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Offline:

• Every secretary i has a weight 𝑤𝑖 (chosen by adversary, unknown to you). 

• Secretaries permuted randomly.

Online:

• Secretaries revealed one at a time. You learn their weight.

• Immediately and irrevocably decide to hire or not.

• May only hire one secretary!

Goal: Maximize probability of selecting max-weight element.

Online Selection Problems: Secretary Problems
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Offline:

• Every secretary i has a weight 𝑤𝑖 (chosen by adversary, unknown to you). 

• Secretaries permuted randomly.

Online:

• Secretaries revealed one at a time. You learn their weight.

• Immediately and irrevocably decide to hire or not.

• May only hire one secretary!

Goal: Maximize probability of selecting max-weight element.
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Observation 1: optimal policy w.l.o.g. only accepts elements that have the largest 
weight seen so far.

Proof: Any element that isn’t the largest so far clearly isn’t the largest. So don’t lose 
anything by rejecting it. Might gain something by accepting something else in future.

Secretary Problem: Some Observations



Observation 1: optimal policy w.l.o.g. only accepts elements that have the largest 
weight seen so far.

Observation 2: can find optimal policy via dynamic programming.

Proof:

• If we make it to step n, see the largest element so far, clearly accept it.

• If we make it to step n-1, see the largest element so far, we can:
• Accept it, get the largest element w.p. 1-1/n (as last element isn’t true largest).

• Reject, get largest element w.p. 1/n.

• So accept.

• If we make it to step i, see largest element so far, we can:
• Accept it, get the largest element w.p. i/n (as long as largest element is in first i steps).

• Reject, get largest element w.p. f(i,n) (computed by dynamic program).

• f(i,n) = Pr[optimal policy selects largest element, conditioned on reaching step i+1].

• So accept iff i/n > f(i,n). 

Secretary Problem: Some Observations



Observation 1: optimal policy w.l.o.g. only accepts elements that have the largest 
weight seen so far.

Observation 2: can find optimal policy via dynamic programming.

• If we make it to step i, see largest element so far, we can:
• Accept it, get the largest element w.p. i/n (as long as largest element is in first i steps).

• Reject, get largest element w.p. f(i,n) (computed by dynamic program).

• f(i,n) = Pr[optimal policy selects largest element, conditioned on reaching step i+1].

• So accept iff i/n > f(i,n). 

Observation 3: if i < j, then f(i,n) ≥ f(j,n).

Proof:

One policy starting from i+1: reject everything until reach step j+1. Then run optimal 
policy starting from j+1. Succeeds w.p. exactly f(j,n). 

Secretary Problems: Some Observations



Observation 1: optimal policy w.l.o.g. only accepts elements that have the largest 
weight seen so far.

Observation 2: can find optimal policy via dynamic programming.

• If we make it to step i, see largest element so far, we can:
• Accept it, get the largest element w.p. i/n (as long as largest element is in first i steps).

• Reject, get largest element w.p. f(i,n) (computed by dynamic program).

• f(i,n) = Pr[optimal policy selects largest element, conditioned on reaching step i+1].

• So accept iff i/n > f(i,n). 

Observation 3: if i < j, then f(i,n) ≥ f(j,n).

Observation 4: Optimal policy sets cutoff time T. Rejects everything before (or during) 
time T. Accepts any element after T iff highest so far.

Proof: Optimal policy accepts i iff i/n > f(i,n) (and i highest so far). 

If i < j, and optimal policy would accept i, then: j/n > i/n > f(i,n) ≥ f(j,n). 

So optimal policy would accept j (if j was highest so far) too. 

Secretary Problems: Some Observations



Observation: Optimal policy sets cutoff time T. Rejects everything before time T. 
Accepts any element after T iff highest so far.

So just need to find optimal T. 

(suboptimal) Proposition: Optimal policy selects highest element w.p. ≥ 1/4.

Proof: (randomly) set T ← Binom(n,1/2). 

• (every element comes before T w.p. exactly 1/2 independently of the others). 

If highest element comes after T and 2nd highest comes before T, definitely select 
highest element.

Above occurs w.p. 1/4. 

