Approximation Algorithms for Stochastic Optimization

Kamesh Munagala
Duke University
Markov Decision Process

- Set S of states of the system
- Set A of actions

- If action a taken in state s:
 - Reward $R_a(s)$
 - System transitions to state q with probability $p_a(s,q)$
Markov Decision Process

- Set S of states of the system
- Set A of actions

- If action a taken in state s:
 - Reward $R_a(s)$ drawn from known distributions
 - System transitions to state q with probability $p_a(s,q)$

- **Input**:
 - Rewards and state transition matrices for each action
 - Start state s
 - Time horizon T
Policy for an MDP

- Maximize expected reward over T steps
 - Expectation over stochastic nature of rewards and state transitions

- **Policy**: Mapping from states S to actions A
 - Specifies optimal action for each observed state

- Dynamic Programming
 - Optimal policy computable in time $\text{poly}(|S|,|A|,T)$

[Bellman ‘54]
This talk

• For many problems:
 • $|S|$ is exponentially large in problem parameters
 ... or $|A|$ is exponentially large
 • Many examples to follow

• Simpler decision policies?
 • Approximately optimal in a provable sense
 • Efficient to compute and execute
Talk Overview
Classes of Decision Problems

Stochastic Optimization

Covering/Ordering Problems
- Set Cover Variants
- Multi-stage Optimization

Scheduling Problems
- Knapsack, Matchings, Bandits
- Machine Scheduling

Bayesian Auctions
- Inventory Management
Classes of Decision Problems

- Stochastic Optimization
- Covering/Ordering Problems
- Scheduling Problems
- Set Cover Variants
- Multi-stage Optimization
- Linear Programming Relaxations!
- Knapsack, Matchings, Bandits
- Machine Scheduling
- Bayesian Auctions
- Inventory Management
Part 1. Maximum Value Problem

- Really simple decision problem
 - Illustrate basic concepts
 - Adaptive vs. Non-adaptive policies

- Non-adaptive policies
 - Submodularity and the Greedy algorithm

- Adaptive policies
 - LP Relaxation and “Weak Coupling”
 - Rounding using Markov’s Inequality

- Duality
 - Simple structure of LP optimum
 - Gap between adaptive and non-adaptive policies
Part 2. Weakly Coupled LPs

• General technique via LP and Duality
 • LP relaxation has very few constraints
 • Dual yields infeasible policies with simple structure

• Examples
 • Stochastic knapsack
 • Stochastic matching
 • Bayesian multi-item pricing
Part 3. Sampling Scenarios

• Exponential sized LP over all possible “scenarios” of underlying distributions

• Solve LP or its Lagrangian by sampling the scenarios

• Examples:
 • 2-stage vertex cover
 • Stochastic Steiner trees
 • Bayesian auctions
 • Solving LPs online
Part 4. Stochastic Scheduling

• New aspect of timing the actions

• Two techniques:
 ▫ Stronger LP relaxations than weak coupling
 • Stochastic scheduling on identical machines
 • Stochastic knapsack (not covered)
 ▫ Greedy policies
 • Gittins index theorem
Important Disclaimer

By no means is this comprehensive!
Part 1.
The Maximum Value Problem

[Guha, Munagala ’07, ’09,
Dean, Goemans, Vondrak ’04]
The Maximum Value Problem

- There is a gambler who is shown n boxes
 - Box j has reward drawn from distribution X_j
 - Gambler knows X_j but box is closed
 - All distributions are independent
The Maximum Value Problem

- Gambler knows all the distributions
- Distributions are independent
The Maximum Value Problem

Open some box, say Box 2

X_1 20 X_3 X_4 X_5
The Maximum Value Problem

Open another box based on observing $X_2 = 20$

Can open at most k boxes:
• Payoff = **Maximum reward** observed in these k boxes

Adaptivity:
• Gambler can choose next box to open based on observations so far
Example: Bernoulli Boxes

Gambler can open $k = 2$ boxes

- X_1: 50 with probability $\frac{1}{2}$
- X_2: 60 with probability $\frac{1}{3}$
- X_3: 25 with probability 1
Optimal Decision Policy

X_1 has expected payoff 0 with prob $\frac{1}{2}$

X_3 has expected payoff 25

X_2 has expected payoff $\frac{60}{3} = 20$

$X_1 = B(50, 1/2)$

$X_2 = B(60, 1/3)$

$X_3 = B(25, 1)$
Optimal Decision Policy

\[X_1 \text{ with prob } \frac{1}{2} \]
\[X_2 = B(60, \frac{1}{3}) \]
\[X_3 = B(25, 1) \]
Optimal Decision Policy

$X_1 = B(50,1/2)$

$X_2 = B(60,1/3)$

$X_3 = B(25, 1)$

Guaranteed payoff = 50
So it is pointless to open X_3
Optimal Decision Policy

X_1 with prob $\frac{1}{2}$

X_2 with prob $\frac{1}{2}$

$X_3 = B(25, 1)$

$X_2 = B(60, \frac{1}{3})$

Guaranteed payoff of 50
Optimal Decision Policy

X_1 \text{ with prob } \frac{1}{2} \\
X_3 \text{ with prob } \frac{1}{2}

X_3 = B(25, 1)

X_2 = B(60, 1/3)

\text{Guaranteed payoff of 50}

\text{Expected Payoff} = \frac{25}{2} + \frac{50}{3} + \frac{60}{6} = 39.167
Can Gambler be Non-adaptive?

