86]: Uniform threshold guarantees $\mathrm{E}[$ Gambler $] \geq 1 / 2 \cdot \mathrm{E}[$ Prophet $]$. Best possible (for all policies). (modified) Proof:

$$
\begin{aligned}
& \text { A) } E[A L G] \geq p T+(1-p) \sum_{i} E\left[\left(w_{i}-T\right)^{+}\right] . \\
& \text {B) } T=E\left[\max _{i}\left\{w_{i}\right\}\right] / 2, \quad \sum_{i} E\left[\left(w_{i}-T\right)^{+}\right] \geq E\left[\max _{i}\left\{w_{i}\right\}\right] / 2 . \\
& \Rightarrow E[A L G] \geq E\left[\max _{i}\left\{w_{i}\right\}\right] / 2 .
\end{aligned}
$$

Intuition: A) holds for any T. B) lets us get mileage from A).
Because T not too big, $\sum_{i} E\left[\left(w_{i}-T\right)^{+}\right] \geq E\left[\max _{i}\left\{w_{i}\right\}\right] / 2$.
Because T not too small, $\mathrm{T} \geq E\left[\max _{i}\left\{w_{i}\right\}\right] / 2$.

T is a balanced threshold (not formal definition yet).

Multiple Choice Prophet Inequalities

We just saw:

- Simple description of optimal stopping rule.
- Tight competitive analysis, also achieved by uniform threshold.

Rest of talk: What if multiple choices?

Offline:

- Secretary i has a weight w_{i} drawn independently from distribution D_{i}.
- Adversary chooses distributions, ordering, and feasibility constraints: which secretaries can simultaneously hire? (all known to you)

Online:

- Secretaries revealed one at a time. You learn their weight.
- Immediately and irrevocably decide to hire or not.
- $\mathrm{H}=$ all hired secretaries. Must maintain H feasible at all times.

Goal: Maximize $\mathrm{E}\left[\sum_{i \in H} w_{i}\right]$ - expected weight of hires.

Multiple Choice Prophet Inequalities

Examples:

- Feasible to hire any k secretaries (k-uniform matroid).
- Associate each secretary with an edge in a graph. Feasible to hire any acyclic subgraph (graphic matroid).
- Associate each secretary with a vector in a vector space. Feasible to hire any linearly independent subset (representable matroid).
- Associate each secretary with an edge in a bipartite graph. Feasible to hire any matching (intersection of two partition matroids).

$w=U[4,6]$

$\mathrm{U}[0,8]$
$\mathrm{U}[3,4]$
$\mathrm{U}[4,5]$
$\mathrm{U}[0,9]$

State-of-the-art (non-exhaustive)

Feasibility	Approximation Guarantee
k-Uniform	Algorithm: $1+\mathrm{O}(1 / \sqrt{k})$ [Alaei 11]. Lower Bound: $1+\Omega(1 / \sqrt{k})$ [Kleinberg 05].
Matroids	Algorithm: 2 [Kleinberg-W. 12]. Lower Bound: 2.
Intersection of P Matroids	Algorithm: 4P-2 [KW 12]. Lower Bound: P+1 [KW 12].
Arbitrary Downwards Closed	Algorithm: O(log $n \log r)$ [Rubinstein 16]. Lower Bound: $\Omega(\log n / \log \log n)$ [Babaioff-Immorlica-Kleinberg 07]. $n=$ \#elements, $r=$ size of largest feasible set.
Independent set in Graph	Algorithm: $\mathrm{O}\left(\rho^{2} \log \mathrm{n}\right)$ [Gobel-Hoefer-Kesselheim-Schleiden-Vocking 14]. Lower Bound: $\Omega\left(\log n / \log ^{2}(\log n)\right)$ [GHKSV 14]. $\rho=$ "inductive independence number" of graph.
Polymatroids	Algorithm: 2 [Dutting-Kleinberg 15]. Lower Bound: 2.

Matroid: S, T feasible, $|S|>|T| \rightarrow \exists i \in S, T \cup\{i\}$ feasible. Downwards closed.
Think: feasible \approx linearly independent in a vector space.
Matroid Intersection: $\exists \mathrm{P}$ matroids $M_{1}, \ldots, M_{P}, \mathrm{~S}$ feasible $\leftrightarrow \mathrm{S}$ feasible in each M_{i}. Bipartite matchings = intersection 2 matroids. 3D matchings = 3 matroids.