Secretary Problem: A Competitive Policy



Observation: Optimal policy sets cutoff time T. Rejects everything before time T. 
Accepts any element after T iff highest so far.

(suboptimal) Proposition: Optimal policy selects highest element w.p. ≥ 1/4.

Theorem [Dynkin 63]: Optimal policy selects highest element w.p. ≈ 1/e. 

Lemma: For any cutoff time T, Pr[reach time t+1] = min{T/t, 1}.

Proof: If t < T, then clearly we will reach time t.

If t ≥ T, then we reach time t+1 iff no element between T and t is the highest so far. 

This happens iff the highest element from the first t arrives in the first T steps.

Secretary Problem: Optimal Policy
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Observation: Optimal policy sets cutoff time T. Rejects everything before time T. 
Accepts any element after T iff highest so far.

(suboptimal) Proposition: Optimal policy selects highest element w.p. ≥ 1/4.

Theorem [Dynkin 63]: Optimal policy selects highest element w.p. ≈ 1/e. 

Lemma: For any cutoff time T, Pr[reach time t+1] = min{T/t, 1}.

Proof: If t < T, then clearly we will reach time t.

If t ≥ T, then we reach time t+1 iff no element between T and t is the highest so far. 

This happens iff the highest element from the first t arrives in the first T steps.

 Reach time t+1 w.p. exactly T/t. 

Secretary Problem: Optimal Policy

tTx

< x can’t be accepted



Observation: Optimal policy sets cutoff time T. Rejects everything before time T. 
Accepts any element after T iff highest so far.

(suboptimal) Proposition: Optimal policy selects highest element w.p. ≥ 1/4.

Theorem [Dynkin 63]: Optimal policy selects highest element w.p. ≈ 1/e. 

Lemma: For any cutoff time T, Pr[reach time t+1] = min{T/t, 1}.

Corollary: For any cutoff time T, Pr[select highest] =  𝑡=𝑇+1
𝑛 𝑇/𝑡𝑛. 

Proof: Pr[select highest] =  𝑡 Pr[highest arrives at t AND is selected].

If t ≤ T, and the highest arrives at time t, then it isn’t selected. 

If t > T, and the highest arrives at time t, then it is selected iff we reach time t. 

Pr[highest arrives at t] = 1/n for all t. 

So Pr[select highest] =  𝑡=𝑇+1
𝑛 𝑇/𝑡𝑛. 

Secretary Problem: Optimal Policy



Observation: Optimal policy sets cutoff time T. Rejects everything before time T. 
Accepts any element after T iff highest so far.

(suboptimal) Proposition: Optimal policy selects highest element w.p. ≥ 1/4.

Theorem [Dynkin 63]: Optimal policy selects highest element w.p. ≈ 1/e. 

Lemma: For any cutoff time T, Pr[reach time t+1] = min{T/t, 1}.

Corollary: For any cutoff time T, Pr[select highest] =  𝑡=𝑇+1
𝑛 𝑇/𝑡𝑛. 

Proof of Theorem: For large n,  𝑡=𝑇+1
𝑛 𝑇/𝑡𝑛 ≈  𝑇

𝑛
𝑇/𝑡𝑛 𝑑𝑡 = (𝑇/𝑛)ln 𝑛/𝑇 . 

argmax
𝑇≤𝑛

(𝑇/𝑛)ln 𝑛/𝑇 = 𝑛/𝑒.  ln 𝑒 /𝑒 = 1/𝑒.

Secretary Problem: Optimal Policy



Theorem [Dynkin 63]: Optimal policy selects highest element w.p. ≈ 1/e. 

• Also guarantees E[Gambler] ≥ max
𝑖

𝑤𝑖 /𝑒. 

Compare to Prophet Inequalities:

• Both: simple policies get constant (and optimal) competitive ratios.

• Secretary problem: simple policy is actually optimal on all instances.

• Prophet inequalities: simple policy gets optimal competitive ratio, but is not 
necessarily optimal on every instance (versus dynamic program). 

Secretary Problem: Optimal Policy



Rest of talk: What if multiple choices? 

