
Approximation Algorithms for 
Stochastic Optimization 
 
Kamesh Munagala 
Duke University 



Markov Decision Process 
•  Set S of states of the system 
•  Set A of actions 

•  If action a taken in state s: 
�  Reward Ra(s) 
�  System transitions to state q with probability pa(s,q) 

s Action a 

q

Reward = Ra(s) 



Markov Decision Process 
•  Set S of states of the system 
•  Set A of actions 

•  If action a taken in state s: 
�  Reward Ra(s) drawn from known distributions 
�  System transitions to state q with probability pa(s,q) 

•  Input:  
�  Rewards and state transition matrices for each action 
�  Start state s  
�  Time horizon T 



Policy for an MDP 

• Maximize expected reward over T steps 
�  Expectation over stochastic nature of rewards and 

state transitions 

• Policy: Mapping from states S to actions A 
�  Specifies optimal action for each observed state 

• Dynamic Programming                                [Bellman ‘54] 

�  Optimal policy computable in time poly(|S|,|A|,T) 



This talk 

•  For many problems: 
�   |S| is exponentially large in problem parameters 
 … or |A| is exponentially large 
�  Many examples to follow 

•  Simpler decision policies? 
� Approximately optimal in a provable sense 
�  Efficient to compute and execute 



Talk Overview 



Classes of Decision Problems 
Stochastic Optimization 

Covering/Ordering 
Problems 

Scheduling 
Problems 

Set Cover 
Variants 

Multi-stage 
Optimization 

Knapsack, 
Matchings,  

Bandits 

Machine 
Scheduling 

Bayesian 
Auctions 

Inventory 
Management 



Classes of Decision Problems 
Stochastic Optimization 

Covering/Ordering 
Problems 

Scheduling 
Problems 

Set Cover 
Variants 

Multi-stage 
Optimization 

Knapsack, 
Matchings,  

Bandits 

Machine 
Scheduling 

Bayesian 
Auctions 

Inventory 
Management 

Linear Programming 
Relaxations! 



Part 1. Maximum Value Problem 
•  Really simple decision problem 

�  Illustrate basic concepts 
�  Adaptive vs. Non-adaptive policies 

•  Non-adaptive policies 
�  Submodularity and the Greedy algorithm 

•  Adaptive policies 
�  LP Relaxation and “Weak Coupling” 
�  Rounding using Markov’s Inequality 

•  Duality 
�  Simple structure of LP optimum 
�  Gap between adaptive and non-adaptive policies 



Part 2. Weakly Coupled LPs  

• General technique via LP and Duality 
�  LP relaxation has very few constraints 
�  Dual yields infeasible policies with simple structure 

• Examples 
�  Stochastic knapsack 
�  Stochastic matching 
�  Bayesian multi-item pricing 



Part 3. Sampling Scenarios 
•  Exponential sized LP over all possible “scenarios” of 

underlying distributions 

•  Solve LP or its Lagrangian by sampling the scenarios 
 

•  Examples: 
�  2-stage vertex cover 
�  Stochastic Steiner trees 
�  Bayesian auctions 
�  Solving LPs online 



Part 4. Stochastic Scheduling 

• New aspect of timing the actions 

•  Two techniques: 
▫  Stronger LP relaxations than weak coupling 
�  Stochastic scheduling on identical machines 
�  Stochastic knapsack (not covered) 

▫  Greedy policies 
�  Gittins index theorem 



Important Disclaimer 

By no means is this comprehensive! 



Part 1. 
The Maximum Value Problem 
[Guha, Munagala ’07, ’09, 
Dean, Goemans, Vondrak ’04] 

 



The Maximum Value Problem 

•  There is a gambler who is shown n boxes 

▫  Box j has reward drawn from distribution Xj 

▫  Gambler knows Xj but box is closed 

▫  All distributions are independent 
 



The Maximum Value Problem 

X2 X3 X4 X5 X1 

•  Gambler knows all the distributions 

•  Distributions are independent 



The Maximum Value Problem 

X1 X3 X4 X5 20 

Open some box, say Box 2  



The Maximum Value Problem 
Open another box based on observing X2 = 20 

Can open at most k boxes: 
•  Payoff = Maximum reward observed in these k boxes 
 
Adaptivity: 
•  Gambler can choose next box to open based on observations so far 

X1 X3 X4 X5 20 



Example: Bernoulli Boxes 

X1 

X2 

50 with probability ½  

60 with probability 1/3   

X3 25 with probability 1  

Gambler can open 
k = 2 boxes 



Optimal Decision Policy 

X1 

0 with prob ½  

X3 has expected payoff 25 
 

X2 has expected payoff 60/3 = 20 
 

X1  = B(50,1/2) 
 
X2  = B(60,1/3) 
 
X3  = B(25, 1) 



Optimal Decision Policy 

X1 

0 with prob ½  

X3 

25 

X1  = B(50,1/2) 
 
