Approximation Algorithms for
Stochastic Optimization

Kamesh Munagala
Duke University

Markov Decision Process

« Set S of states of the system
 Set A of actions

- If action a taken in state s:
+ Reward R (s)
- System transitions to state g with probability p(s,q)

M
()

Reward = R (s)

Action a

Markov Decision Process

- Set S of states of the system
- Set A of actions

- If action a taken in state s:
- Reward R (s) drawn from known distributions
- System transitions to state g with probability p_(s,q)

e Input:
- Rewards and state transition matrices for each action
- Start state s
* Time horizon T

Policy for an MDP

- Maximize expected reward over T steps

- Expectation over stochastic nature of rewards and
state transitions

- Policy: Mapping from states S to actions A
- Specifies optimal action for each observed state

« Dynamic Programming [Bellman ‘54]
» Optimal policy computable in time poly(|S|,|A|,T)

This talk

- For many problems:
- |S| is exponentially large in problem parameters
... or |A| is exponentially large
- Many examples to follow

- Simpler decision policies?
- Approximately optimal in a provable sense
- Efficient to compute and execute

Talk Overview

Classes of Decision Problems

Stochastic Optimization

Scheduling

Bayesian
Problems o

Auctions

Covering/Ordering
Problems

" Set Cover Knapsack, Inventory
Variants Matchings, Management
Bandits
4 Multi-stage
Optimization .
Machine

Scheduling

Classes of Decision Problems

Stochastic Optimizatioxy

Linear Programming «y€sian
° < 3
Relaxations! AuctoES
' Set Cover y ventory
Variants Management
Bandits

Optimization

Machine
Scheduling

Part 1. Maximum Value Problem

- Really simple decision problem
» Illustrate basic concepts
- Adaptive vs. Non-adaptive policies

- Non-adaptive policies
* Submodularity and the Greedy algorithm

- Adaptive policies
+ LP Relaxation and “Weak Coupling”
- Rounding using Markov’s Inequality

 Duality
* Simple structure of LP optimum
+ Gap between adaptive and non-adaptive policies

Part 2. Weakly Coupled LPs

- General technique via LP and Duality
- LP relaxation has very few constraints
- Dual yields infeasible policies with simple structure

- Examples
- Stochastic knapsack
- Stochastic matching
- Bayesian multi-item pricing

Part 3. Sampling Scenarios

- Exponential sized LP over all possible “scenarios” of
underlying distributions

- Solve LP or its Lagrangian by sampling the scenarios

- Examples:
* 2-Stage vertex cover
- Stochastic Steiner trees
- Bayesian auctions
» Solving LPs online

Part 4. Stochastic Scheduling

- New aspect of timing the actions

- Two techniques:
= Stronger LP relaxations than weak coupling
- Stochastic scheduling on identical machines
» Stochastic knapsack (not covered)
» Greedy policies
- Gittins index theorem

Important Disclaimer

By no means is this comprehensive!

Part 1.
The Maximum Value Problem

[Guha, Munagala ’07, ’09,
Dean, Goemans, Vondrak ’04]

The Maximum Value Problem

- There is a gambler who is shown n boxes

> Box j has reward drawn from distribution X,

o Gambler knows ijut box is closed

= All distributions are independent

The Maximum Value Problem

 Gambler knows all the distributions

« Distributions are independent

The Maximum Value Problem

Open some box, say Box 2

20 X

The Maximum Value Problem

Open another box based on observing X, = 20

20 X

Can open at most k boxes:
« Payoff = Maximum reward observed in these k boxes

Adaptivity:
« Gambler can choose next box to open based on observations so far

Example: Bernoulli Boxes

X 50 with probability /2

Gambler can open
k = 2 boxes X 60 with probablhty 1/3

X 25 with probability 1

Optimal Decision Policy % =8Go2

X2 = B(6O;1/3)

X

o with prob V

X, has expected payoftf 25

L X, =B(25,1)

X, has expected payoff 60/3 = 20

Optimal Decision Policy % =8Go2

X, = B(6O;1/3)

X

> X, =B(25,1)

0 with prob 12

X

25

Optimal Decision Policy % =8Go2

X, = B(6O;1/3)

X

1 X, =B(25,1)
50 with prob /2

0 with prob 12

Guaranteed payoff = 50

So it is pointless to open X,

25

Optimal Decision Policy % =8Go2

X, = B(6O;1/3)

X

> X, =B(25,1)
50 with prob /2

0 with prob 12

Guaranteed
payoff of 50

1/3

25 50 60

Optimal Decision Policy % =8Go2

X, = B(6O;1/3)

X

> X, =B(25,1)
50 with prob /2

0 with prob 12

Guaranteed
payoff of 50

1/3

25 50 60

Expected Payoff = 25/2 + 50/3 + 60/6 = 39.167

Can Gambler be Non-adaptive?