Rest of Talk - Balanced Thresholds

Goal: Introduce concept of "balanced thresholds" via:

- Formal definition.
- 2-approximation for k-uniform [Chawla-Hartline-Malec-Sivan 10].
- 2-approximation for matroids (partial analysis).

Recall high level idea:

- Want thresholds big enough so that thresholds themselves contribute high weight.
- Want thresholds small enough so that expected surplus still high.

Balanced Thresholds - Cost and Remainder

Notation: $\operatorname{OPT}\left(w_{1}, \ldots, w_{n}\right)=$ max-weight feasible set.

- Will drop $\left(w_{1}, \ldots, w_{n}\right)$, just remember that OPT depends on weights.

Definition: Remainder $\left(\mathrm{H}, w_{1}, \ldots, w_{n}\right)=\underset{S \subseteq O P T, S \cup H \text { feasible }}{\operatorname{argmax}}\left\{\sum_{i \in S} w_{i}\right\}$.

- "Best subset of OPT that could have added to H."

Definition: $\operatorname{Cost}\left(\mathrm{H}, w_{1}, \ldots, w_{n}\right)=$ OPT - Remainder(H).

- "What we lost from OPT by accepting H."
- Will abuse notation. Use OPT, Remainder, Cost to refer to these sets. As well as their weights.

Balanced Thresholds - Cost and Remainder

Definition: Remainder $\left(\mathrm{H}, w_{1}, \ldots, w_{n}\right)=\underset{S \subseteq O P T, S \cup H \text { feasible }}{\operatorname{argmax}}\left\{\sum_{i \in S} w_{i}\right\}$.

- "Best subset of OPT that could have added to H."

Definition: Cost($\left.\mathrm{H}, w_{1}, \ldots, w_{n}\right)=$ OPT - Remainder(H).

- "What we lost from OPT by accepting H."

Example: Sets of size 1 feasible. OPT = \{Mewtwo $\}$.
Remainder $(\{$ Charmander $\})=\emptyset \cdot \operatorname{Cost}(\{$ Charmander $\})=\{$ Mewtwo $\}$.
Remainder $(\varnothing)=\{$ Mewtwo $\} \operatorname{Cost}(\varnothing)=\varnothing$.

$w=1$

2

3

4

5

Balanced Thresholds - Cost and Remainder

Definition: Remainder $\left(\mathrm{H}, w_{1}, \ldots, w_{n}\right)=\underset{S \subseteq O P T, S \cup H \text { feasible }}{\operatorname{argmax}}\left\{\sum_{i \in S} w_{i}\right\}$.

- "Best subset of OPT that could have added to H."

Definition: Cost(H, $\left.w_{1}, \ldots, w_{n}\right)=$ OPT - Remainder(H).

- "What we lost from OPT by accepting H."

Example: Sets of size 2 feasible. OPT = \{Mewtwo, Pikachu $\}$.
Remainder(\{Charmander $\})=\{$ Mewtwo $\}$. Cost $(\{$ Charmander $\})=\{$ Pikachu $\}$.
Remainder $(\varnothing)=\{$ Mewtwo, Pikachu $\}$. $\operatorname{Cost}(\varnothing)=\varnothing$.
Remainder(\{Bulbasaur, Squirtle $\})=\emptyset . \operatorname{Cost}(\{$ Bulbasaur, Squirtle $\})=\{$ Mewtwo, Pikachu $\}$.

$w=1$

2

3

4

5

Balanced Thresholds - Cost and Remainder

Definition: Remainder $\left(\mathrm{H}, w_{1}, \ldots, w_{n}\right)=\underset{S \subseteq O P T, S \cup H \text { feasible }}{\operatorname{argmax}}\left\{\sum_{i \in S} w_{i}\right\}$.

- "Best subset of OPT that could have added to H."

Definition: Cost($\left.\mathrm{H}, w_{1}, \ldots, w_{n}\right)=$ OPT - Remainder(H).

- "What we lost from OPT by accepting H."

Example: Sets of size k feasible. OPT = top k elements.
Remainder $(\mathrm{H})=$ top $\mathrm{k}-|\mathrm{H}|$ elements.
$\operatorname{Cost}(\mathrm{H})=$ lowest $|\mathrm{H}|$ elements of top k .