- Choose k boxes upfront before opening them
 - Open these boxes and obtain maximum value

- Best solution = Pick X_1 and X_3 upfront
 - Payoff = $\frac{1}{2} \times 50 + \frac{1}{2} \times 25 = 37.5 < 39.167$

 - Adaptively choosing next box after opening X_1 is better!
Can Gambler be Non-adaptive?

- Choose \(k \) boxes upfront before opening them
 - Open these boxes and obtain maximum value

- Best solution = Pick \(X_1 \) and \(X_3 \) upfront
 - Payoff = \(\frac{1}{2} \times 50 + \frac{1}{2} \times 25 = 37.5 < 39.167 \)
 - Adaptively choosing next box after opening \(X_1 \) is better!

- Subtler point: It’s not that much better...
Benchmark

• Value of optimal decision policy (decision tree)
 • Call this value OPT
 • Optimal decision tree can have size exponential in k

• Can we design a:
 • *Polynomial time algorithm*
 • *... that produces poly-sized decision tree*
 • *... that approximates OPT?*
Outline for Part 1

• Approximation algorithms for Maximum Value
 • Non-adaptive policy
 • Linear programming relaxation
 • Duality and “adaptivity gap”

 ▫ Please ignore the constant factors!

• Later on: “Weakly coupled” decision systems
 • Applications to matching, pricing, scheduling, ...
Non-adaptive Algorithm

Submodularity

[Kempe, Kleinberg, Tardos ’03, ...]
Non-adaptive Problem

- For any subset S of boxes, if gambler opens S non-adaptively, the payoff observed is

$$f(S) = \mathbb{E} \left[\max_{i \in S} X_i \right]$$

- Goal:
 - Find S such that $|S| \leq k$
 - Maximize $f(S)$
Submodularity of Set Functions

\[f(S_1 \cup \{t\}) - f(S_1) \geq f(S_2 \cup \{t\}) - f(S_2) \]

Also need **non-negativity** and **monotonicity**: \(f(S_2) \geq f(S_1) \geq 0 \)
The Greedy Algorithm

\[S \leftarrow \emptyset \]

While \(|S| \leq k\):

\[t \leftarrow \arg\max_{q \notin S} (f(S \cup \{q\}) - f(S)) \]

\[S \leftarrow S \cup \{t\} \]

Output \(S\)
Classical Result

- Greedy is a $1 - 1/e \approx 0.632$ approximation to the value of the optimal subset of size k

- Similar results hold even when:
 - Different elements have different costs and there is a budget on total cost of chosen set S
 - General matroid constraints on chosen set S
Maximum Value is Submodular

• Let $D =$ Joint distribution of X_1, X_2, \ldots, X_n

• Consider any sample r drawn from D
 • Yields a sample of values $v_{1r}, v_{2r}, \ldots, v_{nr}$
 • Let $f(S, r) = \max_{i \in S} v_{ir}$
 • Easy to check this is submodular

• $f(S)$ is the expectation over samples r of $f(S, r)$
 • Submodularity preserved under taking expectation!

• **Note:** Do not need independence of variables!
More things that are Submodular

- Payoff from many opened boxes

\[f(S) = \mathbb{E} \left[\max_{\bar{x} \in [0,1]^n; \sum_{i \in S} s_i x_i \leq B} \sum_{i \in T} X_i \right] \]

[Guha, Munagala '07]
More things that are Submodular

• Payoff from many opened boxes

\[f(S) = \mathbb{E} \left[\max_{\bar{x} \in [0, 1]^n; \sum_{i \in S} s_i x_i \leq B} \sum_{i \in T} X_i \right] \]

[Guha, Munagala ‘07]

• Payoff = Minimizing the minimum value

\[f(S) = -\log \mathbb{E} \left[\min_{i \in S} X_i \right] \]

[Goel, Guha, Munagala ‘06]
More things that are Submodular

- Payoff from many opened boxes
 \[f(S) = \mathbb{E} \left[\max_{\bar{x}\in[0,1]^n; \sum_{i\in S} s_i x_i \leq B} \sum_{i\in T} X_i \right] \]
 [Guha, Munagala ‘07]

- Payoff = Minimizing the minimum value
 \[f(S) = -\log \mathbb{E} \left[\min_{i\in S} X_i \right] \]
 [Goel, Guha, Munagala ‘06]

- Spread of epidemic with seed set \(S \)
 [Kempe, Kleinberg, Tardos ‘03]

- Discrete entropy of joint distribution of \(S \)
 [Krause, Guestrin ‘05]
Adaptive Algorithms

Linear Programming
[Dean, Goemans, Vondrak ’04; Guha, Munagala ‘07]
Linear Programming

Consider optimal decision policy
 • Adaptively opens at most k boxes
 • Obtains payoff from one opened box

\[
y_j = \Pr[\text{Box } j \text{ is opened}]
\]

\[
z_{jv} = \Pr[\text{Policy’s payoff is from box } j \\
\quad \land \quad X_j = v]
\]
Example from before...