X2  = B(60,1/3) 
 
X3  = B(25, 1) 



Optimal Decision Policy 

X1 

0 with prob ½  50 with prob ½  

X3 

25 

Guaranteed payoff = 50 
So it is pointless to open X3  

X1  = B(50,1/2) 
 
X2  = B(60,1/3) 
 
X3  = B(25, 1) 



Optimal Decision Policy 

X1 

0 with prob ½  50 with prob ½  

X3 

25 

X2 

2/3 1/3 

50 60 

Guaranteed 
payoff of 50 

X1  = B(50,1/2) 
 
X2  = B(60,1/3) 
 
X3  = B(25, 1) 



Optimal Decision Policy 

X1 

0 with prob ½  50 with prob ½  

X3 

25 

X2 

2/3 1/3 

50 60 

Guaranteed 
payoff of 50 

Expected Payoff = 25/2 + 50/3 + 60/6 = 39.167 

X1  = B(50,1/2) 
 
X2  = B(60,1/3) 
 
X3  = B(25, 1) 



Can Gambler be Non-adaptive? 
•  Choose k boxes upfront before opening them 
 

�  Open these boxes and obtain maximum value 

•  Best solution = Pick X1 and X3 upfront 

�  Payoff = ½ ×50 + ½ ×25 = 37.5 < 39.167 

�  Adaptively choosing next box after opening X1 is better! 



Can Gambler be Non-adaptive? 
•  Choose k boxes upfront before opening them 
 

�  Open these boxes and obtain maximum value 

•  Best solution = Pick X1 and X3 upfront 

�  Payoff = ½ ×50 + ½ ×25 = 37.5 < 39.167 

�  Adaptively choosing next box after opening X1 is better! 

�  Subtler point: It’s not that much better… 



Benchmark 

• Value of optimal decision policy (decision tree) 
�  Call this value OPT 
�  Optimal decision tree can have size exponential in k 

• Can we design a: 
�  Polynomial time algorithm  
�  … that produces poly-sized decision tree  
�  … that approximates OPT? 



Outline for Part 1 

• Approximation algorithms for Maximum Value 
�  Non-adaptive policy 
�  Linear programming relaxation 
�  Duality and “adaptivity gap” 

▫  Please ignore the constant factors! 

•  Later on: “Weakly coupled” decision systems 
�  Applications to matching, pricing, scheduling, … 

 



Non-adaptive Algorithm 
Submodularity 
[Kempe, Kleinberg, Tardos ’03, …] 

 



Non-adaptive Problem 

•  For any subset S of boxes, if gambler opens S 
non-adaptively, the payoff observed is 

• Goal: 
�  Find S such that |S| ≤ k 
�  Maximize f(S) 

f(S) = E


max

i2S
Xi

�



Submodularity of Set Functions 

S1 S1 S2 
t 

f (S1 [ {t})� f (S1) � f (S2 [ {t})� f (S2)

Also need non-negativity and monotonicity:  f(S2) � f(S1) � 0



The Greedy Algorithm 

S  �

While |S| ≤ k : 
t argmaxq/2S (f(S [ {q})� f(S))

S  S [ {t}

Output S 



Classical Result            [Nemhauser, Wolsey, Fisher ‘78] 

• Greedy is a 1 – 1/e ≈ 0.632 approximation to the 
value of the optimal subset of size k 

•  Similar results hold even when: 
�  Different elements have different costs and there is a 

budget on total cost of chosen set S 
�  General matroid constraints on chosen set S 



Maximum Value is Submodular 
•  Let D = Joint distribution of X1, X2, …, Xn 

• Consider any sample r drawn from D 
�  Yields a sample of values v1r, v2r, ..., vnr 
�  Let  
�  Easy to check this is submodular 

•  f(S) is the expectation over samples r of f(S,r) 
�  Submodularity preserved under taking expectation! 

• Note: Do not need independence of variables! 

f(S, r) = max

i2S
vir



More things that are Submodular 
•  Payoff from many opened boxes                           [Guha, Munagala ‘07] 

f(S) = E

"
max

~x2[0,1]n;
P

i2S sixiB

X

i2T

X
i

#



More things that are Submodular 
•  Payoff from many opened boxes                           [Guha, Munagala ‘07] 

•  Payoff = Minimizing the minimum value 
[Goel, Guha, Munagala ‘06] 

f(S) = � logE


min

i2S
Xi

�

f(S) = E

"
max

~x2[0,1]n;
P

i2S sixiB

X

i2T

X
i

#



More things that are Submodular 
•  Payoff from many opened boxes                            [Guha, Munagala ‘07] 

•  Payoff = Minimizing the minimum value 
[Goel, Guha, Munagala ‘06] 

•  Spread of epidemic with seed set S 
[Kempe, Kleinberg, Tardos ‘03] 

 
 

