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Introduction

@ modern applications in science and engineering:

» large-scale problems: both d and n may be large (possibly d > n)
» need for high-dimensional theory that provides non-asymptotic results for
(n,d)

@ curses and blessings of high dimensionality

» exponential explosions in computational complexity
» statistical curses (sample complexity)
» concentration of measure

Key questions:
@ What embedded low-dimensional structures are present in data?

@ How can they can be exploited algorithmically?




Vignette I: Linear discriminant analysis

Samples { X1, ..., X, } from class A and {X1,...,X,,} from class B

Disc. function



Vignette I: Linear discriminant analysis

Samples { X1, ..., X, } from class A and {X1,...,X,,} from class B

Disc. function

Optimal decision boundary in Gaussian case:

F@) = (ua — s, (57 (o~ PAT DY,

with known shared variance Y, and means pa. up.



Classical vs. high-dimensional asymptotics

“Plug-in” principle: substitute estimates {u4, up, >} from given sample:

£ m n Y- A+ 0B
f(z) = (ia —fip, (£) ' (z — T»'
Classical analysis (say ¥ = Ijxq):
P[class. error] marcy @(M)

Tail function of standard normal
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“Plug-in” principle: substitute estimates {u4, up, >} from given sample:

£ m n Y- A+ 0B
f(z) = (ia —fip, (£) ' (z — T»'
Classical analysis (say ¥ = Ijxq):
P[class. error] marcy @(M)

Tail function of standard normal

High-dimensional view: Kolmogorov, 1960s

What happens if (na,np,d) — +oo with

d d
— 2 a, — —a
na ng




Error probability versus mean shift v = |4 — pz||2
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@ want to estimate a covariance matrix ¥ € R4xd

@ given ii.d. samples X; ~ N(0,%), fori =1,2,...,n

Classical approach:
Estimate X via sample covariance matrix:

~ 1 &
S, = - ;XiXiT

average of d x d rank one matrices

Reasonable properties: (d fixed, n increasing)
@ Unbiased: E[S,] = %
@ Consistent: fln 2% Y as n — oo

@ Asymptotic distributional properties available




Vignette Il: Covariance estimation
@ want to estimate a covariance matrix ¥ € R4xd

@ given i.i.d. samples X; ~ N(0,X), fori=1,2,...,n

Classical approach:
Estimate X via sample covariance matrix:

~ 1 &
S, = - ;Xixf

average of d X d rank one matrices

An alternative experiment:
@ Fix some a > 0

@ Study behavior over sequences with % =«

@ Does in(d) converge to anything reasonable?




Empirical vs MP law (a = 0.5)
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Empirical vs MP law (a = 0.2)
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Low-dimensional structure: Gaussian graphical

models

Zero pattern of inverse covariance

1
2
) 1
3
4
3

5 5

1 2 3 4 5 4

1
P(z1,22,...,24) X €xp ( — ngG*x).
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Gauss-Markov models with hidden variables

Z

Xl X2 X3 X4

Problems with hidden variables: conditioned on hidden Z, vector
X = (X4, X2, X3, Xy) is Gauss-Markov.



Gauss-Markov models with hidden variables

Z

Xl X2 X3 X4

Problems with hidden variables: conditioned on hidden Z, vector
X = (X4, X2, X3, Xy) is Gauss-Markov.

Inverse covariance of X satisfies {sparse, low-rank} decomposition:

I—p p % %

poo o l—p p % T
=1 —plls.

1 1 1—p 1 4x4 — /

1% 1% oo l—p

(Chandrasekaran, Parrilo & Willsky, 2010)



Outline

© Lecture 1: Basics of sparse linear models

» Sparse linear systems: £o/¢1 equivalence
» Noisy case: Lasso, £2-bounds and variable selection

© Lecture 2: A more general theory

» A range of structured regularizers
* Group sparsity
*  Adaptive decompositions
* Matrix completion and additive decomposition
* Non-parametric problems

» Ingredients of a general understanding

Martin Wainw ht (UC Berkeley) High-dimensional statistics



Noiseless linear models and basis pursuit
X o*
- S
SC
@ under-determined linear system: unidentifiable without constraints
@ say 0* € R? is sparse: supported on S C {1,2,...,d}.