$X_1 = B(50, 1/2)$
$X_2 = B(60, 1/3)$
$X_3 = B(25, 1)$

$y_1 = 1$
$y_2 = 1/2$
$y_3 = 1/2$

$z_{1,50} = 1/3$
$z_{2,60} = 1/6$
$z_{3,25} = 1/2$
Basic Idea

• LP captures behavior of policy
 • Use y_j and z_{jv} as the variables

• These variables are insufficient to capture entire structure of optimal policy
 • What we end up with will be a relaxation

• Steps:
 • Understand structure of relaxation
 • Convert solution to a feasible policy for gambler
 • Bound the adaptivity gap
Constraints

Let \(Z = \) Identity of box from which payoff is finally obtained

\[z_{j \nu} = \Pr[Z = j \land X_j = \nu] \]
Constraints

Let $Z =$ Identity of box from which payoff is finally obtained

$$\pi_{jv} = \Pr[Z = j \land X_j = v]$$

For this event to happen, the following events must have happened:
- Box j was opened by the policy
- Box j has value $X_j = v$
Constraints

Let $Z = \text{Identity of box from which payoff is finally obtained}$

$$z_{jv} = \Pr[Z = j \land X_j = v]$$

For this event to happen, the following events must have happened:

- Box j was opened by the policy
- Box j has value $X_j = v$

These two events are independent since all the X’s are independent!
Constraints

\[z_{jv} = \Pr[Z = j \land X_j = v] \]

\leq \Pr[\text{Box } j \text{ opened}] \times \Pr[X_j = v] \]

\[= y_j \times f_j(v) \]

Use independence here
Constraints

Can only get payoff from opened box:

$$z_{jv} \leq y_j \times f_j(v)$$

Any policy obtains payoff from one box:

$$\sum_{j,v} z_{jv} \leq 1$$

Expected number of boxes from which payoff is obtained

Relaxation: Only encode *expected number of boxes from which payoff is obtained*
Constraints

Can only get payoff from opened box:
\[z_{jv} \leq y_j \times f_j(v) \]

Any policy obtains payoff from one box:
\[\sum_{j,v} z_{jv} \leq 1 \]

Any policy opens at most \(k \) boxes:
\[\sum_j y_j \leq k \]

Expected number of boxes opened

Relaxation: Only encode expected number of boxes opened and not for every decision path.
Constraints

Can only get payoff from opened box: \(z_{jv} \leq y_j \times f_j(v) \)

Any policy obtains payoff from one box: \(\sum_{j,v} z_{jv} \leq 1 \)

Any policy opens at most \(k \) boxes: \(\sum_j y_j \leq k \)

\(y_j \) is a probability value: \(y_j \in [0, 1] \)
LP Relaxation of Optimal Policy

Can only get payoff from opened box:

\[z_{jv} \leq y_j \times f_j(v) \]

Any policy obtains payoff from one box:

\[\sum_{j,v} z_{jv} \leq 1 \]

Any policy opens at most \(k \) boxes:

\[\sum_j y_j \leq k \]

\(y_j \) is a probability value:

\[y_j \in [0, 1] \]

Maximize Payoff = \[\sum_{j,v} v \times z_{jv} \]
Simple Example: Open all boxes

\[k = 2 \]

\[y_a = y_b = 1 \]
LP Relaxation

Maximize \[2 \times z_{a2} + 1 \times z_{b1} \]

\[
\begin{align*}
z_{a2} + z_{b1} & \leq 1 \\
z_{a2} & \in [0, 1/2] \\
z_{b1} & \in [0, 1/2]
\end{align*}
\]
LP Optimum

Maximize \[2 \times x_a + 1 \times x_b \]

\[
\begin{align*}
z_{a2} + z_{b1} & \leq 1 \\
z_{a2} & \in [0, 1/2] \\
z_{b1} & \in [0, 1/2]
\end{align*}
\]

LP optimal payoff = 1.5
Optimal Decision Policy?

Maximize \(2 \times z_{a2} + 1 \times z_{b1} \)

\[
\begin{align*}
 z_{a2} + z_{b1} & \leq 1 \\
 z_{a2} & \in [0, 1/2] \\
 z_{b1} & \in [0, 1/2]
\end{align*}
\]

Optimal payoff = 1.25
What do we do with LP solution?

- Will convert it into a feasible policy

- Bound the payoff in terms of LP optimum
 - LP Optimum upper bounds optimal payoff
LP Variables yield Single-box Policy P_j

Open j with probability y_j

If $X_j = v$ then

Take this payoff with probability $z_{jv} / (y_j f_j(v))$
Simpler Notation for Policy P_j

\[O(P_j) = \Pr[j \text{ opened}] = y_j \]
\[C(P_j) = \Pr[\text{Payoff of } j \text{ chosen}] = \sum_v z_{jv} \]
\[R(P_j) = \mathbb{E}[\text{Reward from } j] = \sum_v v \times z_{jv} \]
LP Relaxation

Maximize \(\sum_{j,v} v \cdot z_{jv} \)

\[\sum_v z_{jv} \leq 1 \]
\[\sum_j y_j \leq k \]
\[z_{jv} \leq y_j \cdot f_j(v) \quad \forall j, v \]
\[y_j \in [0, 1] \quad \forall j \]

Maximize \(\sum_j R(P_j) \)

\[\sum_j C(P_j) \leq 1 \]
\[\sum_j O(P_j) \leq k \]

Each \(P_j \) feasible

LP yields collection of Single Box Policies!
What does LP give us?