Offline:

• Secretary i has a weight 𝑤𝑖 (chosen by adversary).

• Adversary chooses feasibility constraints: which secretaries can simultaneously 
hire? (known to you).

• Secretaries permuted randomly.

Online:

• Secretaries revealed one at a time. You learn their weight.

• Immediately and irrevocably decide to hire or not. 

• H = all hired secretaries. Must maintain H feasible at all times.

Goal: Maximize E  𝑖∈𝐻 𝑤𝑖 - expected weight of hires.

• Compete with max
feasible 𝐻

{ 𝑖∈𝐻 𝑤𝑖}. 

Multiple Choice Secretary Problems



Transversal Matroid: Elements = left-hand nodes of bipartite graph. Set of nodes S is 
feasible iff exists matching of size |S| from S to right-hand nodes.

Regular Matroid: For all fields F, exists vector space V over F, elements can be mapped 
to vectors in V such that S feasible iff corresponding vectors linearly independent.

State-of-the-art (non-exhaustive)

Feasibility Approximation Guarantee (most omitted lower bounds are e)

k-Uniform 1+Θ(1/ 𝑘) [Kleinberg 05]. 

Matroids O(loglog(rank)) [Lachish 14, Feldman-Svensson-Zenklusen 15].

Graphic Matroids 2e [Korula-Pal 09],

Transversal Matroids e [Kesselheim-Radke-Tonnis-Vocking 13].

Laminar Matroids 9.6 [Ma-Tang-Wang 13]. 

Regular Matroids 9e [Dinitz-Kortsarz 14].

Knapsack 
Contstraints

10e [Babaioff-Immorlica-Kempe-Kleinberg 07].
(each element has cost 𝑐𝑖 , set is feasible iff total cost at most B).

Downwards Closed O(log n log r) [Rubinstein 16]. n = #elements, r = largest feasible set.



Matroid: Feasibility constraints such that S, T feasible with |S|>|T| exists i ∈ S such 
that T ∪ {𝑖} feasible. Downwards closed.

Rank: Rank(S) = max
𝑇⊆𝑆,𝑇 is feasible

{ 𝑇 }.

• Think of vector spaces. 

• Feasible sets have |S| = rank(S).

• Sometimes call a subset B of S with |B|=rank(B)=rank(S) a basis of S.

Span: Span(S) = 𝑖 rank 𝑆 ∪ 𝑖 = rank S . 

• Think of vector spaces. 

Theorem [Edmonds 70]: The greedy algorithm finds the max-weight feasible set in all 
matroids.

• Sort in decreasing order of weight. Accept any feasible element.

• Feasible to accept i iff i not in span of earlier elements.

• Implies i in max-weight basis iff i not spanned by heavier elements.

One Slide Primer on Matroids



Goal: Get a taste for different techniques via:

• e-approximation for k-uniform [Babaioff-Immorlica-Kempe-Kleinberg 07]. 

• 2e-approximation for graphic matroids [Korula-Pal 09].

• 4-approximation for matroids in “Free-order model” [Jaillet-Soto-Zenklusen 13]. 

Note: Won’t see applications of deep matroid theory in this talk. 

• [Soto 11, Dinitz-Kortsarz 14, Huynh-Nelson 16] use decomposition theorems and 
matroid minor theory [e.g. Seymour 80]. 

Rest of Talk – Some Examples



Theorem [Babaioff-Immorlica-Kempe-Kleinberg 07]: e-approximation for k-uniform.

Algorithm: When the element at time step t is processed:

• If t < n/e, reject.

• If the current element is not in the top k so far, reject.

• If the previous kth highest element arrived between n/e and t, reject.

• Else, accept. 

Examples: k=2, n=5. Pretend 2 < 5/e < 3. 

K-Uniform Matroids

4 53w =     1 2



Theorem [Babaioff-Immorlica-Kempe-Kleinberg 07]: e-approximation for k-uniform.

Algorithm: When the element at time step t is processed:

• If t < n/e, reject.

• If the current element is not in the top k so far, reject.

• If the previous kth highest element arrived between n/e and t, reject.

• Else, accept. 

