Approximation Algorithms for Stochastic Optimization

Kamesh Munagala Duke University

Markov Decision Process

- Set *S* of states of the system
- Set A of actions
- If action *a* taken in state *s*:
 - Reward $R_a(s)$
 - System transitions to state q with probability $p_a(s,q)$

Markov Decision Process

- Set *S* of states of the system
- Set A of actions
- If action *a* taken in state *s*:
 - Reward $R_a(s)$ drawn from known distributions
 - System transitions to state *q* with probability $p_a(s,q)$

• Input:

- Rewards and state transition matrices for each action
- Start state *s*
- Time horizon *T*

Policy for an MDP

- Maximize expected reward over *T* steps
 - Expectation over stochastic nature of rewards and state transitions
- **Policy:** Mapping from states *S* to actions *A*
 - Specifies optimal action for each observed state
- Dynamic Programming [Bellman '54]
 Optimal policy computable in time poly(|S|,|A|,T)

This talk

- For many problems:
 - |S| is exponentially large in problem parameters
 - ... or |A| is exponentially large
 - Many examples to follow
- Simpler decision policies?
 - Approximately optimal in a provable sense
 - Efficient to compute and execute

Classes of Decision Problems

Classes of Decision Problems

Part 1. Maximum Value Problem

• Really simple decision problem

- Illustrate basic concepts
- Adaptive vs. Non-adaptive policies
- Non-adaptive policies
 - Submodularity and the Greedy algorithm
- Adaptive policies
 - LP Relaxation and "Weak Coupling"
 - Rounding using Markov's Inequality
- Duality
 - Simple structure of LP optimum
 - Gap between adaptive and non-adaptive policies

Part 2. Weakly Coupled LPs

- General technique via LP and Duality
 - LP relaxation has very few constraints
 - Dual yields infeasible policies with simple structure
- Examples
 - Stochastic knapsack
 - Stochastic matching
 - Bayesian multi-item pricing

Part 3. Sampling Scenarios

- Exponential sized LP over all possible "scenarios" of underlying distributions
- Solve LP or its Lagrangian by sampling the scenarios
- Examples:
 - 2-stage vertex cover
 - Stochastic Steiner trees
 - Bayesian auctions
 - Solving LPs online

Part 4. Stochastic Scheduling

- New aspect of timing the actions
- Two techniques:
 - Stronger LP relaxations than weak coupling
 - Stochastic scheduling on identical machines
 - Stochastic knapsack (not covered)
 - Greedy policies
 - Gittins index theorem

Important Disclaimer

By no means is this comprehensive!

Part 1. The Maximum Value Problem

[Guha, Munagala '07, '09, Dean, Goemans, Vondrak '04]

- There is a gambler who is shown *n* boxes
 - Box *j* has reward drawn from distribution X_j
 - Gambler knows *X_i* but box is closed
 - All distributions are independent

- Gambler knows all the distributions
- Distributions are independent

Open some box, say Box 2

Open another box based on observing $X_2 = 20$

Can open at most *k* boxes:

• Payoff = **Maximum reward** observed in these *k* boxes

Adaptivity:

• Gambler can choose next box to open based on observations so far

Example: Bernoulli Boxes

50 with probability $\frac{1}{2}$

Gambler can open k = 2 boxes

60 with probability 1/3

25 with probability 1

$$X_{1} = B(50,1/2)$$
$$X_{2} = B(60,1/3)$$
$$X_{3} = B(25,1)$$

 X_3 has expected payoff 25

 X_2 has expected payoff 60/3 = 20

$$X_{1} = B(50,1/2)$$
$$X_{2} = B(60,1/3)$$
$$X_{3} = B(25,1)$$

Expected Payoff = 25/2 + 50/3 + 60/6 = 39.167

Can Gambler be Non-adaptive?

- Choose *k* boxes upfront before opening them
 - Open these boxes and obtain maximum value
- Best solution = Pick X₁ and X₃ upfront
 - Payoff = $\frac{1}{2} \times 50 + \frac{1}{2} \times 25 = 37.5 < 39.167$
 - Adaptively choosing next box after opening X₁ is better!

Can Gambler be Non-adaptive?

- Choose *k* boxes upfront before opening them
 - Open these boxes and obtain maximum value
- Best solution = Pick X₁ and X₃ upfront
 - Payoff = $\frac{1}{2} \times 50 + \frac{1}{2} \times 25 = 37.5 < 39.167$
 - Adaptively choosing next box after opening X₁ is better!
 - **Subtler point**: It's not that much better...

