A primer on high-dimensional statistics: Lecture 1

Martin Wainwright
UC Berkeley
Departments of Statistics, and EECS

Simons Institute Workshop, Bootcamp Tutorials

Introduction

- classical asymptotic theory: sample size $n \rightarrow+\infty$ with number of parameters d fixed
- law of large numbers, central limit theory
- consistency of maximum likelihood estimation

Introduction

- classical asymptotic theory: sample size $n \rightarrow+\infty$ with number of parameters d fixed
- law of large numbers, central limit theory
- consistency of maximum likelihood estimation
- modern applications in science and engineering:
- large-scale problems: both d and n may be large (possibly $d \gg n$)
- need for high-dimensional theory that provides non-asymptotic results for (n, d)

Introduction

- classical asymptotic theory: sample size $n \rightarrow+\infty$ with number of parameters d fixed
- law of large numbers, central limit theory
- consistency of maximum likelihood estimation
- modern applications in science and engineering:
- large-scale problems: both d and n may be large (possibly $d \gg n$)
- need for high-dimensional theory that provides non-asymptotic results for (n, d)
- curses and blessings of high dimensionality
- exponential explosions in computational complexity
- statistical curses (sample complexity)
- concentration of measure

Introduction

- modern applications in science and engineering:
- large-scale problems: both d and n may be large (possibly $d \gg n$)
- need for high-dimensional theory that provides non-asymptotic results for (n, d)
- curses and blessings of high dimensionality
- exponential explosions in computational complexity
- statistical curses (sample complexity)
- concentration of measure

Key questions:

- What embedded low-dimensional structures are present in data?
- How can they can be exploited algorithmically?

Vignette I: Linear discriminant analysis

Samples $\left\{X_{1}, \ldots, X_{n_{A}}\right\}$ from class A and $\left\{\widetilde{X}_{1}, \ldots, \widetilde{X}_{n_{B}}\right\}$ from class B

Vignette I: Linear discriminant analysis

Samples $\left\{X_{1}, \ldots, X_{n_{A}}\right\}$ from class A and $\left\{\widetilde{X}_{1}, \ldots, \widetilde{X}_{n_{B}}\right\}$ from class B

Optimal decision boundary in Gaussian case:

$$
f(x)=\left\langle\mu_{A}-\mu_{B},\left(\Sigma^{-1}\right)\left(x-\frac{\mu_{A}+\mu_{B}}{2}\right)\right\rangle
$$

with known shared variance Σ, and means μ_{A}, μ_{B}.

Classical vs. high-dimensional asymptotics

"Plug-in" principle: substitute estimates $\left\{\mu_{A}, \mu_{B}, \Sigma\right\}$ from given sample:

$$
\widehat{f}(x)=\left\langle\widehat{\mu}_{A}-\widehat{\mu}_{B},(\widehat{\Sigma})^{-1}\left(x-\frac{\widehat{\mu}_{A}+\widehat{\mu}_{B}}{2}\right)\right\rangle .
$$

Classical analysis (say $\Sigma=I_{d \times d}$):

$$
\mathbb{P}[\text { class. error }] \xrightarrow{n \rightarrow+\infty} \underbrace{\Phi\left(\frac{-\left\|\mu_{A}-\mu_{B}\right\|_{2}}{2}\right)}
$$

Tail function of standard normal

Classical vs. high-dimensional asymptotics

"Plug-in" principle: substitute estimates $\left\{\mu_{A}, \mu_{B}, \Sigma\right\}$ from given sample:

$$
\widehat{f}(x)=\left\langle\widehat{\mu}_{A}-\widehat{\mu}_{B},(\widehat{\Sigma})^{-1}\left(x-\frac{\widehat{\mu}_{A}+\widehat{\mu}_{B}}{2}\right)\right\rangle .
$$