)

n =

fo-optimization f1-relaxation
0* = arg min |0 f € arg min ||0
g min 0] g i 0]
X0=y X0=y
Computationally intractable Linear program (easy to solve)

NP-hard Basis pursuit relaxation



Noiseless /; recovery: Unrescaled sample size

Prob. exact recovery vs. sample size {1 = 0)

<)
N
:

o
)
:

o
»
:

Prob. of exact recovery
o o
w [$2)

: T

p=128

0.2f —o—p =256
01k ——p=512| |
0l oto—do—o1—4 ‘ ‘ ‘
0 50 100 150 200 250 300

Raw sample size n

Probability of recovery versus sample size n.



Noiseless ¢ recovery: Rescaled

Prob. exact recovery vs. sample size {1 = 0)
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Restricted nullspace: necessary and sufficient

Definition

For a fixed S C {1,2,...,d}, the matrix X € R"*? satisfies the restricted
nullspace property w.r.t. S, or RN(S) for short, if

{AeR! | XA=0} N {AeR?| ||Ase|ls < [|As]l1} = {0}.

N(X) C(9)

(Donoho & Xu, 2001; Feuer & Nemirovski, 2003; Cohen et al, 2009)
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nullspace property w.r.t. S, or RN(S) for short, if
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ot

Proposition

Basis pursuit ¢;-relaxation is exact for all S-sparse vectors <= X satisfies

RN(S).




Restricted nullspace: necessary and sufficient

Definition

For a fixed S C {1,2,...,d}, the matrix X € R"*? satisfies the restricted
nullspace property w.r.t. S, or RN(S) for short, if

{AeR! | XA=0} N {AeR?| ||Ase|ls < [|As]l1} = {0}.

N(X) C(9)

(Donoho & Xu, 2001; Feuer & Nemirovski, 2003; Cohen et al, 2009)

Proof (sufficiency):
(1) Error vector A = §* — § satisfies XA = 0, and hence A € N(X).
(2) Show that A € C(S)

Sparsity of 0%:  ||6], = 16" + Alx = (|65 + Ay + | Asge ]
1 > 1051 — |As|ls + | Ase|l-

Optimality of :  [|8]x < 6*]x = 6%/

Triangle inequality: [|0% + Aglly + || Age

(3) Hence, A € N(X)NC(S), and (RN) = A =0.




lllustration of restricted nullspace property

Ag A3

(A1, Az)

@ consider 0* = (0,0, 65), so that S = {3}.

@ error vector A =0 — §* belongs to the set

C(S51) := {(A1, 82, 83) € R | [A1] + [As] < [Asl}.

Martin Wainwright (UC Berkeley) High-dimensional statistics
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How to verify RN property for a given sparsity s?

© Elementwise incoherence condition (Donoho & Xuo, 2001; Feuer & Nem., 2003)
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© Elementwise incoherence condition (Donoho & Xuo, 2001; Feuer & Nem., 2003)

d
(XTX ) < 51 T
max — — n
Gik=1,....d n dxd) = s \ *1 d
© Restricted isometry, or submatrix incoherence Candes & Tao, 2005
Y,
XTX L1 Zq
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Some sufficient conditions
How to verify RN property for a given sparsity s?

© Elementwise incoherence condition (Donoho & Xuo, 2001; Feuer & Nem., 2003)
d

Matrices with i.i.d. sub-Gaussian entries: holds w.h.p. for n = Q(s?logd)

© Restricted isometry, or submatrix incoherence (Candes & Tao, 2005)
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Some sufficient conditions
How to verify RN property for a given sparsity s?

© Elementwise incoherence condition (Donoho & Xuo, 2001; Feuer & Nem., 2003)
d

Matrices with i.i.d. sub-Gaussian entries: holds w.h.p. for n = Q(s?logd)

© Restricted isometry, or submatrix incoherence (Candes & Tao, 2005)

1 Zd
S 623~
U op

- —

Matrices with i.i.d. sub-Gaussian entries: holds w.h.p. for n = Q(slog g)




Violating matrix incoherence (elementwise/RIP)

Important:

Incoherence/RIP conditions imply RN, but are far from necessary.
Very easy to violate them.....




Violating matrix incoherence (elementwise/RIP)

Form random design matrix

Xy
T
X = I ]
=|T1 Z2 xd] = .| € )
d columns xT
——
n TOWS

each row X; ~ N(0,Y), i.i.d.