Benchmark

- Value of optimal decision policy (decision tree)
 - Call this value OPT
 - Optimal decision tree can have size exponential in k
- Can we design a:
 - Polynomial time algorithm
 - ... that produces poly-sized decision tree
 - ... that approximates OPT?

Outline for Part 1

- Approximation algorithms for Maximum Value
 - Non-adaptive policy
 - Linear programming relaxation
 - Duality and "adaptivity gap"
 - Please ignore the constant factors!
- Later on: "Weakly coupled" decision systems
 - Applications to matching, pricing, scheduling, ...

Non-adaptive Algorithm

Submodularity [Kempe, Kleinberg, Tardos '03, ...]

Non-adaptive Problem

• For any subset *S* of boxes, if gambler opens *S* non-adaptively, the payoff observed is

$$f(S) = \mathbf{E} \left[\max_{i \in S} X_i \right]$$

- Goal:
 - Find *S* such that $|S| \leq k$
 - Maximize *f(S)*

Submodularity of Set Functions

$$f(S_1 \cup \{t\}) - f(S_1) \ge f(S_2 \cup \{t\}) - f(S_2)$$

Also need **non-negativity** and **monotonicity**: $f(S_2) \ge f(S_1) \ge 0$

The Greedy Algorithm

 $S \gets \Phi$

While $|S| \le k$: $t \leftarrow \operatorname{argmax}_{q \notin S} (f(S \cup \{q\}) - f(S))$ $S \leftarrow S \cup \{t\}$

Output S

Classical Result

[Nemhauser, Wolsey, Fisher '78]

- Greedy is a $1 1/e \approx 0.632$ approximation to the value of the optimal subset of size k
- Similar results hold even when:
 - Different elements have different costs and there is a budget on total cost of chosen set *S*
 - General matroid constraints on chosen set S

Maximum Value is Submodular

- Let D =Joint distribution of $X_1, X_2, ..., X_n$
- Consider any sample *r* drawn from *D*
 - Yields a sample of values v_{1r} , v_{2r} , ..., v_{nr}

 - Let f(S,r) = max v_{ir}
 Easy to check this is submodular
- f(S) is the expectation over samples r of f(S,r)
 - Submodularity preserved under taking expectation!
- **Note:** Do not need independence of variables!

More things that are Submodular

• Payoff from many opened boxes $f(S) = \mathbf{E} \begin{bmatrix} \operatorname{Guha}, \operatorname{Munagala} \operatorname{`o7} \\ \underset{\vec{x} \in [0,1]^n; \sum_{i \in S} s_i x_i \leq B}{\max} \sum_{i \in T} X_i \end{bmatrix}$ Guha, Munagala `o7]

More things that are Submodular

- Payoff from many opened boxes $f(S) = \mathbf{E} \begin{bmatrix} \operatorname{Guha}, \operatorname{Munagala} & \operatorname{Guha}, \operatorname{$
- Payoff = Minimizing the minimum value

[Goel, Guha, Munagala '06]

$$f(S) = -\log \mathbf{E} \left[\min_{i \in S} X_i \right]$$
More things that are Submodular

Payoff from many opened boxes

$$f(S) = \mathbf{E} \left[\max_{\vec{x} \in [0,1]^n; \sum_{i \in S} s_i x_i \le B} \sum_{i \in T} X_i \right]$$

• Payoff = Minimizing the minimum value

[Goel, Guha, Munagala '06]

[Guha, Munagala '07]

$$f(S) = -\log \mathbf{E}\left[\min_{i \in S} X_i\right]$$

- Spread of epidemic with seed set S

[Kempe, Kleinberg, Tardos '03]

• Discrete entropy of joint distribution of S [Krause, Guestrin '05]

Adaptive Algorithms

Linear Programming [Dean, Goemans, Vondrak '04; Guha, Munagala '07]

Linear Programming

Consider optimal decision policy

- Adaptively opens at most k boxes
- Obtains payoff from one opened box

 $y_j = \Pr[\text{Box } j \text{ is opened}]$

$$z_{jv} = \Pr[\text{Policy's payoff is from box } j$$

 $\land X_j = v]$

Basic Idea

- LP captures behavior of policy
 - Use y_j and z_{jv} as the variables
- These variables are insufficient to capture entire structure of optimal policy
 - What we end up with will be a *relaxation*
- Steps:
 - Understand structure of relaxation
 - Convert solution to a feasible policy for gambler
 - Bound the adaptivity gap