Examples: k=2, n=5. Pretend 2 < 5/e < 3. 

K-Uniform Matroids
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Theorem [Babaioff-Immorlica-Kempe-Kleinberg 07]: e-approximation for k-uniform.

Algorithm: When the element at time step t is processed:

• If t < n/e, reject.

• If the current element is not in the top k so far, reject.

• If the previous kth highest element arrived between n/e and t, reject.

• Else, accept. 

Examples: k=2, n=5. Pretend 2 < 5/e < 3. 

K-Uniform Matroids
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Theorem [Babaioff-Immorlica-Kempe-Kleinberg 07]: e-approximation for k-uniform.

Algorithm: When the element at time step t is processed:

• If t < n/e, reject.

• If the current element is not in the top k so far, reject.

• If the previous kth highest element arrived between n/e and t, reject.

• Else, accept. 

Observation: Algorithm never accepts more than k elements.

Proof: Let S = top k elements arriving before n/e. 

Every accepted element “kicks out” an element of S from the top k. 

K-Uniform Matroids



Theorem [Babaioff-Immorlica-Kempe-Kleinberg 07]: e-approximation for k-uniform.

Algorithm: When the element at time step t is processed:

• If t < n/e, reject.

• If the current element is not in the top k so far, reject.

• If the previous kth highest element arrived between n/e and t, reject.

• Else, accept. 

Observation: Algorithm never accepts more than k elements.

Proposition: Every element in the true top k is accepted w. p. ≥ 1/𝑒.

Proof: If i is in the true top k, then i is always in the top k so far when it arrives.

If i arrives at t > n/e, it is accepted iff the kth highest element from steps {1,…,t-1} 
arrived before n/e. Pr[this occurs] = (n/e)/t. 

So Pr i accepted i in true top k =  ⌈𝑛/𝑒⌉
𝑛 1/(𝑒𝑡) ≈  𝑛/𝑒

𝑛
1/(𝑒𝑡) 𝑑𝑡 = 1/𝑒.

K-Uniform Matroids



Theorem [Babaioff-Immorlica-Kempe-Kleinberg 07]: e-approximation for k-uniform.

Algorithm: When the element at time step t is processed:

• If t < n/e, reject.

• If the current element is not in the top k so far, reject.

• If the previous kth highest element arrived between n/e and t, reject.

• Else, accept. 

Observation: Algorithm never accepts more than k elements.

Proposition: Every element in the true top k is accepted w. p. ≥ 1/𝑒.

Proof of Theorem: Observation  algorithm is feasible. Proposition  gets e-
approximation.

K-Uniform Matroids



Theorem [Babaioff-Immorlica-Kempe-Kleinberg 07]: e-approximation for k-uniform.

Algorithm: When the element at time step t is processed:

• If t < n/e, reject.

• If the current element is not in the top k so far, reject.

• If the previous kth highest element arrived between n/e and t, reject.

• Else, accept. 

Underlying Technique: “samples” = max-weight feasible set of elements before n/e. 

Whenever you accept an element, charge it to a sample. No sample charged twice.

Charge samples consistently to maintain feasibility of accepted elements.

K-Uniform Matroids



Theorem [Korula-Pal 09]: 2e-approximation for graphic matroids.

Algorithm: 

• Pick a random ordering of nodes (offline). 

• Let 𝐸𝑣 = {e = v,w , v comes before w in ordering above} (offline).

• Run Dynkin’s 1-uniform algorithm on each 𝐸𝑣 (online).

Example: 

Graphic Matroids
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Theorem [Korula-Pal 09]: 2e-approximation for graphic matroids.

Algorithm: 

• Pick a random ordering of nodes (offline). 

• Let 𝐸𝑣 = {e = v,w , v comes before w in ordering above} (offline).

• Run Dynkin’s 1-uniform algorithm on each 𝐸𝑣 (online).

Example: 
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Theorem [Korula-Pal 09]: 2e-approximation for graphic matroids.

Algorithm: 

• Pick a random ordering of nodes (offline). 

• Let 𝐸𝑣 = {e = v,w , v comes before w in ordering above} (offline).