$w=1$

2

3

4

5

Balanced Thresholds - Cost and Remainder

Definition: Remainder $\left(\mathrm{H}, w_{1}, \ldots, w_{n}\right)=\underset{S \subseteq O P T, S \cup H \text { feasible }}{\operatorname{argmax}}\left\{\sum_{i \in S} w_{i}\right\}$.

- "Best subset of OPT that could have added to H."

Definition: $\operatorname{Cost}\left(\mathrm{H}, w_{1}, \ldots, w_{n}\right)=\mathrm{OPT}-$ Remainder (H).

- "What we lost from OPT by accepting H."

OPT $=\{e, d, c\}$.

Balanced Thresholds - Cost and Remainder

Definition: Remainder $\left(\mathrm{H}, w_{1}, \ldots, w_{n}\right)=\underset{S \subseteq O P T, S \cup H \text { feasible }}{\operatorname{argmax}}\left\{\sum_{i \in S} w_{i}\right\}$.

- "Best subset of OPT that could have added to H."

Definition: $\operatorname{Cost}\left(\mathrm{H}, w_{1}, \ldots, w_{n}\right)=\mathrm{OPT}-$ Remainder (H).

- "What we lost from OPT by accepting H."

OPT $=\{e, d, c\}$.
$\operatorname{Remainder}(\{a\})=\{e, c\} . \operatorname{Cost}(\{a\})=d$.

Balanced Thresholds - Cost and Remainder

Definition: Remainder $\left(\mathrm{H}, w_{1}, \ldots, w_{n}\right)=\underset{S \subseteq O P T, S \cup H \text { feasible }}{\operatorname{argmax}}\left\{\sum_{i \in S} w_{i}\right\}$.

- "Best subset of OPT that could have added to H."

Definition: $\operatorname{Cost}\left(\mathrm{H}, w_{1}, \ldots, w_{n}\right)=\mathrm{OPT}-$ Remainder (H).

- "What we lost from OPT by accepting H."

OPT $=\{e, d, c\}$.
Remainder $(\{a\})=\{e, c\} . \operatorname{Cost}(\{a\})=d$.
Remainder $(\{e\})=\{d, c\}$. $\operatorname{Cost}(\{e\})=e$.

Balanced Thresholds - Cost and Remainder

Definition: Remainder $\left(\mathrm{H}, w_{1}, \ldots, w_{n}\right)=\underset{S \subseteq O P T, S \cup H \text { feasible }}{\operatorname{argmax}}\left\{\sum_{i \in S} w_{i}\right\}$.

- "Best subset of OPT that could have added to H."

Definition: Cost($\left.\mathrm{H}, w_{1}, \ldots, w_{n}\right)=$ OPT - Remainder(H).

- "What we lost from OPT by accepting H."

OPT $=\{e, d, c\}$.
Remainder $(\{a\})=\{e, c\} . \operatorname{Cost}(\{a\})=d$.
Remainder $(\{e\})=\{d, c\}$. $\operatorname{Cost}(\{e\})=e$.
Remainder $(\{a, b\})=\{e\} . \operatorname{Cost}(\{a, b\})=\{c, d\}$.

Balanced Thresholds

Definition: Remainder $\left(\mathrm{H}, w_{1}, \ldots, w_{n}\right)=\underset{S \subseteq O P T, S \cup H \text { feasible }}{\operatorname{argmax}}\left\{\sum_{i \in S} w_{i}\right\}$.

- "Best subset of OPT that could have added to H."

Definition: Cost(H, $\left.w_{1}, \ldots, w_{n}\right)=$ OPT - Remainder(H).

- "What we lost from OPT by accepting H."

Definition: A thresholding algorithm defines thresholds $T_{i}\left(w_{1}, \ldots, w_{i-1}\right)$, accepts i iff $w_{i}>T_{i}$ and feasible to hire i.

Will just write T_{i}, but remember can depend on w_{1}, \ldots, w_{i-1}.

Definition: A thresholding algorithm has α-balanced thresholds if whenever it accepts set H when the weights are w_{1}, \ldots, w_{n}, we have:

- Thresholds not too small: $\sum_{i \in H} T_{i} \geq \frac{1}{\alpha} E\left[\operatorname{Cost}\left(H, \widehat{w}_{1}, \ldots, \widehat{w}_{n}\right)\right]$.
- Thresholds not too big: $\sum_{i \in V} T_{i} \leq\left(1-\frac{1}{\alpha}\right) E\left[\operatorname{Remainder}\left(H, \widehat{w}_{1}, \ldots, \widehat{w}_{n}\right)\right]$, for all V disjoint from H such that $H \cup V$ is feasible.
- $\widehat{w}_{1}, \ldots, \widehat{w}_{n}$ denote fresh samples from D_{1}, \ldots, D_{n}.