•  Discrete entropy of joint distribution of S     [Krause, Guestrin ‘05] 

f(S) = � logE


min

i2S
Xi

�

f(S) = E

"
max

~x2[0,1]n;
P

i2S sixiB

X

i2T

X
i

#



Adaptive Algorithms 
Linear Programming 
[Dean, Goemans, Vondrak ’04; Guha, Munagala ‘07] 

 



Linear Programming 

Consider optimal decision policy 
�  Adaptively opens at most k boxes 
�  Obtains payoff from one opened box 

yj = Pr[Box j is opened]

zjv = Pr[Policy’s payo↵ is from box j
^ Xj = v]



Example from before… 

X1 

0 with prob ½  50 with prob ½  

X3 

25 

X2 

2/3 1/3 

50 60 

X1  = B(50,1/2) 
 
X2  = B(60,1/3) 
 
X3  = B(25, 1) y1 = 1 

 
y2 = ½  
 
y3 = ½  

z1,50 = 1/3 
 
z2,60 = 1/6  
 
z3,25 = ½  



Basic Idea  
•  LP captures behavior of policy 

�  Use yj and zjv as the variables 

•  These variables are insufficient to capture entire 
structure of optimal policy 

�  What we end up with will be a relaxation 

•  Steps: 
�  Understand structure of relaxation 
�  Convert solution to a feasible policy for gambler 
�  Bound the adaptivity gap 



Constraints 

Let Z = Identity of box from which payoff is finally obtained 

zjv = Pr[Z = j ^Xj = v]



Constraints 

Let Z = Identity of box from which payoff is finally obtained 

zjv = Pr[Z = j ^Xj = v]

For this event to happen, the following events must have happened: 
•  Box j was opened by the policy 
•  Box j has value Xj  = v 



Constraints 

Let Z = Identity of box from which payoff is finally obtained 

zjv = Pr[Z = j ^Xj = v]

For this event to happen, the following events must have happened: 
•  Box j was opened by the policy 
•  Box j has value Xj  = v 

These two events are independent since all the X’s are independent! 



Constraints 

zjv = Pr[Z = j ^Xj = v]

 Pr[Box j opened]⇥ Pr[Xj = v]

= yj ⇥ fj(v) Use independence here 



Constraints 

P
j,v zjv  1Any policy obtains payoff from one box: 

zjv  yj ⇥ fj(v)Can only get payoff from opened box: 

Expected number of 
boxes from which 
payoff is obtained 

Relaxation: Only encode expected number of 
boxes from which payoff is obtained 



Constraints 

P
j,v zjv  1Any policy obtains payoff from one box: 

zjv  yj ⇥ fj(v)Can only get payoff from opened box: 

Any policy opens at most k boxes:  
P

j yj  k

Expected number of boxes opened 

Relaxation: Only encode expected number of 
boxes opened and not for every decision path 



Constraints 

P
j,v zjv  1Any policy obtains payoff from one box: 

zjv  yj ⇥ fj(v)Can only get payoff from opened box: 

Any policy opens at most k boxes:  
P

j yj  k

yj  is a probability value:  yj 2 [0, 1]



LP Relaxation of Optimal Policy 

P
j,v zjv  1Any policy obtains payoff from one box: 

zjv  yj ⇥ fj(v)Can only get payoff from opened box: 

Any policy opens at most k boxes:  
P

j yj  k

yj  is a probability value:  yj 2 [0, 1]

P
j,v v ⇥ zjvMaximize Payoff =  



Simple Example: Open all boxes 

Xa 

Xb 

2 with probability ½  

0 with probability ½  

1 with probability ½  

0 with probability ½  

k = 2 

ya = yb = 1 



LP Relaxation 

Xa Xb 

2 with probability ½  

0 with probability ½  

1 with probability ½  

0 with probability ½  

Maximize 2⇥ za2 + 1⇥ zb1

za2 + zb1  1

za2 2 [0, 1/2]
zb1 2 [0, 1/2]

za2 zb1  



LP Optimum 

Xa Xb 

2 with probability ½  

0 with probability ½  

1 with probability ½  

0 with probability ½  

Maximize 2⇥ za2 + 1⇥ zb1

za2 + zb1  1

za2 2 [0, 1/2]
zb1 2 [0, 1/2]

za2 = 1/2 
zb1 = 1/2 

LP optimal payoff  
= 1.5   



Optimal Decision Policy? 

Xa Xb 

2 with probability ½  

0 with probability ½  

1 with probability ½  

0 with probability ½  

Maximize 2⇥ za2 + 1⇥ zb1

za2 + zb1  1

za2 2 [0, 1/2]
zb1 2 [0, 1/2]

za2 = 1/2 
zb1 = 1/4 

Optimal payoff  
= 1.25   



What do we do with LP solution? 