« Choose k boxes upfront before opening them

* Open these boxes and obtain maximum value

» Best solution = Pick X, and X, upfront

+ Payoff = 12 x50 + V2 x25 = 37.5 < 39.167

- Adaptively choosing next box after opening X is better!

Can Gambler be Non-adaptive?

« Choose k boxes upfront before opening them

* Open these boxes and obtain maximum value

» Best solution = Pick X, and X, upfront
+ Payoff = 12 x50 + V2 x25 = 37.5 < 39.167
- Adaptively choosing next box after opening X is better!

+ Subtler point: It’s not that much better...

Benchmark

- Value of optimal decision policy (decision tree)
- Call this value OPT

- Optimal decision tree can have size exponential in k

- Can we design a:
» Polynomial time algorithm
» ... that produces poly-sized decision tree
- ... that approximates OPT?

QOutline for Part 1

« Approximation algorithms for Maximum Value
- Non-adaptive policy
» Linear programming relaxation
- Duality and “adaptivity gap”

= Please ignore the constant factors!

- Later on: “Weakly coupled” decision systems
- Applications to matching, pricing, scheduling, ...

Non-adaptive Algorithm

Submodularity

[Kempe, Kleinberg, Tardos ’03, ...]

Non-adaptive Problem

- For any subset S of boxes, if gambler opens S
non-adaptively, the payoft observed is

f(S) =E _Igleachi

» Goal:
 Find S such that |S| < k
- Maximize f(S)

Submodularity of Set Functions

o
t

f(S1U{t}) — f(51) > f(S2U{t}) — f(S2)

Also need non-negativity and monotonicity: f(.S5) > f(51) > 0

The Greedy Algorithm

S <«— P

While |S| <k :
t o argmax,gg (£(S U {g}) — £(5))

S+ Su{t}

Output S

C laSSi Cal Res u lt [Nemhauser, Wolsey, Fisher ‘78]

- Greedyis a1 —1/e = 0.632 approximation to the
value of the optimal subset of size k

« Similar results hold even when:

- Different elements have different costs and there is a
budget on total cost of chosen set S

» General matroid constraints on chosen set S

Maximum Value is Submodular
 Let D = Joint distributionof X, X, ..., X

n

- Consider any sample r drawn from D
* Yields a sample of values v
- Let f(S,r) = maxv;,
- Easy to check this is submodular

irs U2r, vees Upype

« f(S) is the expectation over samples r of f(S,r)
»+ Submodularity preserved under taking expectation!

- Note: Do not need independence of variables!

More things that are Submodular

- Payoff from many opened boxes _[Guha, Munagala ‘07]
f(S) =E . max E Xz
_5’36[071]”3Zies s, x;<B T |

More things that are Submodular

- Payoff from many opened boxes _[Guha, Munagala ‘07]
f(S) =E . max E Xz
_a:E[O,l]";Z,L.Es s, x;<B T |

- Payoff = Minimizing the minimum value

[Goel, Guha, Munagala ‘06]
1€S]

f(S)=—logE [minXi

More things that are Submodular

- Payoff from many opened boxes [Guha, Munagala ‘07]
f(S) = E ~ IMax E Xz
_a:G[O,l]";Z,LES s, x;<B T |

Payoff = Minimizing the minimum value
[Goel, Guha, Munagala ‘06]

(8) =~ 1ogE |min X

€S

Spread of epidemic with seed set S

[Kempe, Kleinberg, Tardos ‘03]

Discrete entropy of joint distribution of S [Krause, Guestrin ‘05]

Adaptive Algorithms

Linear Programming

[Dean, Goemans, Vondrak ’04; Guha, Munagala ‘07]