Expected Cost and Remainder

Definition: Remainder $\left(\mathrm{H}, w_{1}, \ldots, w_{n}\right)=\underset{S \subseteq O P T, S \cup H \text { feasible }}{\operatorname{argmax}}\left\{\sum_{i \in S} w_{i}\right\}$.

- "Best subset of OPT that could have added to H."

Definition: Cost($\left.\mathrm{H}, w_{1}, \ldots, w_{n}\right)=$ OPT - Remainder(H).

- "What we lost from OPT by accepting H."

Example: Sets of size 1 feasible. $\mathrm{E}[\mathrm{OPT}]=5 / 6$.
$\mathrm{E}[$ Remainder $(\{$ Charmander $\})]=0 . \mathrm{E}[\operatorname{Cost}(\{$ Charmander $\})]=5 / 6$.
$E[\operatorname{Remainder}(\varnothing)]=5 / 6 . E[\operatorname{Cost}(\emptyset)]=0$.

$w=U[0,1]$

$\mathrm{U}[0,1]$
$\mathrm{U}[0,1]$

$\mathrm{U}[0,1]$

Expected Cost and Remainder

Definition: Remainder $\left(\mathrm{H}, w_{1}, \ldots, w_{n}\right)=\underset{S \subseteq O P T, S \cup H \text { feasible }}{\operatorname{argmax}}\left\{\sum_{i \in S} w_{i}\right\}$.

- "Best subset of OPT that could have added to H."

Definition: Cost(H, $\left.w_{1}, \ldots, w_{n}\right)=$ OPT - Remainder(H).

- "What we lost from OPT by accepting H."

Example: Sets of size 2 feasible. $E[O P T]=5 / 6+2 / 3=3 / 2$.
$\mathrm{E}[$ Remainder $(\{$ Charmander $\})]=5 / 6 . \mathrm{E}[\operatorname{Cost}(\{$ Charmander $\})]=2 / 3$.
$E[\operatorname{Remainder}(\varnothing)]=3 / 2 . E[\operatorname{Cost}(\varnothing)]=0$.
$\mathrm{E}[$ Remainder $(\{$ Bulbasaur, Squirtle $\})]=0 . \mathrm{E}[\operatorname{Cost}(\{$ Bulbasaur, Squirtle $\})]=3 / 2$.

Expected Cost and Remainder

Definition: Remainder $\left(\mathrm{H}, w_{1}, \ldots, w_{n}\right)=\underset{S \subseteq O P T, S \cup H \text { feasible }}{\operatorname{argmax}}\left\{\sum_{i \in S} w_{i}\right\}$.

- "Best subset of OPT that could have added to H."

Definition: Cost(H, $\left.w_{1}, \ldots, w_{n}\right)=$ OPT - Remainder(H).

- "What we lost from OPT by accepting H."

Example: Sets of size k feasible. OPT = top k elements.
$\mathrm{E}[$ Remainder $(\mathrm{H})]=$ Expected weight of top $\mathrm{k}-|\mathrm{H}|$ elements.
$E[\operatorname{Cost}(H)]=$ Expected weight of lowest $|\mathrm{H}|$ elements of top k.

$w=U[0,1]$

$\mathrm{U}[0,1]$

U[0,1]

$\mathrm{U}[0,1]$

$\mathrm{U}[0,1]$

Balanced Thresholds Imply Prophet Inequalities

Definition: A thresholding algorithm has α-balanced thresholds if whenever it accepts set H when the weights are w_{1}, \ldots, w_{n}, we have:

- Thresholds not too small: $\sum_{i \in H} T_{i} \geq \frac{1}{\alpha} E\left[\operatorname{Cost}\left(H, \widehat{w}_{1}, \ldots, \widehat{w}_{n}\right)\right]$.
- Thresholds not too big: $\sum_{i \in V} T_{i} \leq\left(1-\frac{1}{\alpha}\right) E\left[\operatorname{Remainder}\left(H, \widehat{w}_{1}, \ldots, \widehat{w}_{n}\right)\right]$, for all V disjoint from H such that $H \cup V$ is feasible.