Example: For some p € (0,1), consider the covariance matrix

S = (1= ) Lea + p117.
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Form random design matrix
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Violating matrix incoherence (elementwise/RIP)

Form random design matrix

Xt
X3
X = [xl To xd] = J | erxd,
d columns xT
——
n TOWS

each row X; ~ N(0,Y), i.i.d.

Example: For some p € (0,1), consider the covariance matrix

S = (1= ) Lea + p117.

@ Elementwise incoherence violated: for any j # k

>p— e] > 1 — cj exp(—cone?).

@ RIP constants tend to infinity as (n, |S]) increases:

[

— ISXS’H2 >u(s—1)—-1- e} > 1 — ¢ exp(—cone?).



Noiseless ¢, recovery for ;1 = 0.5

Prob. exact recovery vs. sample size {1 = 0.5)
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Direct result for restricted nullspace/eigenvalues

Theorem (Raskutti, W., & Yu, 2010; Rudelson & Zhou, 2012)

Random Gaussian/sub-Gaussian matriz X € R™*¢ with i.i.d. rows, covariance
Y, and let K% = max; Y;; be the maximal variance. Then

102 \2
X 2 IOg Cd
| 719”2 > Cl||21/20||§ . 62,%2(2) % ||9H% for all non-zero § € R

with probability at least 1 — 2e~ 3™,




Direct result for restricted nullspace/eigenvalues

Theorem (Raskutti, W., & Yu, 2010; Rudelson & Zhou, 2012)

Random Gaussian/sub-Gaussian matriz X € R™*¢ with i.i.d. rows, covariance
Y, and let K% = max; Y;; be the maximal variance. Then

o e ff )

16113

> ¢1|ZY20)|2 — cox%(D) o3 for all non-zero 6 € R

with probability at least 1 — 2e~ 3™,

@ many interesting matrix families are covered
» Toeplitz dependency
» constant p-correlation (previous example)
» covariance matrix 3 can even be degenerate

@ related results hold for generalized linear models



Easy verification of restricted nullspace
o for any A € C(S5), we have
1Al = 1Aslly +[Asell < 2[As]l <2Vs[A]2

@ applying previous result:

2
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Easy verification of restricted nullspace
o for any A € C(S5), we have
1Al = 1Aslly +[Asell < 2[As]l <2Vs[A]2

@ applying previous result:

2
IXALB
n

logd
{errmn(®) - dew(®) ZELL a2

~Y(2)

@ have actually proven much more than restricted nullspace....

Definition

A design matrix X € R"*? satisfies the restricted eigenvalue (RE) condition
over S (denote RE(S)) with parameters o > 1 and v > 0 if

XA|32
% > y|AJ2  for all A € RY such that [|Age|l; < of|As]s.

(van de Geer, 2007; Bickel, Ritov & Tsybakov, 2008)




Lasso and restricted eigenvalues

Turning to noisy observations...
Y X 0 w
S
n o +
SC
Estimator: Lasso program

- 1
in {—|ly — X063 :
6x, € arg min { 7-ly — X615 + Aa0]l1 }

Goal: Obtain bounds on { prediction error, parametric error, variable
selection }.

Martin Wainwright (UC Berkeley) High-dimensional statistics



Different error metrics
@ (In-sample) prediction error: ||X(§f 0*)|13/n

“weakest” error measure

appropriate when 6 itself not of primary interest

strong dependence between columns of X possible (no RE needed)
proof technique: basic inequality
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Different error metrics

@ (In-sample) prediction error: ||X(§f 0*)|13/n

vVYyVvyy

“weakest” error measure

appropriate when 6 itself not of primary interest

strong dependence between columns of X possible (no RE needed)
proof technique: basic inequality

© parametric error: ||§ — 6*||,. for some r € [1, 00

>

vvyy

appropriate for recovery problems

RE-type conditions appear in both lower/upper bounds
variable selection is not guaranteed

proof technique: basic inequality

~

© variable selection: is supp(f) equal to supp(8*)?