- LP yields single box policies such that
 - \(\sum_i R(P_i) \geq OPT \)
 - \(\sum_i C(P_i) \leq 1 \)
 - \(\sum_i O(P_i) \leq k \)

- To convert to a *feasible* policy:
 - Step 1: Order boxes arbitrarily as 1,2,3,...
 - Consider boxes in this order
Final Algorithm

- When box j encountered:
 - With probability $\frac{3}{4}$ skip this box
 - With probability $\frac{1}{4}$, execute policy P_j
Final Algorithm

- When box j encountered:
 - With probability $\frac{3}{4}$ skip this box
 - With probability $\frac{1}{4}$, execute policy P_j

- Policy P_j probabilistically decides to open j, and if opened, take its payoff
Final Algorithm

• When box \(j \) encountered:
 • With probability \(\frac{3}{4} \) skip this box
 • With probability \(\frac{1}{4} \), execute policy \(P_j \)

• Policy \(P_j \) probabilistically decides to open \(j \), and if opened, take its payoff

• If policy decides to take payoff from \(j \):
 • Take this payoff and STOP
• Else move to box \(j+1 \)
Final Algorithm

- When box j encountered:
 - With probability $\frac{3}{4}$ skip this box
 - With probability $\frac{1}{4}$, execute policy P_j

- Policy P_j probabilistically decides to open j, and if opened, take its payoff

- **If** policy decides to take payoff from j
 - Take this payoff and **STOP**
- **Else** move to box $j+1$

- If k boxes already opened, then **STOP**
Box-by-box Accounting

- Let $O_j = 1$ if policy P_j opens j
- Let $C_j = 1$ if policy P_j chooses payoff from j
- Policy reaches box i iff:
 \[
 \sum_{j < i} C_j < 1 \\
 \sum_{j < i} O_j < k
 \]

 Let’s lower bound this probability
Markov’s Inequality

\[
\Pr \left[\sum_{j<i} C_j < 1 \right] \geq 1 - \sum_{j<i} \mathbf{E}[C_j] \\
\Pr \left[\sum_{j<i} O_j < k \right] \geq 1 - \frac{\sum_{j<i} \mathbf{E}[O_j]}{k}
\]
Union Bounds

\[
\Pr \left[\sum_{j<i} C_j < 1 \text{ and } \sum_{j<i} O_j < k \right] \\
\geq 1 - \left(\sum_{j<i} \mathbf{E}[C_j] + \frac{\sum_{j<i} \mathbf{E}[O_j]}{k} \right)
\]
Use Independence of Boxes

\[\mathbb{E}[C_j] \leq \mathbb{E}[C_j \mid \text{Box } j \text{ not skipped}] \times \Pr[\text{ Box } j \text{ not skipped}] \]

\[\leq C(P_j) \times \frac{1}{4} \]

\[\mathbb{E}[O_j] \leq \mathbb{E}[O_j \mid \text{Box } j \text{ not skipped}] \times \Pr[\text{ Box } j \text{ not skipped}] \]

\[\leq O(P_j) \times \frac{1}{4} \]
Putting it together

Policy reaches box i

\[\Pr \left[\sum_{j<i} C_j < 1 \text{ and } \sum_{j<i} O_j < k \right] \geq 1 - \left(\sum_{j<i} \mathbb{E}[C_j] + \frac{\sum_{j<i} \mathbb{E}[O_j]}{k} \right) \]

\[\geq 1 - \frac{1}{4} \left(\sum_{j<i} C(P_j) + \frac{\sum_{j<i} O(P_j)}{k} \right) \]

\[\geq 1 - \frac{1}{4} \times (1 + 1) = \frac{1}{2} \]
8-approximation

Expected contribution to reward from P_i

\[\geq \Pr [\text{Box } i \text{ is reached}] \times \mathbb{E} [\text{Reward from } i] \]

\[\geq \frac{1}{2} \times \Pr [\text{Box } i \text{ is not skipped}] \times R(P_i) \]

\[\geq \frac{R(P_i)}{8} \]
Adaptivity Gap

Duality
[Guha, Munagala ‘09]
Recall LP Relaxation

Maximize Payoff → Maximize $\sum_j R(P_j)$

Policy obtains payoff from one box → $\sum_j C(P_j) \leq 1$

Any policy opens at most k boxes → $\sum_j O(P_j) \leq k$

Single-box policy is feasible → Each P_j feasible
Relaxed LP

Maximize \[\sum_j R(P_j) \]

\[\sum_j \left(C(P_j) + \frac{O(P_j)}{k} \right) \leq 2 \]