Theorem [KW 12]: If a thresholding algorithm has α-balanced thresholds, then it guarantees $E[A L G] \geq \frac{1}{\alpha} E[O P T]$.

Proof overview: Write $\mathrm{E}[\mathrm{OPT}]=E\left[\operatorname{Cost}\left(H, \widehat{w}_{1}, \ldots, \widehat{w}_{n}\right)+\operatorname{Remainder}\left(H, \widehat{w}, \ldots, \widehat{w}_{n}\right)\right]$. Just partitions $\operatorname{OPT}\left(\widehat{w}_{1}, \ldots, \widehat{w}_{n}\right)$ into $\operatorname{Cost}(\mathrm{H})$ and $\operatorname{Remainder}(\mathrm{H})$.

- "Not too small" guarantees $E\left[\sum_{i \in H} T_{i}\right] \geq 1 / \alpha E\left[\operatorname{Cost}\left(H, \widehat{w}_{1}, \ldots, \widehat{w}_{n}\right)\right]$.
- "Not too big" guarantees $E\left[\sum_{i \in H}\left(w_{i}-T_{i}\right)\right] \geq 1 / \alpha E\left[\operatorname{Remainder}\left(H, \widehat{w}_{1}, \ldots, \widehat{w}_{n}\right)\right]$.
- Summing yields $E\left[\sum_{i \in H} w_{i}\right] \geq E[O P T] / \alpha$.

Proving Thresholds are Balanced: 1-uniform

Definition: A thresholding algorithm has α-balanced thresholds if whenever it accepts set H when the weights are w_{1}, \ldots, w_{n}, we have:

- Thresholds not too small: $\sum_{i \in H} T_{i} \geq \frac{1}{\alpha} E\left[\operatorname{Cost}\left(H, \widehat{w}_{1}, \ldots, \widehat{w}_{n}\right)\right]$.
- Thresholds not too big: $\sum_{i \in V} T_{i} \leq\left(1-\frac{1}{\alpha}\right) E\left[\operatorname{Remainder}\left(H, \widehat{w}_{1}, \ldots, \widehat{w}_{n}\right)\right]$, for all V disjoint from H such that $H \cup V$ is feasible.

Theorem [KW 12]: If a thresholding algorithm has α-balanced thresholds, then it guarantees $E[A L G] \geq \frac{1}{\alpha} E[O P T]$.

Observation: For 1-uniform matroids, $T=E\left[\max _{i}\left\{w_{i}\right\}\right] / 2$ are 2-balanced.

- Any hired element i has $E[\operatorname{Cost}(i)]=2 T$, so not too small.
- If nothing accepted, all possible V have $|\mathrm{V}|=1, E[\operatorname{Remainder}(\varnothing)]=2 T$.
- If something accepted, possible $\mathrm{V}=\emptyset$, constraint becomes $0 \leq 0$. So not too big.

Proving Thresholds are Balanced: k-uniform

Theorem [(modified) CHMS 10]: 2-balanced thresholds exist for k-uniform matroids.

- Set $T_{i}=\frac{E[O P T]}{2 k}$, for all i.

Proof:

- What is Remainder(H)? Highest weight $\mathrm{k}-|\mathrm{H}|$ elements.
- What is $\operatorname{Cost}(\mathrm{H})$? $|\mathrm{H}|$ lowest weight items in the top k .
- So $E[\operatorname{Remainder}(H)] \geq\left(\frac{k-|H|}{k}\right) E[O P T]$.
- $E[\operatorname{Cost}(H)] \leq \frac{|H|}{k} E[O P T]$.
- $\Rightarrow \sum_{i \in H} T_{i}=\frac{|H|}{2 k} E[O P T] \geq E[\operatorname{Cost}(H)] / 2$, not too small.
- $\Rightarrow \sum_{i \in V} T_{i} \leq \frac{k-|H|}{2 k} E[O P T] \leq E[\operatorname{Remainder}(H)] / 2$, not too big.

Proving Adaptive Thresholds are Balanced: k-uniform

Theorem [(modified) CHMS 10]: 2-balanced thresholds exist for k-uniform matroids.