Linear Programming

Consider optimal decision policy
- Adaptively opens at most k boxes
- Obtains payoff from one opened box

y; = Pr|Box j is opened]

Pr|Policy’s payoff is from box j
/N Xj — ”U]

Zjv

Example from before... X, = B(501/2)

X, = B(6O;1/3)

Xl

y,=1 X, =B(25,1)
0 with prob V2 50 with prob 12
y, =12
Ys; =2
1/3

Z 50~ 1/3

25 50 60
Zs 60 = 1/ 6

_ 1
Zg05= V2

Basic Idea

- LP captures behavior of policy
- Use y;and z;, as the variables

- These variables are insufficient to capture entire
structure of optimal policy
- What we end up with will be a relaxation

 Steps:
+ Understand structure of relaxation
- Convert solution to a feasible policy for gambler
- Bound the adaptivity gap

Constraints

Let Z = Identity of box from which payoff is finally obtained

Zziv = PrilZ=j3ANX;=01

Constraints

Let Z = Identity of box from which payoff is finally obtained

PI[Z:j/\Xj:U]

iju

For this event to happen, the following events must have happened:
» Boxj was opened by the policy
 Boxj hasvalue X; =v

Constraints

Let Z = Identity of box from which payoff is finally obtained

PI[Z:j/\Xj:U]

iju

For this event to happen, the following events must have happened:
» Boxj was opened by the policy
 Boxj hasvalue X; =v

These two events are independent since all the X’s are independent!

Constraints
Zziv = PrlZ=j3ANX;=1]

< Pr[Box j opened| x Pr| X, = v]

= y; X f;(v) \

Use independence here

Constraints

Can only get payoff from opened box: 20 < Yj X f J (U)

Any policy obtains payoff from one box: Z v Zjv < 1

\ }
|

Expected number of
boxes from which
payoff is obtained

Relaxation: Only encode expected number of
boxes from which payoff is obtained

Constraints

Can only get payoff from opened box: 20 < Yj X f J (U)

Any policy obtains payoff from one box: Z v Zjv < 1

Any policy opens at most k boxes: Z j Y; S k
\ l

!

Expected number of boxes opened

Relaxation: Only encode expected number of
boxes opened and not for every decision path

Constraints

Can only get payoff from opened box: 20 < Yj X f J (U)

Any policy obtains payoff from one box: Z v Zjv < 1

Any policy opens at most k boxes: Z j Yy 7 k

y; is a probability value: Yyi € [07 1]

LP Relaxation of Optimal Policy

Can only get payoff from opened box: 20 < Yj X f J (U)

Any policy obtains payoff from one box: Z v Zjv < 1

Any policy opens at most k boxes: Z j Y; S k
y; is a probability value: Y; S [07 1]
Maximize Payoff = Z v U X Zjy

Simple Example: Open all boxes

/ 2 with probability /2

X, \
k=2 0 with probability V2
1 with probability V2

0 with probability Y2

LP Relaxation

2 with probability 2 1 with probability 12
/ Zqo / Zp;
X, Xy, \
\ 0 with probability ¥/2 o with probability V2
Maximize 2 X 2g20 +1 X zp1
Za2 + <bl S 1
Za2 € [O, 1 / 2]
1 € [0,1/2]

LP Optimum

/v 2 with probability V2 /v 1 with probability V2
.S \ Xy \

0 with probability V2 0 with probability %2
Maximize 2 X Zgo +1 X 2p1 Z,,=1/2
Zy, =1/2
Za2+ 21 < 1
Za2 € 10,1/2] LP optimal payoff
Zp1 € [O, 1/2] = 1.5

Optimal Decision Policy?

/v 2 with probability V2 /v 1 with probability V2
X, Xy, \
\ o with probability ¥/2 o with probability V2

Maximize 2 X Zgo +1 X 2p1 Z,,=1/2
Zp; = 1/4
Za2 +2zp1 <1
Za2 € 10,1/2] Optimal payoff
Zp1 € [O, 1/2] = 1.25

What do we do with LP solution?