Each \[P_j \] feasible
Scale down variables by factor 2

Maximize \[\sum_j R(P_j) \]

\[\sum_j \left(C(P_j) + \frac{O(P_j)}{k} \right) \leq 1 \]

Each \(P_j \) feasible
Lagrangian

Maximize \[\sum_j R(P_j) \]

\[\sum_j \left(C(P_j) + \frac{O(P_j)}{k} \right) \leq 1 \] \quad \text{Dual variable} = w

Each \(P_j \) feasible

Max. \[w + \sum_j \left(R(P_j) - w \times C(P_j) - \frac{w}{k} O(P_j) \right) \]

Each \(P_j \) feasible
Interpretation of Lagrangian

Max. $w + \sum_j \left(R(P_j) - w \times C(P_j) - \frac{w}{k} O(P_j) \right)$

Each P_j feasible

- Decouples into a separate optimization per box!
- Can open and choose payoff from many boxes
Optimization Problem for Box j

Net value from choosing j:
- If j opened, then pay cost = w/k
- If we choose payoff of j, then pay cost = w
- If we choose payoff of j, obtain that reward

Net value = Reward minus cost paid

Max. $R(P_j) - w \times C(P_j) - \frac{w}{k}O(P_j)$

P_j feasible
Optimal Solution to Lagrangian

- For box j, choose solution with better value

- **Solution 1:** Don’t open box
 - Net value = 0

- **Solution 2:** Open box
 - Pay cost = w/k
 - If Reward > w, then choose this reward, pay cost w
 - Net value = $E[\text{Reward} - \text{Cost}]$

- Decision to open any box is deterministic!
Strong Duality (roughly speaking)

\[\text{Lag}(w) = \sum_j R_j + w \times \left(1 - \sum_j \left(C_j + \frac{O_j}{k} \right) \right) \]

Choose Lagrange multiplier \(w \) such that

\[\sum_j \left(C_j + \frac{O_j}{k} \right) = 1 \]

\[\Rightarrow \quad \sum_j R_j \geq \frac{OPT}{2} \]
Non-adaptive Policy

• Since O_j is either 0 or 1
 • LP optimum opens at most k boxes deterministically!
 • Suppose we open all these boxes

• The expected maximum payoff of these boxes is at least the value of rounding the LP
 • But rounding has value at least $\text{OPT}/16$

• Therefore, the adaptivity gap is at most 16!
 • Better choice of w improves this to factor 3

[Guha, Munagala, Shi ‘09]
Takeaways...

• LP-based proof oblivious to non-linear closed form for max

• Automatically yields policies with right “form”
 • Adaptivity gap follows from duality

• Needs independence of random variables
 • Weakly coupled linear program and rounding
 • More on weak and strong relaxations in next half!
Part 2.
Weakly Coupled Relaxations
Weakly Coupled Decision Systems

Independent decision spaces

Few constraints coupling decisions across spaces

[Singh & Cohn ’97; Meuleau et al. ‘98]
General Recipe

• Write LP with constraints on expected values
 • Important: Constant number of such constraints
 • Stronger relaxations are sometimes needed

• Solve LP and use Markov’s inequality to round

• Dual typically yields more structured solution
 • For instance, threshold policies and adaptivity gaps
Maximum Value Setting

- Each box defines its own decision space
 - Payoffs of boxes are independent

- Coupling constraints (write in expectation):
 - At most k boxes opened
 - At most one box’s payoff finally chosen

- LP yields a threshold policy:
 - Choose payoff if value > dual multiplier w
Stochastic Knapsack

[Dean, Goemans, Vondrak ’04; Bhalgat, Goel, Khanna ‘11]

- Size of item i drawn from distribution X_i
 - Learn actual size only after placing i in knapsack
 - Sizes of items independent
 - Any size at most knapsack capacity B

- Adaptive policy for placing items in knapsack
 - If knapsack capacity violated, then STOP

- Maximize expected reward
Weakly Coupled Relaxation

Maximize

\[\sum_j y_j \cdot \mathbb{E}[X_j] \leq 2B \]

Expected reward

\[\sum_j R_j y_j \]

\[y_j \in [0, 1] \]

Pr[j placed in knapsack]
Stochastic Matching

- Can send some man i and some woman j on date
- Date succeeds with probability p_{ij} and yields reward r_{ij}
 - Successful match removes i and j from graph
 - Failed match deletes edge (i,j)
Stochastic Matching

[Chen et al. ’09; Bansal et al. ‘10]

• **Input:** Matrix of p_{ij} and r_{ij}

• **Decision policy:**
 • Adaptive order of setting up dates

• **Goal:**
 • Maximize expected reward of successful matches
LP Relaxation

Maximize \[\sum_{i,j} r_{ij} p_{ij} x_{ij} \]

\[\sum_j p_{ij} x_{ij} \leq 1 \quad \forall i \]

\[\sum_i p_{ij} x_{ij} \leq 1 \quad \forall j \]

\[x_{ij} \in [0, 1] \quad \forall i, j \]

\[\Pr[i \text{ goes on a date with } j] \]

Expected number of successful matches per man and woman at most 1
Bayesian Pricing

\[v_j \sim X_j \]