Let Z = Identity of box from which payoff is finally obtained

$$z_{jv} = \Pr[Z = j \land X_j = v]$$

Let Z = Identity of box from which payoff is finally obtained

$$z_{jv} = \Pr[Z = j \land X_j = v]$$

For this event to happen, the following events must have happened:

- Box *j* was opened by the policy
- Box *j* has value $X_j = v$

Let Z = Identity of box from which payoff is finally obtained

$$z_{jv} = \Pr[Z = j \land X_j = v]$$

For this event to happen, the following events must have happened:

- Box *j* was opened by the policy
- Box *j* has value $X_j = v$

These two events are independent since all the *X*'s are independent!

$$z_{jv} = \Pr[Z = j \land X_j = v]$$

$$\leq \Pr[\text{Box } j \text{ opened}] \times \Pr[X_j = v]$$

$$= y_j \times f_j(v)$$

Use independence here

Can only get payoff from opened box:

 $z_{jv} \leq y_j \times f_j(v)$

Any policy obtains payoff from one box:

$$\sum_{j,v} z_{jv} \leq 1$$

Expected number of boxes from which payoff is obtained

Relaxation: Only encode *expected number* of boxes from which payoff is obtained

Can only get payoff from opened box: $z_{jv} \leq y_j \times f_j(v)$

Any policy obtains payoff from one box:

$$\sum_{j,v} z_{jv} \leq 1$$

Any policy opens at most *k* boxes:

$$\sum_{j} y_j \leq k$$

Expected number of boxes opened

Relaxation: Only encode *expected number* of boxes opened and not for every decision path

Can only get payoff from opened box: $z_{jv} \leq y_j \times f_j(v)$

Any policy obtains payoff from one box:

$$\sum_{j,v} z_{jv} \leq 1$$

Any policy opens at most *k* boxes:

tes: $\sum_j y_j \leq k$

 y_i is a probability value:

 $y_j \in [0,1]$

LP Relaxation of Optimal Policy

Can only get payoff from opened box: $z_{jv} \leq y_j \times f_j(v)$

Any policy obtains payoff from one box:

$$\sum_{j,v} z_{jv} \leq 1$$

Any policy opens at most *k* boxes:

$$\sum_{j} y_j \leq k$$

 y_j is a probability value:

 $y_j \in [0,1]$

Maximize Payoff =
$$\sum_{j,v} v \times z_{jv}$$

LP Relaxation

Maximize		$2 \times z_{a2} + 1 \times z_{b1}$
$\begin{array}{c} z_{a2}+z_{b1}\\ z_{a2}\\ z_{b1} \end{array}$	\leq \in	$1 \\ [0, 1/2] \\ [0, 1/2]$

What do we do with LP solution?

- Will convert it into a feasible policy
- Bound the payoff in terms of LP optimum
 LP Optimum upper bounds optimal payoff

LP Variables yield Single-box Policy P_i

Open *j* with probability y_i

If $X_i = v$ then

Take this payoff with probability $z_{iv}/(y_i f_i(v))$

Simpler Notation for Policy P_j

- $O(P_j) = \Pr[j \text{ opened}] = y_j$
- $C(P_j) = \Pr[\text{Payoff of } j \text{ chosen}] = \sum_v z_{jv}$
- $R(P_j) = \mathbf{E}[\text{Reward from } j] = \sum_v v \times z_{jv}$

LP Relaxation

Maximize $\sum_{j,v} v \cdot z_{jv}$ Maximize $\sum_{j} R(P_j)$ $\sum_v z_{jv} \leq 1$ $\longrightarrow \sum_j C(P_j) \leq 1$ $\sum_j y_j \leq k$ $\longrightarrow \sum_j O(P_j) \leq k$ $z_{jv} \leq y_j \cdot f_j(v)$ $\forall j, v$ $y_j \in [0,1]$ $\forall j$

LP yields collection of Single Box Policies!

What does LP give us?