- Will convert it into a feasible policy

- Bound the payoff in terms of LP optimum
- LP Optimum upper bounds optimal payoff

LP Variables yield Single-box Policy P,

Y; / v with probability f,(v) z;,

=\

Open j with probability y;
If X; = v then

Take this payoff with probability Zi, /(Y jj.(v))

Simpler Notation for Policy P,

O(P;) = Pr|j opened] = Yy
C(P;) = Pr[Payoff of j chosen] = > zj,

R(P;) = E[Reward from j] = D .U X Zjy

LP Relaxation

Maximize D iV Zju Maximize > R(P))
2% <1 >, C(F) < 1
Zj yj < k > Zj O(F;) < k

VAN

Zjv Yj - fj(v) \V/j,’U
Each P; feasible
Y, S [07 1] \V/]

LP yields collection of Single Box Policies!

What does LP give us?

 LP yields single box policies such that
+ 3. R(P,) = OPT
- 2. C(P) < 1
+ 2:0(P) <k

- To convert to a feasible policy:
- Step 1: Order boxes arbitrarily as 1,2,3,...
 Consider boxes in this order

Final Algorithm

- When box j encountered:
 With probability 3/4 skip this box
- With probability %4, execute policy P;

Final Algorithm

- When box j encountered:
 With probability 3/4 skip this box
- With probability %4, execute policy P;

- Policy P; probabilistically decides to open j, and if
opened, take its payoft

Final Algorithm

- When box j encountered:
 With probability 3/4 skip this box
- With probability %4, execute policy P;

- Policy P; probabilistically decides to open j, and if
opened, take its payoft

- If policy decides to take payoff from j:
+ Take this payoff and STOP

- Else move to box j+1

Final Algorithm

- When box j encountered:
 With probability 34 skip this box
- With probability %4, execute policy P;

Policy P; probabilistically decides to open j, and it
opened, "take its payoff

If policy decides to take payoff from j:
+ Take this payoff and STOP

Else move to box j+1

If k boxes already opened, then STOP

Box-by-box Accounting

- Let O; = 1t policy P; opens j
- Let C; = 11f policy P; chooses payott from j

» Policy reaches box 1 iff:
Let’s lower

bound this

Zj Y @, ;i < k B probability

Markov’s Inequality

Pr [Zj@ C; < 1}

v
|
g
A
=
2

IV
ek

Pr [Zj@ 0; < k}

Union Bounds

Policy reaches box 1

)
(\

Priy, ., Cj<land ¥,_,0; <k

Zj ’i,E[Oj]
= 1= (Zj<iE[Cj] | %)

Use Independence of Boxes

E|C;] < E|Cj| Box j not skipped| x Pr| Box j not skipped|

IA

C(PJ) X

1
4

E|O;] < E|O,| Box j not skipped| x Pr|[Box j not skipped]

VAN

O(FPj) x

1
4

Putting it together

Policy reaches box i

()
Pr [ZJQC' <land } ;O <].€7

[V

1 - (Zj<z’E[Cj] | ZMkE[Oj])

O(Fj)

L3 (Zj<i C(F;) + quk)

|V

[V

1—3x(1+1)=2

8-approximation
Expected contribution to reward from P,

> Pr| Box ¢ is reached] x E |[Reward from 4]

> % x Pr [Box i is not skipped | x R(P;)

|V

Duality

[Guha, Munagala ‘09]

Recall LP Relaxation

Maximize Payoff ~——> Maximize D j R(F;)
Policy obtains payoff from one box ——» Zj cp) < 1
Any policy opens at most k boxes ——» Zj OP;) < k

Single-box policy is feasible =~ —» Each P; feasible

Relaxed LP

Maximize >.; R(Fj)

¥, (Cm)+ S <

Each P; feasible

Scale down variables by factor 2
Maximize > R(Pj)

>, (c+9) <

Each P; feasible

Lagrangian
Maximize >_; R(Fj)
Zj (C’ (P;) + LP‘?)) < 1 «— Dual variable = w

k

Each P; feasible

Max. w+ Y, (R(P;) —w x C(P}) — “O(F;))

Each P; feasible

Interpretation of Lagrangian

Max. w+ Y, (R(P}) —w x C(P}) — “O(F;))

Each P; feasible

- Decouples into a separate optimization per box!