• Will convert it into a feasible policy 

• Bound the payoff in terms of LP optimum 
�  LP Optimum upper bounds optimal payoff 



LP Variables yield Single-box Policy Pj 

Xj 

v with probability  fj(v) 

Open j with probability yj 
 
If Xj = v then 
  
   Take this payoff with probability zjv /(yj  fj(v))  
 

zjv yj 



Simpler Notation for Policy Pj 

O(Pj) = Pr[j opened] = yj

C(Pj) = Pr[Payo↵ of j chosen] =

P
v zjv

R(Pj) = E[Reward from j] =

P
v v ⇥ zjv



LP Relaxation 

LP yields collection of Single Box Policies! 

Maximize

P
j,v v · zjv

P
v zjv  1

P
j yj  k

zjv  yj · fj(v) 8j, v

yj 2 [0, 1] 8j

Maximize

P
j R(Pj)

P
j C(Pj)  1

P
j O(Pj)  k

Each Pj feasible



What does LP give us? 

•  LP yields single box policies such that
�  Σi R(Pi) ≥ OPT 
�  Σi C(Pi) ≤  1 
�  Σi O(Pi) ≤ k 

 
•    To convert to a feasible policy: 

�  Step 1: Order boxes arbitrarily as 1,2,3,…  
�  Consider boxes in this order 

 
 



Final Algorithm 
•  When box j encountered: 

�  With probability ¾ skip this box 
�  With probability ¼, execute policy Pj  

 
 
 
 
 
 



Final Algorithm 
•  When box j encountered: 

�  With probability ¾ skip this box 
�  With probability ¼, execute policy Pj  

•  Policy Pj probabilistically decides to open j, and if 
opened, take its payoff 



Final Algorithm 
•  When box j encountered: 

�  With probability ¾ skip this box 
�  With probability ¼, execute policy Pj  

•  Policy Pj probabilistically decides to open j, and if 
opened, take its payoff 

•  If policy decides to take payoff from j: 
�  Take this payoff and STOP 

•  Else move to box j+1 



Final Algorithm 
•  When box j encountered: 

�  With probability ¾ skip this box 
�  With probability ¼, execute policy Pj  

•  Policy Pj probabilistically decides to open j, and if 
opened, take its payoff 

•  If policy decides to take payoff from j: 
�  Take this payoff and STOP 

•  Else move to box j+1 

•  If k boxes already opened, then STOP 



Box-by-box Accounting 

•  Let Oj = 1 if policy Pj  opens j 

•  Let Cj = 1 if policy Pj  chooses payoff from j 

•  Policy reaches box i iff: 
 P

j<i Cj < 1

P
j<i Oj < k

Let’s lower 
bound this 
probability 



Markov’s Inequality 

Pr
hP

j<i Cj < 1
i

� 1�
P

j<i E[Cj ]

Pr
hP

j<i Oj < k
i

� 1�
P

j<i E[Oj ]

k



Union Bounds 

Pr
hP

j<i Cj < 1 and
P

j<i Oj < k
i

� 1�
⇣P

j<i E[Cj ] +
P

j<i E[Oj ]

k

⌘

Policy reaches box i 



Use Independence of Boxes 

E[Cj ]  E [Cj | Box j not skipped]⇥ Pr [ Box j not skipped]

 C(Pj)⇥ 1
4

E[Oj ]  E [Oj | Box j not skipped]⇥ Pr [ Box j not skipped]

 O(Pj)⇥ 1
4



Putting it together 
Policy reaches box i 

Pr
hP

j<i Cj < 1 and
P

j<i Oj < k
i

� 1�
⇣P

j<i E[Cj ] +
P

j<i E[Oj ]

k

⌘

� 1� 1
4

⇣P
j<i C(Pj) +

P
j<i O(Pj)

k

⌘

� 1� 1
4 ⇥ (1 + 1) = 1

2



� Pr [ Box i is reached]⇥E [Reward from i]

� 1
2 ⇥ Pr [ Box i is not skipped ]⇥R(Pi)

� R(Pi)
8

8-approximation 
Expected contribution to reward from Pi   

 



Adaptivity Gap 
Duality 
[Guha, Munagala ‘09] 

 
 



Recall LP Relaxation 
Maximize

P
j R(Pj)

P
j C(Pj)  1

P
j O(Pj)  k

Each Pj feasible

Policy obtains payoff from one box 

Single-box policy is feasible 

Any policy opens at most k boxes  

Maximize Payoff  



Relaxed LP 
Maximize

P
j R(Pj)

P
j

⇣
C(Pj) +

O(Pj)
k

⌘
 2

Each Pj feasible



Maximize

P
j R(Pj)

P
j

⇣
C(Pj) +

O(Pj)
k

⌘
 1

Each Pj feasible

Scale down variables by factor 2 



Lagrangian 

Dual variable = w 

Maximize

P
j R(Pj)

P
j

⇣
C(Pj) +

O(Pj)
k

⌘
 1

Each Pj feasible

Max. w +

P
j

�
R(Pj)� w ⇥ C(Pj)� w

k O(Pj)
�

Each Pj feasible



Interpretation of Lagrangian 

• Decouples into a separate optimization per box! 
 