- LP yields single box policies such that
 - $\Sigma_i R(P_i) \ge OPT$
 - $\Sigma_i C(P_i) \leq 1$
 - $\Sigma_i O(P_i) \leq k$
- To convert to a *feasible* policy:
 - Step 1: Order boxes arbitrarily as 1,2,3,...
 - Consider boxes in this order

- When box *j* encountered:
 - With probability 3/4 skip this box
 - With probability $\frac{1}{4}$, execute policy P_j

- When box *j* encountered:
 - With probability ³/₄ skip this box
 - With probability $\frac{1}{4}$, execute policy P_j
- Policy *P_j* probabilistically decides to open *j*, and if opened, take its payoff

- When box *j* encountered:
 - With probability ³/₄ skip this box
 - With probability $\frac{1}{4}$, execute policy P_j
- Policy P_j probabilistically decides to open j, and if opened, take its payoff
- **If** policy decides to take payoff from *j*:
 - Take this payoff and **STOP**
- **Else** move to box j+1

- When box *j* encountered:
 - With probability 3/4 skip this box
 - With probability $\frac{1}{4}$, execute policy P_j
- Policy *P_j* probabilistically decides to open *j*, and if opened, take its payoff
- **If** policy decides to take payoff from *j*:
 - Take this payoff and **STOP**
- **Else** move to box j+1
- If *k* boxes already opened, then **STOP**

Box-by-box Accounting

- Let $O_j = 1$ if policy P_j opens j
- Let $C_j = 1$ if policy P_j chooses payoff from j
- Policy reaches box *i* iff:

$$\sum_{j < i} C_j < 1$$

$$\sum_{j < i} O_j < k$$

Let's lower bound this probability

Markov's Inequality

Use Independence of Boxes

 $\mathbf{E}[C_j] \leq \mathbf{E}[C_j | \text{Box } j \text{ not skipped}] \times \Pr[\text{Box } j \text{ not skipped}]$ $\leq C(P_j) \times \frac{1}{4}$

 $\begin{aligned} \mathbf{E}[O_j] &\leq \mathbf{E}[O_j | \text{ Box } j \text{ not skipped}] \times \Pr[\text{ Box } j \text{ not skipped}] \\ &\leq O(P_j) \times \frac{1}{4} \end{aligned}$

8-approximation

Expected contribution to reward from P_i

 $\geq \Pr[\text{Box } i \text{ is reached}] \times \mathbf{E}[\text{Reward from } i]$

$\geq \frac{1}{2} \times \Pr[\text{Box } i \text{ is not skipped }] \times R(P_i)$

$$\geq \frac{R(P_i)}{8}$$

Adaptivity Gap

Duality [Guha, Munagala '09]

Recall LP Relaxation

Relaxed LP

Maximize $\sum_{j} R(P_j)$

$$\sum_{j} \left(C(P_j) + \frac{O(P_j)}{k} \right) \le 2$$

Each P_j feasible

Scale down variables by factor 2 Maximize $\sum_{j} R(P_{j})$ $\sum_{j} \left(C(P_{j}) + \frac{O(P_{j})}{k} \right) \leq 1$

Each P_i feasible
Lagrangian $\sum_{j} R(P_j)$ Maximize $\sum_{j} \left(C(P_j) + \frac{O(P_j)}{k} \right) \leq 1$ Dual variable = wEach P_i feasible Max. $w + \sum_{j} \left(R(P_j) - w \times C(P_j) - \frac{w}{k} O(P_j) \right)$ Each P_i feasible

Interpretation of Lagrangian

Max.
$$w + \sum_{j} \left(R(P_j) - w \times C(P_j) - \frac{w}{k} O(P_j) \right)$$

Each P_j feasible

- Decouples into a separate optimization per box!
- Can open and choose payoff from many boxes

Optimization Problem for Box j

Max.
$$R(P_j) - w \times C(P_j) - \frac{w}{k}O(P_j)$$

 P_j feasible

- Net value from choosing *j*:
 - If *j* opened, then pay cost = w/k
 - If we choose payoff of j, then pay cost = w
 - If we choose payoff of *j*, obtain that reward
- Net value = Reward minus cost paid

Optimal Solution to Lagrangian

• For box *j*, choose solution with better value

• **Solution 1:** Don't open box

• Net value = 0

• Solution 2: Open box

- Pay cost = w/k
- If Reward > w, then choose this reward, pay cost w
- Net value = **E**[Reward Cost]
- Decision to open any box is deterministic!