\(n \) items
Unit Demand Setting

[Chawla, Hartline, Kleinberg ’07; Chawla et al. ‘10; Bhattacharya et al. ‘10]

• One agent and n items
 • Agent wants only one item

• Value v_j follows independent distribution X_j
 • Exact value known only to agent
 • Seller only knows distribution
Item Pricing Scheme

Buyer chooses item that maximizes $v_j - p_j$
Revenue Maximization

• Bayesian Pricing:
 • Post prices p_j for each item j based on knowing X_j
 • Agent chooses that item that maximizes $v_j - p_j$
 • Seller earns the price p_j

• Seller’s goal:
 • Maximize Revenue = Expected price earned
LP Variables

\[x_{jp} = \Pr \text{ [Price of } j = p] \]

\[y_{jp}(v) = \Pr \text{ [Price of } j = p \land X_j = v \land j \text{ is bought}] \]

LP Constraints:

- Every item has exactly one price
- Agent buys at most one item
- Agent only buys item if value is larger than price
LP Relaxation

Maximize \[\sum_{j,p,v} p \cdot y_{jp}(v) \]

\[\sum_{j,p,v} y_{jp}(v) \leq 1 \quad \text{E[Items bought] is at most 1} \]

\[\sum_p x_{jp} \leq 1 \quad \forall j \]

\[y_{jp}(v) \leq x_{jp} f_j(v) \quad \forall j, p, v \geq p \]

One price for each \(j \)

Pr[\(X_j = v \)]
Lagrangian decouples across items!

Maximize $\sum_{j,p,v} (p - \lambda) \cdot y_{jp}(v)$

$\sum_{p} x_{jp} \leq 1 \quad \forall j$

$y_{jp}(v) \leq x_{jp} f_{j}(v) \quad \forall j, p, v$

For each j, Lagrangian chooses one price p_j
Lagrangian optimum is simple

\[p_j^*(\lambda) = \arg\max_{p \geq \lambda} ((p - \lambda) \cdot \Pr [X_j \geq p]) \]

LP optimum chooses \(\lambda \) so that expected number of items bought is exactly 1
Lagrangian Optimum for Item j

$$\Pr[X_j \geq p]$$

Diagram: A graph showing $\Pr[X_j \geq p]$ against Price p with specific points λ and p_j. The area under the curve for $p = p_j$ is highlighted.
Some Complexity Results

• Bayesian Pricing
 ▫ (Q)PTAS for “reasonable” distributions
 ▫ NP-complete in general
 ▫ Correlated distributions
 • Hard to approximate beyond logarithmic factors
 [Cai Daskalakis ‘11]
 [Chen et al. ’13]
 [Briest ‘11]

• Stochastic Knapsack
 • PTAS
 [Bhalgat, Goel, Khanna ‘11]
Part 3.
Sampling-based Approaches
Overview

• MDPs with small number of “stages”

• Exponential sized LP over all possible “scenarios” of underlying distribution
 • Solve LP or its Lagrangian by sampling the scenarios

• Examples:
 • 2-stage vertex cover
 • Stochastic Steiner trees (combinatorial algorithm)
 • Bayesian auctions
 • Solving LPs online
Multi-stage Vertex Cover

Distribution D over possible edge sets that can be realized

Vertex v costs c_v
Stage 1: Buy some vertices cheaply

Buy some vertices only knowing D

Vertex v costs c_v

Pay cost c_v
Stage 2: Edge set realized

Need to buy vertices at scaled up price to cover realized edges

Vertex v costs c_v

Total cost $= c_v + \lambda c_u$
Multi-stage Covering Problems

[Kleywegt, Shapiro, Homem-de-Mello ‘01; Shmoys, Swamy ‘04; Charikar, Chekuri, Pal ‘05]

• Decision Policy:
 • What vertices should we buy in Stage 1?
 • Knowing only D, costs, and scaling factor $\lambda > 1$

• Minimize total expected cost of vertices
 • Expectation over realization of edges from D
LP when $|D|$ is small

Maximize $\sum_v x_v + \lambda \cdot \mathbb{E}_{\sigma \in D} \left[\sum_v y_v(\sigma) \right]$

$x_u + x_v + y_u(\sigma) + y_v(\sigma) \geq 1 \ \forall \sigma, e \in E(\sigma)$

Rounding similar to vertex cover

Randomized rounding yields tight 2 approximation

Generalizes to multi-stage vertex cover
Black Box Access to D

- **Sample Average Approximation**
 - Draw poly many samples; solve LP on these samples
 - Approximation results carry over with small loss

- **Combinatorial “boosted sampling”** [Gupta et al.’04]
 - Draw a set of samples from D in Stage 1
 - Solve covering problem on union of these samples
 - Augment this solution with the realization in stage 2
Stochastic Steiner Tree

Distribution D over vertices V
Stochastic Steiner Tree

• K vertices arrive one at a time
 • Drawn $i.i.d.$ from distribution D

• Goal:
 • Construct *online* Steiner tree connecting arriving vertices to r

• Technique: Sampling from D
Algorithm: Offline Stage 1

- Draw K samples from D
- Construct 2-approximate Steiner tree T on samples
- Expected cost at most $2OPT$
 - Samples statistically identical to online input
Algorithm: Online Stage 2