- Can open and choose payoff from many boxes

Optimization Problem for Box j

Max. R(P;) —w x C(P;) — TO(F;)

P; feasible

» Net value from choosing j:
- If j opened, then pay cost = w/k
- If we choose payoff of j, then pay cost = w
- If we choose payoff of j, obtain that reward

» Net value = Reward minus cost paid

Optimal Solution to Lagrangian

- For box j, choose solution with better value

» Solution 1: Don’t open box
* Netvalue =0

» Solution 2: Open box
- Pay cost = w/k
- If Reward > w, then choose this reward, pay cost w
» Net value = E[Reward — Cost]

- Decision to open any box is deterministic!

Strong Duality (roughly speaking)

Lag(w ZR +wX(1Z<Cj‘|—ij>)

J

Choose Lagrange multiplier w such that
O .

— Zj Rj > OFT

Non-adaptive Policy

- Since O, is either 0 or 1
- LP optimum opens at most k boxes deterministically!
+ Suppose we open all these boxes

» The expected maximum payoff of these boxes is at

least the value of rounding the LP
 But rounding has value at least OPT/16

- Therefore, the adaptivity gap is at most 16!

- Better choice of w improves this to factor 3
[Guha, Munagala, Shi ‘09]

Takeaways...

-« LP-based proof oblivious to non-linear closed
form for max

- Automatically yields policies with right “form”
- Adaptivity gap follows from duality

- Needs independence of random variables
- Weakly coupled linear program and rounding
- More on weak and strong relaxations in next half!

Part 2.
Weakly Coupled Relaxations

Weakly Coupled Decision Systems

Independent decision spaces

Few constraints coupling decisions across spaces
)
{ \

[Singh & Cohn ’97; Meuleau et al. ‘98]

General Recipe

- Write LP with constraints on expected values
- Important: Constant number of such constraints
- Stronger relaxations are sometimes needed

» Solve LP and use Markov’s inequality to round

- Dual typically yields more structured solution
- For instance, threshold policies and adaptivity gaps

Maximum Value Setting

- Each box defines its own decision space
- Payoffs of boxes are independent

- Coupling constraints (write in expectation):
- At most k boxes opened
- At most one box’s payoff finally chosen

- LP yields a threshold policy:

» Choose payoft if value > dual multiplier w

Stochastic Knapsack

[Dean, Goemans, Vondrak ’'04; Bhalgat, Goel, Khanna ‘11]

« Size of item 1 drawn from distribution X;
- Learn actual size only after placing 7 in knapsack
- Sizes of items independent
- Any size at most knapsack capacity B

- Adaptive policy for placing items in knapsack
- If knapsack capacity violated, then STOP

- Maximize expected reward

Weakly Coupled Relaxation

Maxmnze \Zj Rj y]}
|

Expected reward

ijj'E[Xj] < 2B

Yyj € [07 1]
f

Pr[j placed in knapsack]

Stochastic Matching

Dij

i r; 0
:\'
Men Women

« Can send some man i and some woman j on date

» Date succeeds with probability p;;and yields reward r;
« Successful match removes i and j from graph
 Failed match deletes edge (i,))

StOChaStiC MatChi ng [Chen et al. ’09; Bansal et al. ‘10]

- Input: Matrix of Dy and Iy

- Decision policy:
- Adaptive order of setting up dates

- Goal:

- Maximize expected reward of successful matches

LP Relaxation

Maximize Zf,,j TiiDijTij
Zj PijLij < 1 \4) Expected number of
— successful matches
’ per man and woman
Z@' DijTi; =< 1 A | atmost1
zi; € [0,1] Vi, j

!

Pr[1 goes on a date with j]

Bayesian Pricing

= n items

Unit Demand Setting

[Chawla, Hartline, Kleinberg ’07; Chawla et al. ‘10; Bhattacharya et al. ‘10]

» One agent and n items
- Agent wants only one item

- Value v; follows independent distribution X;
- Exact value known only to agent
» Seller only knows distribution

ltem Pricing Scheme

Posted prices

Buyer chooses item that maximizes v; - p;

Revenue Maximization

- Bayesian Pricing:
- Post prices p;for each item j based on knowing X;
- Agent chooses that item that maximizes v; — p;
- Seller earns the price p;

» Seller’s goal:
- Maximize Revenue = Expected price earned

LP Variables

zip, = Pr|Price of j = p]

Yip(v) = Pr|Price of j =p A X; =v Aj is bought]

LP Constraints:
« Every item has exactly one price
« Agent buys at most one item

« Agent only buys item if value is larger than price

LP Relaxation

Maximize D ipw D Yip(V)

Zj v Yip (’U) < 1 «——— E[Items bought] is at most 1

VAN
—_

vj

One price _=» Zp Ljp
for each j

VA

Yip(V) Tipfi(v) Vi, p,v >Dp

Pr/X; =v]

Lagrangian decouples across items!