• Can open and choose payoff from many boxes 

Max. w +

P
j

�
R(Pj)� w ⇥ C(Pj)� w

k O(Pj)
�

Each Pj feasible



Optimization Problem for Box j 

• Net value from choosing j: 
�  If j opened, then pay cost = w/k 
�  If we choose payoff of j, then pay cost = w 
�  If we choose payoff of j, obtain that reward 

• Net value = Reward minus cost paid 

Max. R(Pj)� w ⇥ C(Pj)� w
k O(Pj)

Pj feasible



Optimal Solution to Lagrangian 

•  For box j, choose solution with better value 

•  Solution 1: Don’t open box 
�  Net value = 0 

•  Solution 2: Open box 
�  Pay cost = w/k 
�  If Reward > w, then choose this reward, pay cost w 
�  Net value = E[ Reward – Cost ] 

•  Decision to open any box is deterministic! 



Strong Duality (roughly speaking) 

Choose Lagrange multiplier w such that 

Lag(w) =
X

j

Rj + w ⇥

0

@1�
X

j

✓
Cj +

Oj

k

◆1

A

P
j

⇣
Cj +

Oj

k

⌘
= 1

)
P

j Rj � OPT
2



Non-adaptive Policy 
•  Since Oj is either 0 or 1 

�  LP optimum opens at most k boxes deterministically! 
�  Suppose we open all these boxes 

•  The expected maximum payoff of these boxes is at 
least the value of rounding the LP 

�  But rounding has value at least OPT/16 

•  Therefore, the adaptivity gap is at most 16! 
�  Better choice of w improves this to factor 3 

[Guha, Munagala, Shi ‘09] 



Takeaways… 

•  LP-based proof oblivious to non-linear closed 
form for max 

• Automatically yields policies with right “form” 
�  Adaptivity gap follows from duality 

• Needs independence of random variables 
�  Weakly coupled linear program and rounding 
�  More on weak and strong relaxations in next half! 



Part 2. 
Weakly Coupled Relaxations 



Weakly Coupled Decision Systems  
Independent decision spaces 

 
Few constraints coupling decisions across spaces 

[Singh & Cohn ’97; Meuleau et al. ‘98] 



General Recipe 

• Write LP with constraints on expected values 
�  Important: Constant number of such constraints 
�  Stronger relaxations are sometimes needed 

•  Solve LP and use Markov’s inequality to round 

• Dual typically yields more structured solution 
�  For instance, threshold policies and adaptivity gaps 



Maximum Value Setting 

• Each box defines its own decision space 
�  Payoffs of boxes are independent 

• Coupling constraints (write in expectation): 
�  At most k boxes opened 
�  At most one box’s payoff finally chosen 

•  LP yields a threshold policy: 
�  Choose payoff if value > dual multiplier w  



Stochastic Knapsack       
                                                    [Dean, Goemans, Vondrak ’04; Bhalgat, Goel, Khanna ‘11] 
•  Size of item i drawn from distribution Xi 

�  Learn actual size only after placing i in knapsack 
�  Sizes of items independent 
�  Any size at most knapsack capacity B 

• Adaptive policy for placing items in knapsack 
�  If knapsack capacity violated, then STOP 

• Maximize expected reward  



Weakly Coupled Relaxation 

Pr[j placed in knapsack] 

Expected reward 

Maximize

P
j Rjyj

P
j yj ·E[Xj ]  2B

yj 2 [0, 1]



Stochastic Matching 
pij 

i j 

Men Women 

•  Can send some man i and some woman j on date 
•  Date succeeds with probability pij and yields reward rij 

•  Successful match removes i and j from graph 
•  Failed match deletes edge (i,j) 

rij 



Stochastic Matching    [Chen et al. ’09; Bansal et al. ‘10] 

•  Input: Matrix of pij and rij  

• Decision policy: 
�  Adaptive order of setting up dates 

• Goal: 
�  Maximize expected reward of successful matches 

 



LP Relaxation 

Expected number of 
successful matches 
per man and woman 
at most 1  

Pr[ i goes on a date with j] 

Maximize

P
i,j rijpijxij

P
j pijxij  1 8i

P
i pijxij  1 8j

xij 2 [0, 1] 8i, j



Bayesian Pricing 

vj  ~ Xj n items 



Unit Demand Setting 
                               [Chawla, Hartline, Kleinberg ’07; Chawla et al. ‘10; Bhattacharya et al. ‘10] 

• One agent and n items 
�  Agent wants only one item 

• Value vj follows independent distribution Xj 
�  Exact value known only to agent 
�  Seller only knows distribution 