• Run Dynkin’s 1-uniform algorithm on each 𝐸𝑣 (online).

Example: 

Graphic Matroids
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Theorem [Korula-Pal 09]: 2e-approximation for graphic matroids.

Algorithm: 

• Pick a random ordering of nodes (offline). 

• Let 𝐸𝑣 = {e = v,w , v comes before w in ordering above} (offline).

• Run Dynkin’s 1-uniform algorithm on each 𝐸𝑣 (online).

Example: 

Graphic Matroids
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Theorem [Korula-Pal 09]: 2e-approximation for graphic matroids.

Algorithm: 

• Pick a random ordering of nodes (offline). 

• Let 𝐸𝑣 = {e = v,w , v comes before w in ordering above} (offline).

• Run Dynkin’s 1-uniform algorithm on each 𝐸𝑣 (online).

Example: 

Graphic Matroids
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Theorem [Korula-Pal 09]: 2e-approximation for graphic matroids.

Algorithm: 

• Pick a random ordering of nodes (offline). 

• Let 𝐸𝑣 = {e = v,w , v comes before w in ordering above} (offline).

• Run Dynkin’s 1-uniform algorithm on each 𝐸𝑣 (online).

Example: 

Graphic Matroids
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Theorem [Korula-Pal 09]: 2e-approximation for graphic matroids.

Algorithm: 

• Pick a random ordering of nodes (offline). 

• Let 𝐸𝑣 = {e = v,w , v comes before w in ordering above} (offline).

• Run Dynkin’s 1-uniform algorithm on each 𝐸𝑣 (online).

Observation: Algorithm always accepts an acyclic subgraph.

Proof: Assume for contradiction that algorithm accepts a cycle. 

Let v be earliest node according to offline ordering in that cycle. 

Then two edges were accepted from 𝐸𝑣. Contradiction. 

Graphic Matroids



Theorem [Korula-Pal 09]: 2e-approximation for graphic matroids.

Algorithm: 

• Pick a random ordering of nodes (offline). 

• Let 𝐸𝑣 = {e = v,w , v comes before w in ordering above} (offline).

• Run Dynkin’s 1-uniform algorithm on each 𝐸𝑣 (online).

Observation: Algorithm always accepts an acyclic subgraph.

Intuition for Algorithm:

If we get lucky and choose an ordering that

recursively selects leaves of max-weight 

spanning tree, get each edge w.p. 1/e.

Graphic Matroids



Theorem [Korula-Pal 09]: 2e-approximation for graphic matroids.

Algorithm: 

• Pick a random ordering of nodes (offline). 

• Let 𝐸𝑣 = {e = v,w , v comes before w in ordering above} (offline).

• Run Dynkin’s 1-uniform algorithm on each 𝐸𝑣 (online).

Observation: Algorithm always accepts an acyclic subgraph.

Intuition for Algorithm:

If we get lucky and choose an ordering that

recursively selects leaves of max-weight 

spanning tree, get each edge w.p. 1/e.
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Theorem [Korula-Pal 09]: 2e-approximation for graphic matroids.

Algorithm: 

• Pick a random ordering of nodes (offline). 

• Let 𝐸𝑣 = {e = v,w , v comes before w in ordering above} (offline).

• Run Dynkin’s 1-uniform algorithm on each 𝐸𝑣 (online).

Observation: Algorithm always accepts an acyclic subgraph.

Intuition for Algorithm:

If we get lucky and choose an ordering that

recursively selects leaves of max-weight 

spanning tree, get each edge w.p. 1/e.
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Theorem [Korula-Pal 09]: 2e-approximation for graphic matroids.

Algorithm: 

• Pick a random ordering of nodes (offline). 

• Let 𝐸𝑣 = {e = v,w , v comes before w in ordering above} (offline).

• Run Dynkin’s 1-uniform algorithm on each 𝐸𝑣 (online).

Observation: Algorithm always accepts an acyclic subgraph.

Intuition for Algorithm:

If we get lucky and choose an ordering that

recursively selects leaves of max-weight 

spanning tree, get each edge w.p. 1/e.