Classical analysis (say $\Sigma=I_{d \times d}$):

$$
\mathbb{P} \text { [class. error] } \xrightarrow{n \rightarrow+\infty} \underbrace{\Phi\left(\frac{-\left\|\mu_{A}-\mu_{B}\right\|_{2}}{2}\right)}
$$

Tail function of standard normal

High-dimensional view: Kolmogorov, 1960s
What happens if $\left(n_{A}, n_{B}, d\right) \rightarrow+\infty$ with

$$
\frac{d}{n_{A}} \rightarrow \alpha, \quad \frac{d}{n_{B}} \rightarrow \alpha
$$

Error probability versus mean shift $\gamma=\left\|\mu_{A}-\mu_{B}\right\|_{2}$

Error probability: Theory versus practice

Error probability versus mean shift $\gamma=\left\|\mu_{A}-\mu_{B}\right\|_{2}$

Error probability: Theory versus practice

Kolmogorov prediction: $\Phi\left(-\frac{\gamma^{2}}{2 \sqrt{\gamma^{2}+\alpha}}\right)$
Classical prediction: $\Phi\left(-\frac{\gamma}{2}\right)$.

Vignette II: Covariance estimation

- want to estimate a covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$
- given i.i.d. samples $X_{i} \sim N(0, \Sigma)$, for $i=1,2, \ldots, n$

Vignette II: Covariance estimation

- want to estimate a covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$
- given i.i.d. samples $X_{i} \sim N(0, \Sigma)$, for $i=1,2, \ldots, n$

Classical approach:
Estimate Σ via sample covariance matrix:

$$
\widehat{\Sigma}_{n}:=\underbrace{\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{T}}_{\text {average of }}
$$

Vignette II: Covariance estimation

- want to estimate a covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$
- given i.i.d. samples $X_{i} \sim N(0, \Sigma)$, for $i=1,2, \ldots, n$

Classical approach:
Estimate Σ via sample covariance matrix:

$$
\widehat{\Sigma}_{n}:=\underbrace{\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{T}}_{\text {average of }}
$$

Reasonable properties: (d fixed, n increasing)

- Unbiased: $\mathbb{E}\left[\widehat{\widehat{ }}_{n}\right]=\Sigma$
- Consistent: $\widehat{\Sigma}_{n} \xrightarrow{\text { a.s. }} \Sigma$ as $n \rightarrow+\infty$
- Asymptotic distributional properties available

Vignette II: Covariance estimation

- want to estimate a covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$
- given i.i.d. samples $X_{i} \sim N(0, \Sigma)$, for $i=1,2, \ldots, n$

Classical approach:
Estimate Σ via sample covariance matrix:

$$
\widehat{\Sigma}_{n}:=\underbrace{\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{T}}_{\text {average of }}
$$

An alternative experiment:

- Fix some $\alpha>0$
- Study behavior over sequences with $\frac{d}{n}=\alpha$
- Does $\widehat{\Sigma}_{n(d)}$ converge to anything reasonable?

Low-dimensional structure: Gaussian graphical models

Zero pattern of inverse covariance

$$
\mathbb{P}\left(x_{1}, x_{2}, \ldots, x_{d}\right) \propto \exp \left(-\frac{1}{2} x^{T} \Theta^{*} x\right)
$$

Gauss-Markov models with hidden variables

Problems with hidden variables: conditioned on hidden Z, vector $X=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ is Gauss-Markov.

Gauss-Markov models with hidden variables

Problems with hidden variables: conditioned on hidden Z, vector $X=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ is Gauss-Markov.