Strong Duality (roughly speaking)

$$\operatorname{Lag}(w) = \sum_{j} R_{j} + w \times \left(1 - \sum_{j} \left(C_{j} + \frac{O_{j}}{k}\right)\right)$$

Choose Lagrange multiplier w such that

$$\sum_{j} \left(C_{j} + \frac{O_{j}}{k} \right) = 1$$

$$\Rightarrow \qquad \sum_{j} R_{j} \geq \frac{OPT}{2}$$

Non-adaptive Policy

- Since O_i is either 0 or 1
 - LP optimum opens at most *k* boxes deterministically!
 - Suppose we open all these boxes
- The expected maximum payoff of these boxes is at least the value of rounding the LP
 - But rounding has value at least OPT/16
- Therefore, the adaptivity gap is at most 16!
 - Better choice of *w* improves this to factor 3

[Guha, Munagala, Shi '09]

Takeaways...

- LP-based proof oblivious to non-linear closed form for max
- Automatically yields policies with right "form"
 Adaptivity gap follows from duality
- Needs independence of random variables
 - Weakly coupled linear program and rounding
 - More on weak and strong relaxations in next half!

Part 2. Weakly Coupled Relaxations

Weakly Coupled Decision Systems

Independent decision spaces

Few constraints coupling decisions across spaces

[Singh & Cohn '97; Meuleau et al. '98]

General Recipe

- Write LP with constraints on expected values
 - Important: Constant number of such constraints
 - Stronger relaxations are sometimes needed
- Solve LP and use Markov's inequality to round
- Dual typically yields more structured solution
 - For instance, threshold policies and adaptivity gaps

Maximum Value Setting

- Each box defines its own decision space
 - Payoffs of boxes are independent
- Coupling constraints (write in expectation):
 - At most k boxes opened
 - At most one box's payoff finally chosen
- LP yields a threshold policy:
 - Choose payoff if value > dual multiplier *w*

Stochastic Knapsack

[Dean, Goemans, Vondrak '04; Bhalgat, Goel, Khanna '11]

- Size of item *i* drawn from distribution X_i
 - Learn actual size only after placing *i* in knapsack
 - Sizes of items independent
 - Any size at most knapsack capacity *B*
- Adaptive policy for placing items in knapsack
 - If knapsack capacity violated, then STOP
- Maximize expected reward

Stochastic Matching

Men

Women

- Can send some man *i* and some woman *j* on date
- Date *succeeds* with probability p_{ij} and yields reward r_{ij}
 - Successful match removes *i* and *j* from graph
 - Failed match deletes edge (*i*,*j*)

Stochastic Matching

[Chen et al. '09; Bansal et al. '10]

• **Input:** Matrix of p_{ij} and r_{ij}

Decision policy:

- Adaptive order of setting up dates
- Goal:
 - Maximize expected reward of successful matches

LP Relaxation

Pr[*i* goes on a date with *j*]

Unit Demand Setting

[Chawla, Hartline, Kleinberg '07; Chawla et al. '10; Bhattacharya et al. '10]

- One agent and *n* items
 - Agent wants only one item
- Value v_i follows independent distribution X_i
 - Exact value known only to agent
 - Seller only knows distribution

Item Pricing Scheme

Buyer chooses item that maximizes $v_j - p_j$

Revenue Maximization

- Bayesian Pricing:
 - Post prices p_j for each item j based on knowing X_j
 - Agent chooses that item that maximizes $v_i p_i$
 - Seller earns the price p_i
- Seller's goal:
 - Maximize Revenue = Expected price earned

LP Variables

$$x_{jp} = \Pr[\text{Price of } j = p]$$

$$y_{jp}(v) = \Pr[\text{Price of } j = p \land X_j = v \land j \text{ is bought}]$$

LP Constraints:

- Every item has exactly one price
- Agent buys at most one item
- Agent only buys item if value is larger than price

LP Relaxation

Maximize
$$\sum_{j,p,v} p \cdot y_{jp}(v)$$

$$\sum_{j,p,v} y_{jp}(v) \leq 1$$
 E[Items bought] is at most 1

 $\frac{\text{One price}}{\text{for each } j} > \sum_{p} x_{jp} \leq 1 \qquad \forall j$

$$y_{jp}(v) \leq x_{jp}f_j(v) \quad \forall j, p, v \geq p$$

 $\Pr[X_j = v]$

Lagrangian decouples across items!