Graphic Matroids
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Theorem [Korula-Pal 09]: 2e-approximation for graphic matroids.

Algorithm: 

• Pick a random ordering of nodes (offline). 

• Let 𝐸𝑣 = {e = v,w , v comes before w in ordering above} (offline).

• Run Dynkin’s 1-uniform algorithm on each 𝐸𝑣 (online).

Observation: Algorithm always accepts an acyclic subgraph.

Proof of Theorem: E[ALG] =  𝑣 𝐸[max
𝑖∈𝐸𝑣

{𝑤𝑖} /𝑒].

Let v = leaf in MST, e = MST edge adjacent to v. Then 𝐸 max
𝑖∈𝐸𝑣

𝑤𝑖 ≥ 𝑤𝑒/2. 

Let v become leaf in MST if all leaves are removed, e = MST edge adjacent to v (once 
leaves are removed). Then 𝐸 max

𝑖∈𝐸𝑣
𝑤𝑖 ≥ 𝑤𝑒/2.

Repeat above reasoning for all nodes. Eventually all edges in MST covered by some v.

Implies  𝑣 𝐸[max
𝑖∈𝐸𝑣

{𝑤𝑖}] ≥ 𝑂𝑃𝑇/2. 

Graphic Matroids



Theorem [Korula-Pal 09]: 2e-approximation for graphic matroids.

Algorithm: 

• Pick a random ordering of nodes (offline). 

• Let 𝐸𝑣 = {e = v,w , v comes before w in ordering above} (offline).

• Run Dynkin’s 1-uniform algorithm on each 𝐸𝑣 (online).

Underlying Technique: (randomly) restrict feasible sets to something simpler.

Disjoint union of many smaller, simpler subproblems.

Any union of feasible solutions to simpler problems is feasible.

• In this case, each subproblem = 1-uniform matroid.

• [Soto 11, Lachish 14, Dinitz-Kortsarz 14, Feldman-Svensson-Zenklusen 15, Huynh-
Nelson 16] use similar high-level decomposition approach, but decompose 
differently. Subproblems more complex, still solvable.

Graphic Matroids



Offline:

• Secretary i has a weight 𝑤𝑖 (chosen by adversary).

• Adversary chooses feasibility constraints: which secretaries can simultaneously 
hire? (known to you).

Online:

• You choose which secretary to interview one at a time. You learn their weight.

• Immediately and irrevocably decide to hire or not. 

• H = all hired secretaries. Must maintain H feasible at all times.

Goal: Maximize E  𝑖∈𝐻 𝑤𝑖 - expected weight of hires.

• Compete with max
feasible 𝐻

{ 𝑖∈𝐻 𝑤𝑖}. 

Note: Restricted to 1-uniform matroids, still get original secretary problem.

• Because all elements identical.

Free-Order Model



Definition: Let 𝑆 = 𝑖1 , … , 𝑖𝑘 be any set with 𝑤𝑖1
> 𝑤𝑖2

> ⋯ > 𝑤𝑖𝑘
. Let j = 

min
𝑗

𝑗 𝑖 ∈ span({𝑖1 , … , 𝑖𝑗})}. Then Price(i,S) = 𝑤𝑖𝑗 . 

• Span(V) = 𝑖 rank 𝑉 ∪ 𝑖 = rank(𝑉)}.

Examples: 

• k-uniform: Price(i,S) = kth highest element of S. 

• Graphic: Price(i,S) = min-weight edge on cycle formed by adding i to MST(S).

• Observation: i in max-weight basis of S ∪ {𝑖} iff 𝑤𝑖 > Price(i,S).

Free-Order Model



Definition: Let 𝑆 = 𝑖1 , … , 𝑖𝑘 be any set with 𝑤𝑖1
> 𝑤𝑖2

> ⋯ > 𝑤𝑖𝑘
. Let j = 

min
𝑗

𝑗 𝑖 ∈ span({𝑖1 , … , 𝑖𝑗})}. Then Price(i,S) = 𝑤𝑖𝑗 . 

• Span(V) = 𝑖 rank 𝑉 ∪ 𝑖 = rank(𝑉)}.