Maximize D i @ —A) yjp(v)
Zp Ljp < 1 \V/]
yjp (U) S x]pf] (?}) \V/], p,U
Integral variable

For each j, Lagrangian chooses one price p;

Lagrangian optimum is simple

p;(A) = argmax,>, ((p — A) - Pr[X; > p])

LP optimum chooses A so that expected number of
items bought is exactly 1

Lagrangian Optimum for Item j
t

PrlX; > p]
1 \

A D; Price p

Some Complexity Results

- Bayesian Pricing
= (Q)PTAS for “reasonable” distributions [cai paskalakis 111

= NP-complete in general [Chen et al. 13]

= Correlated distributions
- Hard to approximate beyond logarithmic factors [Briest ‘11]

- Stochastic Knapsack

¢ PTAS [Bhalgat, Goel, Khanna ‘11]

Part 3.
Sampling-based Approaches

Overview

« MDPs with small number of “stages”

- Exponential sized LP over all possible “scenarios” of
underlying distribution
- Solve LP or its Lagrangian by sampling the scenarios

- Examples:
« 2-stage vertex cover
« Stochastic Steiner trees (combinatorial algorithm)
- Bayesian auctions
» Solving LPs online

Multi-stage Vertex Cover

@ Vertex v costs ¢,

Distribution D over possible edge sets that can be realized

Stage 1: Buy some vertices cheaply

Pay cost c,

@ Vertex v costs ¢,

Buy some vertices only knowing D

Stage 2: Edge set realized

u Need to buy vertices

at scaled up price to
cover realized edges

Vertex v costs ¢,

Total cost=c, + A c,

Multi-stage Covering Problems
[Kleywegt, Shapiro, Homem-de-Mello ‘01; Shmoys, Swamy ‘04; Charikar, Chekuri, Pal ‘05]
- Decision Policy:
- What vertices should we buy in Stage 1?
- Knowing only D, costs, and scaling factor A > 1

- Minimize total expected cost of vertices
- Expectation over realization of edges from D

LP when |D]| is small

Maximize), x, + A Esep D, Yu(0)]

Ty T Ty T yu(0> + yv(a-) > 1Vo,e € E(U)

Rounding similar to vertex cover
Randomized rounding yields tight 2 approximation

Generalizes to multi-stage vertex cover

Black Box Access to D

- Sample Average Approximation
» Draw poly many samples; solve LP on these samples
- Approximation results carry over with small loss

- Combinatorial “boosted sampling” [cupta etal oq]
» Draw a set of samples from D in Stage 1
» Solve covering problem on union of these samples
- Augment this solution with the realization in stage 2

Stochastic Steiner Tree

Root r

d(ij)

J

Distribution D over vertices V

Stochastic Steiner Tree (Garg et al. ‘081

« K vertices arrive one at a time
- Drawn 1.1.d. from distribution D

- Goal:

» Construct online Steiner tree connecting arriving
vertices to r

- Technique: Sampling from D

Algorithm: Offline Stage 1

» Draw K samples from D
» Construct 2-approximate Steiner tree T on samples

- Expected cost at most 20PT
- Samples statistically identical to online input

ot

K samples from D

Algorithm: Online Stage 2

- When input vertex v arrives online
» Connect v by shortest pathto T

ot

Sampling Analysis

- K points in Stage 1 and v together are a random sample
of size K+1 from D.
 Therefore, expected cost of connecting v most 20PT/K

« Overall cost at most 4 OPT

ot

Bayesian Multi-item Auctions

A

= n items

Bayesian Setting

[Cai, Daskalakis Weinberg, ‘12-’15, Bhalgat, Gollapudi, Munagala ‘13]