Maximize
$$\sum_{j,p,v} (p-\lambda) \cdot y_{jp}(v)$$

$$\sum_{p} x_{jp} \leq 1 \qquad \forall j$$
$$y_{jp}(v) \leq x_{jp} f_j(v) \qquad \forall j, p, v$$
$$\uparrow$$

Integral variable

For each j, Lagrangian chooses one price p_j

Lagrangian optimum is simple

$$p_j^*(\lambda) = \operatorname{argmax}_{p \ge \lambda} \left((p - \lambda) \cdot \Pr[X_j \ge p] \right)$$

LP optimum chooses λ so that expected number of items bought is exactly 1

Lagrangian Optimum for Item j

Some Complexity Results

- Bayesian Pricing
 - Q)PTAS for "reasonable" distributions [Cai Daskalakis '11]
 - NP-complete in general

[Chen et al. '13]

- Correlated distributions
 - Hard to approximate beyond logarithmic factors
 [Briest '11]
- Stochastic Knapsack
 - PTAS

[Bhalgat, Goel, Khanna '11]

Part 3. Sampling-based Approaches

Overview

- MDPs with small number of "stages"
- Exponential sized LP over all possible "scenarios" of underlying distribution
 - Solve LP or its Lagrangian by sampling the scenarios

• Examples:

- 2-stage vertex cover
- Stochastic Steiner trees (combinatorial algorithm)
- Bayesian auctions
- Solving LPs online

Distribution *D* over possible edge sets that can be realized

Stage 1: Buy some vertices cheaply

 \bullet Vertex v costs c_v Pay cost c_v

Buy some vertices only knowing D

Stage 2: Edge set realized

Total cost = $c_v + \lambda c_u$

Multi-stage Covering Problems

[Kleywegt, Shapiro, Homem-de-Mello '01; Shmoys, Swamy '04; Charikar, Chekuri, Pal '05]

- Decision Policy:
 - What vertices should we buy in Stage 1?
 - Knowing only *D*, costs, and scaling factor $\lambda > 1$
- Minimize total expected cost of vertices
 - Expectation over realization of edges from D

LP when |D| is small

Maximize
$$\sum_{v} x_v + \lambda \cdot \mathbf{E}_{\sigma \in D} \left[\sum_{v} y_v(\sigma) \right]$$

 $x_u + x_v + y_u(\sigma) + y_v(\sigma) \ge 1 \ \forall \sigma, e \in E(\sigma)$

Rounding similar to vertex cover

Randomized rounding yields tight 2 approximation

Generalizes to multi-stage vertex cover

Black Box Access to D

- Sample Average Approximation
 - Draw poly many samples; solve LP on these samples
 - Approximation results carry over with small loss
- Combinatorial "boosted sampling"

[Gupta et al.'04]

- Draw a set of samples from D in Stage 1
- Solve covering problem on union of these samples
- Augment this solution with the realization in stage 2

Stochastic Steiner Tree

Distribution *D* over vertices *V*

Stochastic Steiner Tree

[Garg et al. '08]

- *K* vertices arrive one at a time
 - Drawn *i.i.d.* from distribution *D*
- Goal:
 - Construct *online* Steiner tree connecting arriving vertices to r
- **Technique:** Sampling from *D*
Algorithm: Offline Stage 1

- Draw *K* samples from *D*
- Construct 2-approximate Steiner tree *T* on samples
- Expected cost at most 2*OPT*
 - Samples statistically identical to online input

Algorithm: Online Stage 2

- When input vertex *v* arrives online
 - Connect v by shortest path to T

Sampling Analysis

- *K* points in Stage 1 and *v* together are a random sample of size *K*+1 from *D*.
 - Therefore, expected cost of connecting *v* most 2*OPT/K*
- Overall cost at most *4 OPT*!

Bayesian Multi-item Auctions

Bayesian Setting

[Cai, Daskalakis Weinberg, '12-'15, Bhalgat, Gollapudi, Munagala '13]

- Many bidders and items
 - Constraints on possible allocations
- Bidder *j*'s valuation vector follows distribution σ_j
 - Exact value known only to bidder
 - Distributions for different bidders independent
 - Auctioneer only knows distribution
- **Assume:** Single bidder's distribution σ_i is poly-size

Auction Design

- Design auction maximizing expected revenue (or total price charged)
 - Auction = (Allocations, Prices) given revealed bids

Auction Design

- Design auction maximizing expected revenue (or total price charged)
- Bayesian Incentive Compatibility:
 - Revealing true value maximizes *expected utility* of bidder
 - Expectation is over distribution of other agents

Auction Design

- Design auction maximizing expected revenue (or total price charged)
- Bayesian Incentive Compatibility:
 - Revealing true value maximizes *expected utility* of bidder
 - Expectation is over distribution of other agents
- Individual Rationality:
 - Charge prices so that utility of any agent is non-negative
 - Constraint could be per scenario and not in expectation

Why is this easier than Pricing?