- When input vertex v arrives online
 - Connect v by shortest path to T
Sampling Analysis

- K points in Stage 1 and v together are a random sample of size $K+1$ from D.
 - Therefore, expected cost of connecting v most $2OPT/K$
- Overall cost at most $4OPT$!
Bayesian Multi-item Auctions
Bayesian Setting

[Cai, Daskalakis Weinberg, ‘12-’15, Bhalgat, Gollapudi, Munagala ‘13]

• Many bidders and items
 • Constraints on possible allocations

• Bidder j’s valuation vector follows distribution σ_j
 • Exact value known only to bidder
 • Distributions for different bidders independent
 • Auctioneer only knows distribution

• Assume: Single bidder’s distribution σ_j is poly-size
Auction Design

• Design auction maximizing expected revenue (or total price charged)
 - Auction = (Allocations, Prices) given revealed bids
Auction Design

• Design auction maximizing expected revenue (or total price charged)

• Bayesian Incentive Compatibility:
 • Revealing true value maximizes expected utility of bidder
 • Expectation is over distribution of other agents
Auction Design

• Design auction maximizing expected revenue (or total price charged)

• Bayesian Incentive Compatibility:
 • Revealing true value maximizes expected utility of bidder
 • Expectation is over distribution of other agents

• Individual Rationality:
 • Charge prices so that utility of any agent is non-negative
 • Constraint could be per scenario and not in expectation
Why is this easier than Pricing?

• We allow “lotteries”
 - Randomized menu of allocations and prices
 - Incentive compatibility in expectation
 - Lotteries can be encoded by an LP

• Deterministic menus are hard to approximate!

[Briest ‘11]
Two types of LP variables

Expected value (marginal) variables

$$X_j (\nu_j) = \mathbb{E} \left[\text{Allocation to } j | \sigma_j = \nu_j \right]$$

$$P_j (\nu_j) = \mathbb{E} \left[\text{Price for } j | \sigma_j = \nu_j \right]$$

Per-scenario variables

$$\tilde{x}(\eta) = \text{Allocations} | \text{Valuations} = \eta$$

$$\tilde{p}(\eta) = \text{Prices} | \text{Valuations} = \eta$$
LP Constraints

• Expected value constraints for every agent j and valuation vector v_j:
 • Bayesian incentive compatibility
 • Maximize expected revenue
LP Constraints

• Expected value constraints for every agent j and valuation vector v_j:
 • Bayesian incentive compatibility
 • Maximize expected revenue

• Per-scenario constraints (exponentially many):
 • Allocations and prices are feasible for every scenario η
 • Individual rationality
LP Constraints

• Expected value constraints for every agent j and valuation vector v_j:
 - Bayesian incentive compatibility
 - Maximize expected revenue

• Per-scenario constraints (exponentially many):
 - Allocations and prices are feasible for every scenario η
 - Individual rationality

• Coupling constraints:

\[
\begin{align*}
X_j(v_j^{\bar{v}}) &= \sum_{\eta|\eta_j=v_j} \Pr[\eta] \cdot x_j(\eta) \\
P_j(v_j^{\bar{v}}) &= \sum_{\eta|\eta_j=v_j} \Pr[\eta] \cdot p_j(\eta)
\end{align*}
\]

Exponentially large summation!
Key Idea: Sample Scenarios

- Take Lagrangian of coupling constraints
 - One Lagrange multiplier for each agent and its value
 - Poly-many multipliers or “virtual welfares”

\[
X_j(\vec{v}_j) = \sum_{\eta|\eta_j=\vec{v}_j} \Pr[\eta] \cdot x_j(\eta)
\]

\[
P_j(\vec{v}_j) = \sum_{\eta|\eta_j=\vec{v}_j} \Pr[\eta] \cdot p_j(\eta)
\]
Key Idea: Sample Scenarios

• Take Lagrangian of coupling constraints
 - One Lagrange multiplier for each agent and its value
 - Poly-many multipliers or “virtual welfares”

• Lagrangian decouples into two separate problems:
 - LP over expected value variables
 - Separate maximization problem for each scenario η and take expectation over scenarios
 - Estimate this expectation by sampling the scenarios!
Key Idea: Sample Scenarios

• Take Lagrangian of coupling constraints
 • One Lagrange multiplier for each agent and its value
 • Poly-many multipliers or “virtual welfares”

• Lagrangian decouples into two separate problems:
 • LP over expected value variables
 • Maximization problem for each scenario η and take expectation over scenarios
 • Estimate this expectation by sampling scenarios!

• Given efficient oracle for solving Lagrangian
 • Solve LP using no-regret learning, Ellipsoid, ...
“Online” Algorithms

- Suppose scenarios arrive i.i.d. from unknown distribution

- Need to solve some LP over expected allocations
 - But with feasibility constraints per scenario
 - Motivation: Budgeted allocations, envy-freeness, ...

- Arriving scenarios can be treated as samples!
 - Implies overall LP can be solved online via Lagrangian
 - Need not even know distribution upfront!