- Set $T_{i}=\frac{E\left[O P T_{k-\left|H_{i-1}\right|}\right]}{2}$, for all i. $H_{i-1}=$ hired secretaries from $\{1, \ldots, i-1\}$.
- $O P T_{c}=$ expected weight of $c^{\text {th }}$ highest element.

Alternative Proof:

- What is Remainder(H)? Highest weight $\mathrm{k}-|\mathrm{H}|$ elements.
- What is $\operatorname{Cost}(\mathrm{H})$? $|\mathrm{H}|$ lowest weight items in the top k .
- So $E[\operatorname{Remainder}(H)]=\sum_{c=1}^{k-|H|} E\left[O P T_{c}\right]$.
- $E[\operatorname{Cost}(H)]=\sum_{c=0}^{|H|-1} E\left[O P T_{k-c}\right]$.
- $\Rightarrow \sum_{i \in H} T_{i}=\sum_{c=0}^{|H|-1} E\left[O P T_{k-c}\right] / 2=E[\operatorname{Cost}(H)] / 2$, not too small.
- $\Rightarrow \sum_{i \in V} T_{i} \leq(k-|H|) \cdot E\left[O P T_{k-|H|}\right] / 2 \leq E[\operatorname{Remainder}(H)] / 2$, not too big.

Proving Thresholds are Balanced: Matroids

Theorem [KW 12]: 2-balanced thresholds exist for all matroids.

- Set $T_{i}=\frac{E\left[\operatorname{Cost}\left(H_{i-1} \cup\{i\}, \widehat{w}_{1}, \ldots, \widehat{w}_{n}\right)\right]-E\left[\operatorname{Cost}\left(H_{i-1}, \widehat{w}_{1}, \ldots, \widehat{w}_{n}\right)\right]}{2}$ for all i.

Omit proof. Intuition for thresholds - Imagine two worlds:

A: All weights redrawn fresh, game restarted, but already hired secretaries H_{i-1}.

B: All weights redrawn fresh, game restarted, but already hired secretaries $H_{i-1} \cup\{i\}$.

- Clearly, World A is better.
- If you are a prophet, by exactly $E\left[\operatorname{Cost}\left(H_{i-1} \cup\{i\}\right)-\operatorname{Cost}\left(H_{i-1}\right)\right]$.
- So in order to prefer World B, w_{i} should be $\Omega\left(E\left[\operatorname{Cost}\left(H_{i-1} \cup\{i\}\right)-\operatorname{Cost}\left(H_{i-1}\right)\right]\right)$.
- Dividing by 2 just makes the math work out.

Recap - Balanced Thresholds

- Not too small = Thresholds themselves cover part of expected OPT.
- Not too big = Expected surplus above thresholds still large.

Another kind of balanced thresholds, by probability [Samuel-Cahn 86, CHMS 10]:

- Not too small = unlikely to block any element.
- Not too big = accept enough elements in expectation.
- Related to "contention resolution schemes" [Feldman-Svensson-Zenklusen 16].

Not all proofs follow this methodology, but it's a good way to think about the "challenge" of prophet inequalities.

Related Results/Problems

What if you get to choose the order?

- Improve to e/(e-1) approximation for all matroids (tight) [Yan 11].

Algorithm:

- Compute $q_{i}=\operatorname{Pr}[i \in O P T]$ for all i .
- Set T_{i} such that $\operatorname{Pr}\left[w_{i}>T_{i}\right]=q_{i}$.
- Sort i in decreasing order of T_{i}.
- Hire every i with $w_{i}>T_{i}$, (and feasible to hire i).

Proof Overview: Uses "Correlation Gap Inequalities."

Related Results/Problems

What if you have limited access to D_{i} ?

- $1+O(1 / \sqrt{k})$ for k-uniform with 1 sample from each [Azar-Kleinberg-W. 14].
- Open: What is the best ratio for 1 -uniform with 1 sample?
- Set T = highest sample gets <4-approximation.
- Open: $\mathrm{O}(1)$ approximation for matroids with 1 sample from each?

What if an adversary adaptively chooses the ordering?

- Most results hold even if adversary "is a prophet" (knows weights).
- Exception: [KW 12], holds if adversary "is a gambler" (knows what you know).

Applications to Bayesian Mechanism Design

- Good prophet inequalities against appropriate adversaries immediately imply good mechanisms in certain Bayesian settings [CHMS 10].
- See Anna's talk on Friday for more details!

Related Results/Problems

Thanks for listening!