- We allow "lotteries"
 - Randomized menu of allocations and prices
 - Incentive compatibility in expectation
 - Lotteries can be encoded by an LP
- Deterministic menus are hard to approximate!
 [Briest '11]

Two types of LP variables

Expected value (marginal) variables

$$X_j(\vec{v_j}) = \mathbf{E} [\text{ Allocation to } j | \sigma_j = \vec{v_j}]$$

$$P_j(\vec{v_j}) = \mathbf{E} [\text{Price for } j | \sigma_j = \vec{v_j}]$$

Expectation over valuations of other agents

Per-scenario variables

 $\vec{x}(\eta) = \text{Allocations} | \text{Valuations} = \eta | \text{Exponentially}$

 $\vec{p}(\eta) = \text{Prices} \mid \text{Valuations} = \eta$

Exponentially many scenarios!

LP Constraints

- Expected value constraints for every agent *j* and valuation vector v_j:
 - Bayesian incentive compatibility
 - Maximize expected revenue

LP Constraints

- Expected value constraints for every agent *j* and valuation vector v_j:
 - Bayesian incentive compatibility
 - Maximize expected revenue
- Per-scenario constraints (exponentially many):
 - Allocations and prices are feasible for every scenario η
 - Individual rationality

LP Constraints

- Expected value constraints for every agent *j* and valuation vector v_i:
 - Bayesian incentive compatibility
 - Maximize expected revenue
- Per-scenario constraints (exponentially many):
 - Allocations and prices are feasible for every scenario η
 - Individual rationality
- Coupling constraints: $X_j(\vec{v_j}) = \sum_{\eta \mid \eta_j = \vec{v_j}} \Pr[\eta] \cdot x_j(\eta)$

$$P_j(\vec{v_j}) = \sum_{\eta \mid \eta_j = \vec{v_j}} \Pr[\eta] \cdot p_j(\eta)$$

Exponentially large summation!

Key Idea: Sample Scenarios

- Take Lagrangian of coupling constraints
 - One Lagrange multiplier for each agent and its value
 - Poly-many multipliers or "virtual welfares"

$$X_{j}(\vec{v_{j}}) = \sum_{\eta \mid \eta_{j} = \vec{v_{j}}} \Pr[\eta] \cdot x_{j}(\eta)$$
$$P_{j}(\vec{v_{j}}) = \sum_{\eta \mid \eta_{j} = \vec{v_{j}}} \Pr[\eta] \cdot p_{j}(\eta)$$

Key Idea: Sample Scenarios

- Take Lagrangian of coupling constraints
 - One Lagrange multiplier for each agent and its value
 - Poly-many multipliers or "virtual welfares"
- Lagrangian decouples into two separate problems:
 - LP over expected value variables
 - Separate maximization problem for each scenario η and take expectation over scenarios
 - Estimate this expectation by sampling the scenarios!

Key Idea: Sample Scenarios

- Take Lagrangian of coupling constraints
 - One Lagrange multiplier for each agent and its value
 - Poly-many multipliers or "virtual welfares"
- Lagrangian decouples into two separate problems:
 - LP over expected value variables
 - Maximization problem for each scenario η and take expectation over scenarios
 - Estimate this expectation by sampling scenarios!
- Given efficient oracle for solving Lagrangian
 - Solve LP using no-regret learning, Ellipsoid, ...

"Online" Algorithms [Agarwal, Devanur '14]

- Suppose scenarios arrive *i.i.d.* from unknown distribution
- Need to solve some LP over expected allocations
 - But with feasibility constraints per scenario
 - Motivation: Budgeted allocations, envy-freeness, ...
- Arriving scenarios can be treated as samples!
 - Implies overall LP can be solved online via Lagrangian
 - Need not even know distribution upfront!

Part 4. Scheduling Problems

Overview

- New aspect of timing the actions
 - So far, we have ignored timing completely!