[Agarwal, Devanur ‘14]
Part 4.
Scheduling Problems
Overview

• New aspect of timing the actions
 • So far, we have ignored timing completely!

• Two techniques:
 ▫ **Stronger LP relaxations than weak coupling**
 • Stochastic scheduling on identical machines
 • Stochastic knapsack (not covered)
 ▫ **Greedy policies**
 • Gittins index theorem
Stochastic Scheduling

Jobs

\[p_j \sim X_j \]

\[\ldots \]

\[\ldots \]

\[\ldots \]

\[\ldots \]

m parallel machines
Stochastic Scheduling

- Realize exact length only after job is scheduled
 - No preemption or release dates

- Adaptive policy:
 - Adaptive ordering of jobs and machines to assign them to

- Goal:
 - Minimize expected sum of completion times
Adaptive Policy

Jobs

m parallel machines
LP-based Reduction to Determinism

• Write LP assuming job lengths are deterministic

• Variables are start times S_j of jobs

Minimize $\sum_j (p_j + S_j)$

$$\sum_{j \in A} p_j S_j \geq \frac{1}{2m} \sum_{i \neq j \in A} p_i p_j - \frac{m-1}{2m} \sum_{j \in A} p_j^2$$

\forall subsets A of jobs
LP for Stochastic Case

• Take expectations over job lengths
 • Note job length independent of start time

• Rounding: Schedule jobs in increasing order of LP objective

Minimize \(\sum_j (\mathbb{E}[S_j] + \mu_j) \)

\[\sum_{j \in A} \mu_j \mathbb{E}[S_j] \geq \frac{1}{2m} \left(\sum_{j \in A} \mu_j \right)^2 - \frac{1}{2} \sum_{j \in A} \mu_j^2 - \frac{m-1}{2m} \sum_{j \in A} \sigma_j^2 \]

\(\forall \) subsets \(A \) of jobs
Multi-armed Bandits

- \(n \) independent bandit arms
 - Each arm defines its own Markov decision space
 - Only two actions per arm: “PLAY” or “STOP”

[Gittins and Jones ’74, Tsitsiklis ‘80]
Multi-armed Bandits

- **n independent** bandit arms
 - Each arm defines its own Markov decision space
 - Only two actions per arm: “PLAY” or “STOP”

- At each step, can play at most one arm

Arms

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_a</td>
<td>p_{ab}</td>
<td>b</td>
</tr>
</tbody>
</table>

Play arm 1

Arm’s state changes only when played

[Gittins and Jones ’74, Tsitsiklis ‘80]
Multi-armed Bandits

• $R_t = \text{Reward at time } t$

• $\gamma = \text{Discount factor } < 1$

• Find policy that maximizes discounted reward:

$$\mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t R_t \right]$$

[Gittins and Jones ’74, Tsitsiklis ‘80]
What is a policy?

• Given current state of each arm
 • Which arm to play next?

• “State space” is exponential in number of arms

• Surprising but non-trivial result:
 • A greedy policy is optimal!
 • Polynomial time computable and executable!
Why is this non-trivial?

• Playing arm whose current state has highest reward may be sub-optimal
 • Arm can have low reward right now, but playing it yields state with high reward
 • But this can happen two states down the road, ...

• This means policy needs to take entire future behavior of arm into account!
Single Arm Problem via Duality

- Fix penalty (or dual cost) λ

- Focus on some state s of some arm i
 - Suppose this is the start state

- Suppose arm i was only arm in system
 - At each step, can play arm i by paying penalty λ
 - Or can STOP and exit

- $V_i(s, \lambda) = \text{Optimal discounted payoff}$
 - Easy to compute by dynamic programming
The Gittins Index

- For state s of arm i, Gittins index:

 Largest penalty λ such that $V_i(s, \lambda) = 0$

- Same as:

 - Expected discounted per-step reward if we keep playing i as long as state is “at least as good as” s

- “At least as good as” = Larger Gittins index!
Intuition

• A state has large Gittins index if either:
 ▫ State *itself* has high reward
 • So play in this state and then STOP
 ▫ State *leads to* states with large reward
 • So long-term per-step reward is large

• In either case, this state is a “good” state to play
Gittins index policy

- At each step, play the arm whose current state has largest Gittins index
 - Optimal!

- Proof of optimality
 - Exchange argument similar to greedy analyses
Other Problems and Approaches

• Stochastic makespan, Bin packing
 [Kleinberg, Rabani, Tardos ’97]

• Inventory management
 [Levi, Pal, Roundy, Shmoys ‘04]

• Stochastic set cover and probing problems
 [Etzioni et al., ‘96; Munagala, Srivastava, Widom ‘06; Liu et al., ’08; Gupta-Nagarajan ’15 ...]

• Techniques:
 • Analysis of greedy policies
 • Discretizing distributions and dynamic programming
Open Questions

• How far can we push LP based techniques?
 • Can we encode adaptive policies more generally?
 • For instance, bandits with matroid constraints?

• Several problem classes poorly understood
 • Stochastic machine scheduling
 • Auctions with budget constraints

• What if we don’t have full independence?
 • Some success in auction design
 • In general, need tractable models of correlation
Thanks!