- Many bidders and items
- Constraints on possible allocations

- Bidder j’s valuation vector tollows distribution o;
- Exact value known only to bidder
- Distributions for different bidders independent
- Auctioneer only knows distribution

- Assume: Single bidder’s distribution o; is poly-size

Auction Design

- Design auction maximizing expected revenue (or
total price charged)
= Auction = (Allocations, Prices) given revealed bids

Auction Design

- Design auction maximizing expected revenue (or
total price charged)

- Bayesian Incentive Compatibility:
 Revealing true value maximizes expected utility of bidder
- Expectation is over distribution of other agents

Auction Design

- Design auction maximizing expected revenue (or
total price charged)

- Bayesian Incentive Compatibility:
 Revealing true value maximizes expected utility of bidder
- Expectation is over distribution of other agents

- Individual Rationality:
- Charge prices so that utility of any agent is non-negative
» Constraint could be per scenario and not in expectation

Why is this easier than Pricing?

- We allow “lotteries”
- Randomized menu of allocations and prices
- Incentive compatibility in expectation
» Lotteries can be encoded by an LP

» Deterministic menus are hard to approximate!

[Briest ‘11]

Two types of LP variables

Expected value (marginal) variables

—

X;(v;) = E[Allocation to jlo; = U;] | Expectation over
__ valuations of
P;(v;) = E| Price for j|lo; = vj] other agents

Per-scenario variables

—_—

Z(n) = Allocations | Valuations = 1| gxponentially

—

many
scenarios!

Prices | Valuations =n

]
N
3
N——"
|

—

LP Constraints

- Expected value constraints for every agent j and
valuation vector v;:
 Bayesian incentive compatibility
« Maximize expected revenue

LP Constraints

- Expected value constraints for every agent j and
valuation vector v;:
 Bayesian incentive compatibility
« Maximize expected revenue

- Per-scenario constraints (exponentially many):
- Allocations and prices are feasible for every scenario n
* Individual rationality

LP Constraints

- Expected value constraints for every agent j and
valuation vector Uj!
 Bayesian incentive compatibility
- Maximize expected revenue

- Per-scenario constraints (exponentially many):
- Allocations and prices are feasible for every scenario n
* Individual rationality

- Coupling constraints:| X;(v;) = >, _ Prln]-2;(n)

PJ (UZ) s Zqﬂnj :U_:} Pr[n]) p] (77)
‘ I
Exponentially large summation!

Key ldea: Sample Scenarios

- Take Lagrangian of coupling constraints
* One Lagrange multiplier for each agent and its value
* Poly-many multipliers or “virtual welfares”

Xi(03) = 2pigy=o; Prln] - z5(n)

Pi(0;) = > pm=s Prln) - pi(n)

Key ldea: Sample Scenarios

- Take Lagrangian of coupling constraints
* One Lagrange multiplier for each agent and its value
* Poly-many multipliers or “virtual welfares”

- Lagrangian decouples into two separate problems:
 LP over expected value variables

 Separate maximization problem for each scenario n and take
expectation over scenarios

- Estimate this expectation by sampling the scenarios!

Key ldea: Sample Scenarios

- Take Lagrangian of coupling constraints
- One Lagrange multiplier for each agent and its value
* Poly-many multipliers or “virtual welfares”

- Lagrangian decouples into two separate problems:
- LP over expected value variables

- Maximization problem for each scenario nj and take
expectation over scenarios
- Estimate this expectation by sampling scenarios!

- Given efficient oracle for solving Lagrangian
» Solve LP using no-regret learning, Ellipsoid, ...

“Online” AlgOritth [Agarwal, Devanur ‘14]

- Suppose scenarios arrive i.i.d. from unknown
distribution

- Need to solve some LP over expected allocations
- But with feasibility constraints per scenario
- Motivation: Budgeted allocations, envy-freeness, ...

- Arriving scenarios can be treated as samples!
- Implies overall LP can be solved online via Lagrangian
 Need not even know distribution upfront!

Part 4.
Scheduling Problems

Overview

- New aspect of timing the actions
- So far, we have ignored timing completely!