Two techniques:

- Stronger LP relaxations than weak coupling
 - Stochastic scheduling on identical machines
 - Stochastic knapsack (not covered)
- Greedy policies
 - Gittins index theorem

Stochastic Scheduling

Stochastic Scheduling

[Mohring, Schulz, Uetz '96]

- Realize exact length only after job is scheduled
 - No preemption or release dates
- Adaptive policy:
 - Adaptive ordering of jobs and machines to assign them to
- Goal:
 - Minimize expected sum of completion times

Adaptive Policy

LP-based Reduction to Determinism

- Write LP assuming job lengths are deterministic
- Variables are start times S_i of jobs

Minimize $\sum_{j} (p_j + S_j)$

 $\sum_{j \in A} p_j S_j \geq \frac{1}{2m} \sum_{i \neq j \in A} p_i p_j - \frac{m-1}{2m} \sum_{j \in A} p_j^2$

 \forall subsets A of jobs

LP for Stochastic Case

- Take expectations over job lengths
 - Note job length independent of start time
- Rounding: Schedule jobs in increasing order of LP objective

Minimize $\sum_{j} (\mathbf{E}[S_j] + \mu_j)$

$$\sum_{j \in A} \mu_j \mathbf{E}[S_j] \geq \frac{1}{2m} \left(\sum_{j \in A} \mu_j \right)^2 - \frac{1}{2} \sum_{j \in A} \mu_j^2 - \frac{m-1}{2m} \sum_{j \in A} \sigma_j^2$$

 \forall subsets A of jobs

Multi-armed Bandits

[Gittins and Jones '74, Tsitsiklis '80]

• *n* **independent** bandit arms

- · Each arm defines its own Markov decision space
- Only two actions per arm: "PLAY" or "STOP"

State space of an arm

Multi-armed Bandits

[Gittins and Jones '74, Tsitsiklis '80]

- *n* **independent** bandit arms
 - · Each arm defines its own Markov decision space
 - Only two actions per arm: "PLAY" or "STOP"
- At each step, can play at most one arm

Multi-armed Bandits

[Gittins and Jones '74, Tsitsiklis '80]

- R_t = Reward at time t
- Υ = Discount factor < 1
- Find policy that maximizes discounted reward:

What is a policy?

- Given current state of each arm
 - Which arm to play next?
- "State space" is exponential in number of arms
- Surprising but non-trivial result:
 - A greedy policy is optimal!
 - Polynomial time computable and executable!

Why is this non-trivial?

- Playing arm whose current state has highest reward may be sub-optimal
 - Arm can have low reward right now, but playing it yields state with high reward
 - But this can happen two states down the road, ...
- This means policy needs to take entire future behavior of arm into account!

Single Arm Problem via Duality

- Fix penalty (or dual cost) λ
- Focus on some state *s* of some arm *i*Suppose this is the start state
- Suppose arm *i* was only arm in system
 - At each step, can play arm *i* by paying penalty λ
 - Or can STOP and exit
- *V_i(s, λ)* = Optimal discounted payoff
 Easy to compute by dynamic programming

The Gittins Index

- For state *s* of arm *i*, Gittins index: Largest penalty λ such that $V_i(s, \lambda) = o$
- Same as:
 - Expected discounted per-step reward if we keep playing *i* as long as state is "at least as good as" *s*
- "At least as good as" = Larger Gittins index!

Intuition

- A state has large Gittins index if either:
 - State *itself* has high reward
 - So play in this state and then STOP
 - State *leads to* states with large reward
 - So long-term per-step reward is large
- In either case, this state is a "good" state to play

Gittins index policy

- At each step, play the arm whose current state has largest Gittins index
 Optimal!
- Proof of optimality
 - Exchange argument similar to greedy analyses

Other Problems and Approaches

• Stochastic makespan, Bin packing

[Kleinberg, Rabani, Tardos '97]

Inventory management

[Levi, Pal, Roundy, Shmoys '04]

• Stochastic set cover and probing problems [Etzioni et al., '96; Munagala, Srivastava, Widom '06; Liu et al., '08; Gupta-Nagarajan '15 ...]

• Techniques:

- Analysis of greedy policies
- Discretizing distributions and dynamic programming

Open Questions

- How far can we push LP based techniques?
 - Can we encode adaptive policies more generally?
 - For instance, bandits with matroid constraints?
- Several problem classes poorly understood
 - Stochastic machine scheduling
 - Auctions with budget constraints
- What if we don't have full independence?
 - Some success in auction design
 - In general, need tractable models of correlation