Item Pricing Scheme 

Xj pj 

Posted prices 

Buyer chooses item that maximizes vj - pj 



Revenue Maximization 

• Bayesian Pricing:  
�  Post prices pj for each item j based on knowing Xj 
�  Agent chooses that item that maximizes vj – pj 
�  Seller earns the price pj 

•  Seller’s goal:  
�  Maximize Revenue = Expected price earned 

 



LP Variables 

xjp = Pr [Price of j = p]

yjp(v) = Pr [Price of j = p ^Xj = v ^ j is bought]

LP Constraints: 
 

•  Every item has exactly one price 

•  Agent buys at most one item 

•  Agent only buys item if value is larger than price 



LP Relaxation 

Pr[Xj = v] 

E[Items bought] is at most 1 

One price 
for each j 

Maximize

P
j,p,v p · yjp(v)

P
j,p,v yjp(v)  1

P
p xjp  1 8j

yjp(v)  xjpfj(v) 8j, p, v � p



Lagrangian decouples across items! 

Integral variable 

Maximize

P
j,p,v (p� �) · yjp(v)

P
p xjp  1 8j

yjp(v)  xjpfj(v) 8j, p, v

For each j, Lagrangian chooses one price pj 



Lagrangian optimum is simple 

p⇤j (�) = argmaxp�� ((p� �) · Pr [Xj � p])

LP optimum chooses  λ so that expected number of 
items bought is exactly 1 



Lagrangian Optimum for Item j 

Price p 

1 

0 
pj λ 

Pr[Xj ≥ p] 



Some Complexity Results 
•  Bayesian Pricing 
▫  (Q)PTAS for “reasonable” distributions  [Cai Daskalakis ‘11] 

▫  NP-complete in general                                      [Chen et al. ’13] 

▫  Correlated distributions 
�  Hard to approximate beyond logarithmic factors       [Briest ‘11] 

•  Stochastic Knapsack 
�  PTAS                                                             [Bhalgat, Goel, Khanna ‘11] 



Part 3. 
Sampling-based Approaches 



Overview 
•  MDPs with small number of “stages” 

•  Exponential sized LP over all possible “scenarios” of 
underlying distribution 

�  Solve LP or its Lagrangian by sampling the scenarios 
 

•  Examples: 
�  2-stage vertex cover 
�  Stochastic Steiner trees (combinatorial algorithm) 
�  Bayesian auctions 
�  Solving LPs online 



Multi-stage Vertex Cover 

Vertex v costs cv 

Distribution D over possible edge sets that can be realized 



Stage 1: Buy some vertices cheaply 

Buy some vertices only knowing D 

Vertex v costs cv 

Pay cost cv 



Stage 2: Edge set realized 

Vertex v costs cv 

u 

Total cost = cv + λ cu 

Need to buy vertices 
at scaled up price to 
cover realized edges 



Multi-stage Covering Problems 
       [Kleywegt, Shapiro, Homem-de-Mello ‘01; Shmoys, Swamy ‘04; Charikar, Chekuri, Pal ‘05] 
• Decision Policy: 

�  What vertices should we buy in Stage 1? 
�  Knowing only D, costs, and scaling factor λ > 1 

• Minimize total expected cost of vertices 
�  Expectation over realization of edges from D 



LP when |D| is small 

Rounding similar to vertex cover 
 
Randomized rounding yields tight 2 approximation 

 Generalizes to multi-stage vertex cover 
  

Maximize

P
v xv + � ·E�2D [

P
v yv(�)]

xu + xv + yu(�) + yv(�) � 1 8�, e 2 E(�)



Black Box Access to D 

•  Sample Average Approximation 
�  Draw poly many samples; solve LP on these samples 
�  Approximation results carry over with small loss 

• Combinatorial “boosted sampling”       [Gupta et al.’04] 

�  Draw a set of samples from D in Stage 1 
�  Solve covering problem on union of these samples 
�  Augment this solution with the realization in stage 2 



Stochastic Steiner Tree 

Root r 

i 

j 

d(i,j) 

Distribution D over vertices V 



Stochastic Steiner Tree         [Garg et al. ‘08]  

• K vertices arrive one at a time 
�  Drawn i.i.d. from distribution D 

• Goal:  
�  Construct online Steiner tree connecting arriving 

vertices to r 

• Technique: Sampling from D 
 



T 

Algorithm: Offline Stage 1 
•  Draw K samples from D 
•  Construct 2-approximate Steiner tree T on samples 
•  Expected cost at most  2OPT 

�  Samples statistically identical to online input 

Root 

K samples from D 



Algorithm: Online Stage 2 

• When input vertex v arrives online 
�  Connect v by shortest path to T 

T 

Root 

v 



Sampling Analysis 
•  K points in Stage 1 and v together are a random sample 

of size K+1 from D. 
�  Therefore, expected cost of connecting v most 2OPT/K 

•  Overall cost at most 4 OPT! 