» appropriate when non-zero locations are of scientific interest

v

v

v

most stringent of all three criteria
requires incoherence or irrepresentability conditions on X
proof technique: primal-dual witness condition



Lasso />-bounds: Four simple steps

Let’s analyze constrained version:

1
min — ||y — X@H% such that ||0]|; < R = ||6*]|1-
6eR 2N
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Let’s analyze constrained version:

: 1 2 *
min ofly = X6l such that [|6]]; < R = 6],

(1) By optimality of 9 and feasibility of 6*:

1 ~ 1
“ly — X012 < —|ly — X0%|2.
2nlly 5 < 2nlly 3



Lasso />-bounds: Four simple steps

Let’s analyze constrained version:

1
min — ||y — X9||§ such that ||0||; < R = ||6*||1-
6eR 2N

(1) By optimality of 9 and feasibility of 6*:
1 ~ 1 .
o lly = X3 < - lly - X073
(2) Derive a basic inequality: re-arranging in terms of A=0-0"

1, .~ 2
ZIXAN?2 < Z(A. XTw).
CIXA3 < A XTw)



Lasso />-bounds: Four simple steps

Let’s analyze constrained version:

: 1 2 *
min o fly — X0 such that ||§]l < B = [16”]]x.

(1) By optimality of 9 and feasibility of 6*:
1 ~ 1
—ly — X0|3 < —|ly — X07||3.
o lly = X013 < Iy - X6°[3
(2) Derive a basic inequality: re-arranging in terms of A=0-0"
1 ~ 2~
—|XAl3 < (A, XTw).
LIXAI3 < 2(, XTw)

(3) Restricted eigenvalue for LHS;  Holder’s inequality for RHS
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N 1~ 92 N
AR < —IXAJE < 2, XTw) < 214 |



Lasso />-bounds: Four simple steps

Let’s analyze constrained version:

: 1 2 *
min o fly — X0 such that ||§]l < B = [16”]]x.

(1) By optimality of 9 and feasibility of 6*:
1 ~ 1
—ly — X0|3 < —|ly — X07||3.
—lly = X013 < =y — X0°3
(2) Derive a basic inequality: re-arranging in terms of A=0-0"
1, 0~ 2~
—|XAl3 < (A, XTw).
“IXAIR < 2 (A, XTw)

(3) Restricted eigenvalue for LHS;  Holder’s inequality for RHS
XTw

=
n oo’

N 1~ 92 N
AR < —IXAJE < 2, XTw) < 214 |

(4) As before, A € C(S), so that ||A]l; < 24/5||A|2, and hence

4 XT
1A]l2 < 5 Vs ||Tw||oo'



Lasso error bounds for different models

Proposition
Suppose that
@ vector 6* has support S, with cardinality s, and
@ design matrix X satisfies RE(S) with parameter v > 0.

For constrained Lasso with R = ||0*||; or regularized Lasso with
A = 2| XTw/n|| o, any optimal solution 6 satisfies the bound
XTw

n

floo-

18-, < 25
:

Martin Wainwright (UC Berkeley) High-dimensional statistics September 2013
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Lasso error bounds for different models

Proposition
Suppose that
@ vector 6* has support S, with cardinality s, and
@ design matrix X satisfies RE(S) with parameter v > 0.

For constrained Lasso with R = ||0*||; or regularized Lasso with
A = 2| XTw/n|| o, any optimal solution 6 satisfies the bound
XTw

n

floo-

18-, < 25
:

@ this is a deterministic result on the set of optimizers

@ various corollaries for specific statistical models
» Compressed sensing: X;; ~ N(0,1) and bounded noise ||w|]2 < oy/n
» Deterministic design: X with bounded columns and w; ~ N(0,0?)

XTw 302logd ~ 4o slogd
| loo < \/7g whp = [0 —0%s < —4/3——.
n n Yy n

Martin Wainwright (UC Berkeley) High-dimensional statistics September 2013

24 / 28



Extension to an oracle inequality

Previous theory assumed that 6* was “hard” sparse. Not realistic in practice.
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Extension to an oracle inequality

Previous theory assumed that 6* was “hard” sparse. Not realistic in practice.

Theorem (An oracle inequality)

Suppose that least-squares loss satisfies v-RE condition. Then for

An > max{2|| XZ“’ lloos 1/ loﬁd}, any optimal Lasso solution satisfies

10013 < _min sl 4 el )

SC{1,...,d} 4 ~2
~——
estimation error approximation error

(cf. Bunea et al., 2007; Buhlmann and van de Geer, 2009; Koltchinski et al., 2011)
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Extension to an oracle inequality

Previous theory assumed that 6* was “hard” sparse. Not realistic in practice.