Inverse covariance of X satisfies \{sparse, low-rank\} decomposition:

$$
\left[\begin{array}{cccc}
1-\mu & \mu & \mu & \mu \\
\mu & 1-\mu & \mu & \mu \\
\mu & \mu & 1-\mu & \mu \\
\mu & \mu & \mu & 1-\mu
\end{array}\right]=I_{4 \times 4}-\mu \mathbf{1 1} 1^{T}
$$

(Chandrasekaran, Parrilo \& Willsky, 2010)

Outline

(1) Lecture 1: Basics of sparse linear models

- Sparse linear systems: ℓ_{0} / ℓ_{1} equivalence
- Noisy case: Lasso, ℓ_{2}-bounds and variable selection
(2) Lecture 2: A more general theory
- A range of structured regularizers
* Group sparsity
^ Adaptive decompositions
\star Matrix completion and additive decomposition
\star Non-parametric problems
- Ingredients of a general understanding

Noiseless linear models and basis pursuit

- under-determined linear system: unidentifiable without constraints
- say $\theta^{*} \in \mathbb{R}^{d}$ is sparse: supported on $S \subset\{1,2, \ldots, d\}$.
$\underline{\ell_{0} \text {-optimization }}$
$\theta^{*}=\arg \min _{\theta \in \mathbb{R}^{d}}\|\theta\|_{0}$
$X \theta=y$
$\underline{\ell_{1} \text {-relaxation }}$

$$
\begin{gathered}
\widehat{\theta} \in \arg \min _{\theta \in \mathbb{R}^{d}}\|\theta\|_{1} \\
X \theta=y
\end{gathered}
$$

Computationally intractable NP-hard

Linear program (easy to solve)
Basis pursuit relaxation

Noiseless ℓ_{1} recovery: Unrescaled sample size

Prob. exact recovery vs. sample size $(\mu=0)$

Probability of recovery versus sample size n.

Noiseless ℓ_{1} recovery: Rescaled

Probabability of recovery versus rescaled sample size $\alpha:=\frac{n}{s \log (d / s)}$.

Restricted nullspace: necessary and sufficient

Definition

For a fixed $S \subset\{1,2, \ldots, d\}$, the matrix $X \in \mathbb{R}^{n \times d}$ satisfies the restricted nullspace property w.r.t. S, or $\operatorname{RN}(S)$ for short, if

$$
\underbrace{\left\{\Delta \in \mathbb{R}^{d} \mid X \Delta=0\right\}}_{\mathbb{N}(X)} \cap \underbrace{\left\{\Delta \in \mathbb{R}^{d} \mid\left\|\Delta_{S^{c}}\right\|_{1} \leq\left\|\Delta_{S}\right\|_{1}\right\}}_{\mathbb{C}(S)}=\{0\} .
$$

(Donoho \& Xu, 2001; Feuer \& Nemirovski, 2003; Cohen et al, 2009)

Restricted nullspace: necessary and sufficient

Definition

For a fixed $S \subset\{1,2, \ldots, d\}$, the matrix $X \in \mathbb{R}^{n \times d}$ satisfies the restricted nullspace property w.r.t. S, or $\operatorname{RN}(S)$ for short, if

$$
\underbrace{\left\{\Delta \in \mathbb{R}^{d} \mid X \Delta=0\right\}}_{\mathbb{N}(X)} \cap \underbrace{\left\{\Delta \in \mathbb{R}^{d} \mid\left\|\Delta_{S^{c}}\right\|_{1} \leq\left\|\Delta_{S}\right\|_{1}\right\}}_{\mathbb{C}(S)}=\{0\}
$$

(Donoho \& Xu, 2001; Feuer \& Nemirovski, 2003; Cohen et al, 2009)

Proposition

Basis pursuit ℓ_{1}-relaxation is exact for all S-sparse vectors $\Longleftrightarrow X$ satisfies RN(S).