T 

Root 

v 



Bayesian Multi-item Auctions 

n items 



Bayesian Setting 
                                                     [Cai, Daskalakis Weinberg, ‘12-’15, Bhalgat, Gollapudi, Munagala ‘13] 

• Many bidders and items 
�  Constraints on possible allocations 

• Bidder j’s valuation vector follows distribution σj 
�  Exact value known only to bidder 
�  Distributions for different bidders independent 
�  Auctioneer only knows distribution 

•  Assume: Single bidder’s distribution σj is poly-size 



Auction Design 
•  Design auction maximizing expected revenue (or 

total price charged) 
▫  Auction = (Allocations, Prices) given revealed bids 



Auction Design 
•  Design auction maximizing expected revenue (or 

total price charged) 

•  Bayesian Incentive Compatibility:  
�  Revealing true value maximizes expected utility of bidder 
�  Expectation is over distribution of other agents 



Auction Design 
•  Design auction maximizing expected revenue (or 

total price charged) 

•  Bayesian Incentive Compatibility:  
�  Revealing true value maximizes expected utility of bidder 
�  Expectation is over distribution of other agents 

•  Individual Rationality: 
�  Charge prices so that utility of any agent is non-negative 
�  Constraint could be per scenario and not in expectation 



Why is this easier than Pricing? 

• We allow “lotteries” 
�  Randomized menu of allocations and prices 
�  Incentive compatibility in expectation 
�  Lotteries can be encoded by an LP 

• Deterministic menus are hard to approximate! 
[Briest ‘11] 



Two types of LP variables 
Expected value (marginal) variables 

Expectation over 
valuations of 
other agents 

Per-scenario variables 

Xj(~vj) = E [ Allocation to j|�j = ~vj ]

Pj(~vj) = E [ Price for j|�j = ~vj ]

~x(⌘) = Allocations | Valuations = ⌘

~p(⌘) = Prices | Valuations = ⌘

Exponentially 
many 

scenarios! 



LP Constraints 
•  Expected value constraints for every agent j and 

valuation vector vj: 
�  Bayesian incentive compatibility 
�  Maximize expected revenue 



LP Constraints 
•  Expected value constraints for every agent j and 

valuation vector vj: 
�  Bayesian incentive compatibility 
�  Maximize expected revenue 

•  Per-scenario constraints (exponentially many): 
�  Allocations and prices are feasible for every scenario η 
�  Individual rationality 



LP Constraints 
•  Expected value constraints for every agent j and 

valuation vector vj: 
�  Bayesian incentive compatibility 
�  Maximize expected revenue 

•  Per-scenario constraints (exponentially many): 
�  Allocations and prices are feasible for every scenario η 
�  Individual rationality 

•  Coupling constraints: Xj(~vj) =
P

⌘|⌘j= ~vj
Pr[⌘] · xj(⌘)

Pj(~vj) =
P

⌘|⌘j= ~vj
Pr[⌘] · pj(⌘)

Exponentially large summation! 



Key Idea: Sample Scenarios 
•  Take Lagrangian of coupling constraints 

�  One Lagrange multiplier for each agent and its value 
�  Poly-many multipliers or “virtual welfares” 

Xj(~vj) =
P

⌘|⌘j= ~vj
Pr[⌘] · xj(⌘)

Pj(~vj) =
P

⌘|⌘j= ~vj
Pr[⌘] · pj(⌘)



Key Idea: Sample Scenarios 
•  Take Lagrangian of coupling constraints 

�  One Lagrange multiplier for each agent and its value 
�  Poly-many multipliers or “virtual welfares” 

•  Lagrangian decouples into two separate problems: 
�  LP over expected value variables 
�  Separate maximization problem for each scenario η and take 

expectation over scenarios 
�  Estimate this expectation by sampling the scenarios! 



Key Idea: Sample Scenarios 
•  Take Lagrangian of coupling constraints 

�  One Lagrange multiplier for each agent and its value 
�  Poly-many multipliers or “virtual welfares” 

•  Lagrangian decouples into two separate problems: 
�  LP over expected value variables 
�  Maximization problem for each scenario η and take 

expectation over scenarios 
�  Estimate this expectation by sampling scenarios! 

•  Given efficient oracle for solving Lagrangian 
�  Solve LP using no-regret learning, Ellipsoid, … 



“Online” Algorithms        [Agarwal, Devanur ‘14] 

•  Suppose scenarios arrive i.i.d. from unknown 
distribution 

 
•  Need to solve some LP over expected allocations 

�  But with feasibility constraints per scenario 
�  Motivation: Budgeted allocations, envy-freeness, … 

•  Arriving scenarios can be treated as samples! 
�  Implies overall LP can be solved online via Lagrangian 
�  Need not even know distribution upfront! 



Part 4. 
Scheduling Problems 



Overview 

• New aspect of timing the actions 
�  So far, we have ignored timing completely! 