Theorem [Jaillet-Soto-Zenklusen 13]: 4-approximation for matroids (free-order).

Algorithm: Let S = random Binom(n, 1/2) elements. 

• Process all elements in S first, reject everything.

• Process remaining elements in decreasing order of Price(i,S).

• Accept i iff i in max-weight basis so far (and feasible to accept i).

Examples: k-uniform - once S is chosen:

• Span({𝑖1}) = ∅.

• Span(V) =  ∅ if |V| < k.

• Span(V) = entire ground set if |V| = k.

• So process elements in arbitrary order.

Free-Order Model



Definition: Let S = 𝑖1 , … , 𝑖𝑘 be any set with 𝑤𝑖1
> 𝑤𝑖2

> ⋯ > 𝑤𝑖𝑘
. Let j = 

min
𝑗

𝑗 𝑖 ∈ span({𝑖1 , … , 𝑖𝑗})}. Then Price(i,S) = 𝑤𝑖𝑗 . 

• Span(V) = 𝑖 rank 𝑉 ∪ 𝑖 = rank(𝑉)}.

Theorem [Jaillet-Soto-Zenklusen 13]: 4-approximation for matroids (free-order).

Algorithm: Let S = random Binom(n, 1/2) elements. 

• Process all elements in S first, reject everything.

• Process remaining elements in decreasing order of Price(i,S).

• Accept i iff i in max-weight basis so far (and feasible to accept i).

Examples: graphic matroids - once S is chosen:

Process edges in the following order:

• Any copies of (a,b).

• Any edge with both endpoints in {a,b,c}.

• Any edge with both endpoints in {a,b,c,e}.

• All remaining edges.

Free-Order Model

𝑖1

𝑖3

𝑖2

𝑖4

b

cd

a

e



Definition: Let S = 𝑖1 , … , 𝑖𝑘 be any set with 𝑤𝑖1
> 𝑤𝑖2

> ⋯ > 𝑤𝑖𝑘
. Let j = 

min
𝑗

𝑗 𝑖 ∈ span({𝑖1 , … , 𝑖𝑗})}. Then Price(i,S) = 𝑤𝑖𝑗 . 

• Span(V) = 𝑖 rank 𝑉 ∪ 𝑖 = rank(𝑉)}.

Theorem [Jaillet-Soto-Zenklusen 13]: 4-approximation for matroids (free-order).

Algorithm: Let S = random Binom(n, 1/2) elements. 

• Process all elements in S first, reject everything.

• Process remaining elements in decreasing order of Price(i,S).

• Accept i iff i in max-weight basis so far (and feasible to accept i).

Observation: Element i is only accepted if 𝑤𝑖 > Price(i,S).

Proof: Otherwise, i isn’t in max-weight basis so far.

Free-Order Model



Definition: Let 𝑆 = 𝑖1 , … , 𝑖𝑘 be any set with 𝑤𝑖1
> 𝑤𝑖2

> ⋯ > 𝑤𝑖𝑘
. Let j = 

min
𝑗

𝑗 𝑖 ∈ span({𝑖1 , … , 𝑖𝑗})}. Then Price(i,S) = 𝑤𝑖𝑗 . 

• Span(V) = 𝑖 rank 𝑉 ∪ 𝑖 = rank(𝑉)}.

Theorem [Jaillet-Soto-Zenklusen 13]: 4-approximation for matroids (free-order).

Algorithm: Let S = random Binom(n, 1/2) elements. 

• Process all elements in S first, reject everything.

• Process remaining elements in decreasing order of Price(i,S).

• Accept i iff i in max-weight basis so far (and feasible to accept i).

Observation: Element i is only accepted if 𝑤𝑖 > Price(i,S).

Lemma: If Price(i,S) > Price(i, S-{i}), then feasible to accept i. 

Proof: By Algorithm, all j processed before i have Price(j,S)≥Price(i,S).

In order for any j to be accepted, must have 𝑤𝑗>Price(j,S). 

Therefore, all elements accepted before i arrives have 𝑤𝑗>Price(i,S). 