« Two techniques:
= Stronger LP relaxations than weak coupling
» Stochastic scheduling on identical machines
- Stochastic knapsack (not covered)
= Greedy policies
» Gittins index theorem

Stochastic Scheduling

Jobs —

p;j ~ X

m parallel
machines

StOChaStiC SChed u li ng [Mohring, Schulz, Uetz ‘96]

- Realize exact length only after job is scheduled
- No preemption or release dates

- Adaptive policy:
- Adaptive ordering of jobs and machines to assign
them to

« Goal:

+ Minimize expected sum of completion times

Adaptive Policy

Jobs —

machines

\ ___ mparallel

LP-based Reduction to Determinism

- Write LP assuming job lengths are deterministic

- Variables are start times S; of jobs

Minimize >.;(pj +5;)

g 1 . — m=1 2
ZjeApJSJ > om Lai#je A PiDj 2m jeAD;

V subsets A of jobs

LP for Stochastic Case

- Take expectations over job lengths
 Note job length independent of start time

- Rounding: Schedule jobs in increasing order of LP objective

Minimize > (BES;] + 1)

2
1 1 m—1
ZjeA niELS;] > 2m (ZjeA :uj) — 2 ZjeA N? — 2m £ujeA 032'

V subsets A of jobs

Multi-armed Bandits

[Gittins and Jones '74, Tsitsiklis ‘80]

- nindependent bandit arms
- Each arm defines its own Markov decision space
* Only two actions per arm: “PLAY” or “STOP”

Pap
r, e/7 \‘\) State space of an arm

Multi-armed Bandits

[Gittins and Jones '74, Tsitsiklis ‘80]

- nindependent bandit arms
- Each arm defines its own Markov decision space
* Only two actions per arm: “PLAY” or “STOP”

- At each step, can play at most one arm

Arms
1 Play arm 1
Arm’s state
changes only
2 when played

Multi-armed Bandits

[Gittins and Jones '74, Tsitsiklis ‘80]

* R, = Reward at time t
« Y= Discount factor < 1

 Find policy that maximizes discounted reward:

E i ’)/th
_t=0 i

What is a policy?
« Given current state of each arm
» Which arm to play next?

- “State space” 1s exponential in number of arms

- Surprising but non-trivial result:
» A greedy policy is optimal!
» Polynomial time computable and executable!

Why is this non-trivial?

- Playing arm whose current state has highest
reward may be sub-optimal

- Arm can have low reward right now, but playing it
yields state with high reward

- But this can happen two states down the road, ...

- This means policy needs to take entire future
behavior of arm into account!

Single Arm Problem via Duality

- Fix penalty (or dual cost) A

« Focus on some state s of some arm 1
- Suppose this is the start state

» Suppose arm 1 was only arm in system

- At each step, can play arm 1 by paying penalty A
» Or can STOP and exit

 Vi(s, A) = Optimal discounted payoff

- Easy to compute by dynamic programming

The Gittins Index

 For state s of arm 1, Gittins index:
Largest penalty A such that Vi(s,A) =0

« Same as:

- Expected discounted per-step reward if we keep
playing i as long as state is “at least as good as” s

- “At least as good as” = Larger Gittins index!

Intuition

- A state has large Gittins index if either:

= State itself has high reward
- So play in this state and then STOP

= State leads to states with large reward
» So long-term per-step reward is large

- In either case, this state is a “good” state to play

Gittins index policy

- At each step, play the arm whose current state
has largest Gittins index

> Optimal!

« Prooft of optimality
- Exchange argument similar to greedy analyses

Other Problems and Approaches

- Stochastic makespan, Bin packing
[Kleinberg, Rabani, Tardos ’97]

- Inventory management [Levi, Pal, Roundy, Shmoys ‘04]

- Stochastic set cover and probing problems

[Etzioni et al., ‘96; Munagala, Srivastava, Widom ‘06; Liu et al., ’08; Gupta-Nagarajan ’15 ...]

- Techniques:
- Analysis of greedy policies
» Discretizing distributions and dynamic programming

Open Questions

- How far can we push LP based techniques?
- Can we encode adaptive policies more generally?
- For instance, bandits with matroid constraints?

- Several problem classes poorly understood
- Stochastic machine scheduling
- Auctions with budget constraints

- What if we don’t have full independence?
+ Some success in auction design
- In general, need tractable models of correlation

Thanks!