 
•  Two techniques: 
▫  Stronger LP relaxations than weak coupling 
�  Stochastic scheduling on identical machines 
�  Stochastic knapsack (not covered) 

▫  Greedy policies 
�  Gittins index theorem 



Stochastic Scheduling 

m parallel 
machines 

pj  ~ Xj 

Jobs 



Stochastic Scheduling     [Mohring, Schulz, Uetz ‘96] 

• Realize exact length only after job is scheduled 
�  No preemption or release dates 

• Adaptive policy: 
�  Adaptive ordering of jobs and machines to assign 

them to 

• Goal: 
�  Minimize expected sum of completion times 



Adaptive Policy 

m parallel 
machines 

Jobs 



LP-based Reduction to Determinism 

• Write LP assuming job lengths are deterministic 

• Variables are start times Sj of jobs 
 
 Minimize

P
j(pj + Sj)

P
j2A pjSj � 1

2m

P
i 6=j2A pipj � m�1

2m

P
j2A p2j

8 subsets A of jobs



LP for Stochastic Case 
•  Take expectations over job lengths 

�  Note job length independent of start time 

•  Rounding: Schedule jobs in increasing order of LP objective 

Minimize

P
j (E[Sj ] + µj)

P
j2A µjE[Sj ] � 1

2m

⇣P
j2A µj

⌘2
� 1

2

P
j2A µ2

j � m�1
2m

P
j2A �2

j

8 subsets A of jobs



Multi-armed Bandits  
                                                                                             [Gittins and Jones ’74, Tsitsiklis ‘80] 

•  n independent bandit arms 
�  Each arm defines its own Markov decision space 
�  Only two actions per arm: “PLAY” or “STOP” 

a

b

d

c 

pab 
ra       State space of an arm 



•  n independent bandit arms 
�  Each arm defines its own Markov decision space 
�  Only two actions per arm: “PLAY” or “STOP” 

•  At each step, can play at most one arm 

a

b

q

w

pab 
ra       Play arm 1 

Arms 

1 

2 

3 

Arm’s state 
changes only 
when played 

Multi-armed Bandits  
                                                                                             [Gittins and Jones ’74, Tsitsiklis ‘80] 



• Rt = Reward at time t 

•  ϒ = Discount factor < 1 

•  Find policy that maximizes discounted reward: 

E

" 1X

t=0

�tRt

#

Multi-armed Bandits  
                                                                                             [Gittins and Jones ’74, Tsitsiklis ‘80] 



What is a policy? 

• Given current state of each arm 
�  Which arm to play next? 

•  “State space” is exponential in number of arms 

•  Surprising but non-trivial result: 
�  A greedy policy is optimal! 
�  Polynomial time computable and executable! 



Why is this non-trivial? 

•  Playing arm whose current state has highest 
reward may be sub-optimal 

�  Arm can have low reward right now, but playing it 
yields state with high reward 

�  But this can happen two states down the road, … 

•  This means policy needs to take entire future 
behavior of arm into account! 



Single Arm Problem via Duality 
•  Fix penalty (or dual cost) λ 

•  Focus on some state s of some arm i 
�  Suppose this is the start state 

•  Suppose arm i was only arm in system 
�  At each step, can play arm i by paying penalty λ 
�  Or can STOP and exit 

• Vi(s, λ) = Optimal discounted payoff 
�  Easy to compute by dynamic programming 



The Gittins Index  

•  For state s of arm i, Gittins index: 
    Largest penalty λ  such that Vi(s, λ) = 0 

 
•  Same as: 

�  Expected discounted per-step reward if we keep 
playing i as long as state is “at least as good as” s 

•  “At least as good as” = Larger Gittins index! 



Intuition 

• A state has large Gittins index if either: 
▫  State itself has high reward 
�  So play in this state and then STOP 
▫  State leads to states with large reward 
�  So long-term per-step reward is large 

•  In either case, this state is a “good” state to play 



Gittins index policy 

• At each step, play the arm whose current state 
has largest Gittins index 
▫  Optimal! 

•  Proof of optimality 
�  Exchange argument similar to greedy analyses 



Other Problems and Approaches 
•  Stochastic makespan, Bin packing 

[Kleinberg, Rabani, Tardos ’97] 

•  Inventory management                   [Levi, Pal, Roundy, Shmoys ‘04] 

 
•  Stochastic set cover and probing problems               
 [Etzioni et al., ‘96; Munagala, Srivastava, Widom ‘06; Liu et al., ’08; Gupta-Nagarajan ’15 …] 

•  Techniques: 
�  Analysis of greedy policies 
�  Discretizing distributions and dynamic programming  



Open Questions 
• How far can we push LP based techniques? 

�  Can we encode adaptive policies more generally? 
�  For instance,  bandits with matroid constraints? 

•  Several problem classes poorly understood 
�  Stochastic machine scheduling 
�  Auctions with budget constraints 

• What if we don’t have full independence? 
�  Some success in auction design 
�  In general, need tractable models of correlation 



Thanks! 