Theorem (An oracle inequality)

Suppose that least-squares loss satisfies v-RE condition. Then for

An > max{2|| XZ“’ lloos 1/ loﬁd}, any optimal Lasso solution satisfies

~ . 9 A2 2 | ok
10013 < __min { sl 4 el )

SC{1,...,d} 4 ~2
~——
estimation error approximation error

@ when 0* is exactly sparse, set S = supp(6*) to recover previous result

(cf. Bunea et al., 2007; Buhlmann and van de Geer, 2009; Koltchinski et al., 2011)
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Extension to an oracle inequality

Previous theory assumed that 6* was “hard” sparse. Not realistic in practice.

Theorem (An oracle inequality)

Suppose that least-squares loss satisfies v-RE condition. Then for

An > max{2|| XZ“’ lloos 1/ loﬁd}, any optimal Lasso solution satisfies

~ 9 A2 22

0— 02 < mi { 22 g Zhn g% }

I 2 < gcpin 153 S|+ 5 0511
N———

estimation error approximation error

@ when 0* is exactly sparse, set S = supp(6*) to recover previous result

@ more generally, choose S adaptively to trade-off estimation error versus
approximation error

(cf. Bunea et al., 2007; Buhlmann and van de Geer, 2009; Koltchinski et al., 2011)

Martin Wainwright (UC Berkeley) High-dimensional statistics September 2013 25 / 28



Consequences for /,-“ball” sparsity

@ for some ¢ € [0, 1], say 6* belongs
to £4-“ball”

d
By(Ry) := {0 € R? | Z 10,17 < Ry}

i=1

Martin Wainwright (UC Berkeley) High-dimensional statistics



Consequences for /- “ball” sparsity

@ for some ¢ € [0, 1], say 6* belongs
to £4-“ball”

d
By(Ry) = {0 € R | 316, < R,}.
j=1

Corollary

Consider the linear model y = X0* + w, where X satisfies lower RE
conditions, and w has i.i.d o sub-Gaussian entries. For 6* € By(R,), any
Lasso solution satisfies (w.h.p.)

—~ 2logdy\1-a/2
_*2_< o~ 1og
10-0"13 3 Ry (T25)

Martin Wainwright (UC Berkeley) High-dimensional statistics September 2013 26 / 28



Are these good results? Minimax theory

@ let P be a family of probability distributions
@ consider a parameter P — 6(P)
@ define a metric p on the parameter space
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@ let P be a family of probability distributions
@ consider a parameter P — 6(P)
@ define a metric p on the parameter space

Definition (Minimax rate)

The minimax rate for 6(P) with metric p is given

M, (6(P); p) = bt ;ggE[02(5,9(P))],

where the infimum ranges over all measureable functions of n samples.
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Concrete example:
@ let P be family of sparse linear regression problems with 8* € B,(R,)
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Are these good results? Minimax theory

Definition (Minimax rate)

The minimax rate for 6(P) with metric p is given

M, (0(P):p) := in ;ggmwaem

where the infimum ranges over all measureable functions of n samples.

Concrete example:

@ let P be family of sparse linear regression problems with 8* € B,(R,)

@ consider (y-error metric p2(8,6) = || — 02

Theorem (Raskutti, W. & Yu, 2011)

Under “mild” conditions on design X and radius R,, we have

2 log dy1-4
mtn(Bq(Rq)aHHQ)xRQ(U :g ) 2'

see Donoho & Johnstone, 1994 for normal sequence model




Look-ahead to Lecture 2: A more general theory

Recap: Thus far.....
@ Derived error bounds for basis pursuit and Lasso ({;-relaxation)
@ Seen importance of restricted nullspace and restricted eigenvalues

@ Touched upon notion of oracle inequality and minimax rates
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Look-ahead to Lecture 2: A more general theory

The big picture:

Lots of other estimators with same basic form:

0., €argmin { £6;27) +x RO }.
~— 0eQ ——— ——
Estimate Loss function Regularizer
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Look-ahead to Lecture 2: A more general theory

The big picture:

Lots of other estimators with same basic form:

0., €argmin { £6;27) +x RO }.
~— 0eQ ——— ——
Estimate Loss function Regularizer

Past years have witnessed an explosion of results (graph estimation, matrix
completion, matrix decomposition, nonparametric regression...)

Question: J

Is there a common set of underlying principles?
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