If infeasible to accept i, then such elements span i, and Price(i, S-{i}) > Price(i,S). 

Free-Order Model



Definition: Let 𝑆 = 𝑖1 , … , 𝑖𝑘 be any set with 𝑤𝑖1
> 𝑤𝑖2

> ⋯ > 𝑤𝑖𝑘
. Let j = 

min
𝑗

𝑗 𝑖 ∈ span({𝑖1 , … , 𝑖𝑗})}. Then Price(i,S) = 𝑤𝑖𝑗 . 

• Span(V) = 𝑖 rank 𝑉 ∪ 𝑖 = rank(𝑉)}.

Theorem [Jaillet-Soto-Zenklusen 13]: 4-approximation for matroids (free-order).

Algorithm: Let S = random Binom(n, 1/2) elements. 

• Process all elements in S first, reject everything.

• Process remaining elements in decreasing order of Price(i,S).

• Accept i iff i in max-weight basis so far (and feasible to accept i).

Observation: Element i is only accepted if 𝑤𝑖 > Price(i,S).

Lemma: If Price(i,S) > Price(i, S-{i}), then feasible to accept i. 

Proof of Theorem: i∈  S w.p. 1/2. Independently, Price(i,S)>Price(i, S-{i}) w.p. 1/2. 

For any i in true max-weight basis, will accept i whenever both occur. 

Free-Order Model



Definition: Let 𝑆 = 𝑖1 , … , 𝑖𝑘 be any set with 𝑤𝑖1
> 𝑤𝑖2

> ⋯ > 𝑤𝑖𝑘
. Let j = 

min
𝑗

𝑗 𝑖 ∈ span({𝑖1 , … , 𝑖𝑗})}. Then Price(i,S) = 𝑤𝑖𝑗 . 

• Span(V) = 𝑖 rank 𝑉 ∪ 𝑖 = rank(𝑉)}.

Theorem [Jaillet-Soto-Zenklusen 13]: 4-approximation for matroids (free-order).

Algorithm: Let S = random Binom(n, 1/2) elements. 

• Process all elements in S first, reject everything.

• Process remaining elements in decreasing order of Price(i,S).

• Accept i iff i in max-weight basis so far (and feasible to accept i).

Underlying Technique: Couple “good” samples with “bad” samples – if S is bad, then  S
is good. 

Free-Order Model



What we saw:

• e-approximation for k-uniform matroids.

• Main idea: charge different element in max-weight basis of “samples” 
whenever accept.

• 2e-approximation for graphic matroids.

• Main idea: stricter feasibility constraints that decompose into smaller 
subproblems.

• 4-approximation for matroids in free-order model.

• Main idea: couple “good” samples with “bad” samples.

Again, not exhaustive list of high level techniques, but pretty good sample.

Recap



What if objective function isn’t linear in weights?

• Maybe submodular instead? 

• Lots of works show constant factor approximations [Gupta-Roth-Schoenebeck-
Talwar 10, Bateni-Hajiaghgayi-Zadimoghaddam 10, Feldman-Naor-Schwartz 11, 
Ma-Tang-Wang 16, Kesselheim-Tonnis 16] (non-exhaustive list).

• [Feldman-Zenklusen 15]: reduction from submodular to linear objective. 

What if weights randomly assigned to elements?

• Harder for adversary to generate hard instances.

• O(1) approximation for all matroids, even with adversarial order [Soto 11, Oveis
Gharan-Vondrak 11].

What if ordering not completely random?

• Θ log log 𝑛 entropy: O(1) approximation [Kesselheim-Kleinberg-Niazadeh 15].

• Note uniform random order has Θ 𝑛 log 𝑛 entroy. 

Related Results/Problems



Some Current Directions

O(1) approximation for all matroids in standard model?

• Interesting special case: representable matroids (vector spaces).
• i.e. pick your favorite field F. O(1) approximation for all vector spaces over F?

Tight e-approximation in any special cases?

• Currently known for transversal matroids [Kesselheim-Radke-Tonnis-Vocking 13].

• What about graphic? Laminar? Free-order model?

Any lower bounds?

• > e for classes of simple algorithms? 