Restricted nullspace: necessary and sufficient

Definition

For a fixed $S \subset\{1,2, \ldots, d\}$, the matrix $X \in \mathbb{R}^{n \times d}$ satisfies the restricted nullspace property w.r.t. S, or $\operatorname{RN}(S)$ for short, if

$$
\underbrace{\left\{\Delta \in \mathbb{R}^{d} \mid X \Delta=0\right\}}_{\mathbb{N}(X)} \cap \underbrace{\left\{\Delta \in \mathbb{R}^{d} \mid\left\|\Delta_{S^{c}}\right\|_{1} \leq\left\|\Delta_{S}\right\|_{1}\right\}}_{\mathbb{C}(S)}=\{0\} .
$$

(Donoho \& Xu, 2001; Feuer \& Nemirovski, 2003; Cohen et al, 2009)
Proof (sufficiency):
(1) Error vector $\widehat{\Delta}=\theta^{*}-\widehat{\theta}$ satisfies $X \widehat{\Delta}=0$, and hence $\widehat{\Delta} \in \mathbb{N}(X)$.
(2) Show that $\widehat{\Delta} \in \mathbb{C}(S)$

Optimality of $\widehat{\theta}: \quad\|\widehat{\theta}\|_{1} \leq\left\|\theta^{*}\right\|_{1}=\left\|\theta_{S}^{*}\right\|_{1}$.
Sparsity of $\theta^{*}: \quad\|\widehat{\theta}\|_{1}=\left\|\theta^{*}+\widehat{\Delta}\right\|_{1}=\left\|\theta_{S}^{*}+\widehat{\Delta}_{S}\right\|_{1}+\left\|\widehat{\Delta}_{S^{c}}\right\|_{1}$.
Triangle inequality: $\left\|\theta_{S}^{*}+\widehat{\Delta}_{S}\right\|_{1}+\left\|\widehat{\Delta}_{S^{c}}\right\|_{1} \geq\left\|\theta_{S}^{*}\right\|_{1}-\left\|\widehat{\Delta}_{S}\right\|_{1}+\left\|\widehat{\Delta}_{S^{c}}\right\|_{1}$.
(3) Hence, $\widehat{\Delta} \in \mathbb{N}(X) \cap \mathbb{C}(S)$, and (RN) $\Longrightarrow \quad \widehat{\Delta}=0$.

Illustration of restricted nullspace property

- consider $\theta^{*}=\left(0,0, \theta_{3}^{*}\right)$, so that $S=\{3\}$.
- error vector $\widehat{\Delta}=\widehat{\theta}-\theta^{*}$ belongs to the set

$$
\mathbb{C}(S ; 1):=\left\{\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right) \in \mathbb{R}^{3}| | \Delta_{1}\left|+\left|\Delta_{2}\right| \leq\left|\Delta_{3}\right|\right\} .\right.
$$

Some sufficient conditions

How to verify RN property for a given sparsity s ?
(1) Elementwise incoherence condition (Donoho \& Xuo, 2001; Feuer \& Nem., 2003)

$$
\max _{j, k=1, \ldots, d}\left|\left(\frac{X^{T} X}{n}-I_{d \times d}\right)_{j k}\right| \leq \frac{\delta_{1}}{s}
$$

Some sufficient conditions

How to verify RN property for a given sparsity s ?
(1) Elementwise incoherence condition (Donoho \& Xuo, 2001; Feuer \& Nem., 2003)

$$
\max _{j, k=1, \ldots, d}\left|\left(\frac{X^{T} X}{n}-I_{d \times d}\right)_{j k}\right| \leq \frac{\delta_{1}}{s}
$$

(2) Restricted isometry, or submatrix incoherence
(Candes \& Tao, 2005)

$$
\max _{|U| \leq 2 s}\left\|\left(\frac{X^{T} X}{n}-I_{d \times d}\right)_{U U}\right\| \|_{\mathrm{op}} \leq \delta_{2 s}
$$

Some sufficient conditions

How to verify RN property for a given sparsity s ?
(1) Elementwise incoherence condition (Donoho \& Xuo, 2001; Feuer \& Nem., 2003)

$$
\max _{j, k=1, \ldots, d}\left|\left(\frac{X^{T} X}{n}-I_{d \times d}\right)_{j k}\right| \leq \frac{\delta_{1}}{s}
$$

Matrices with i.i.d. sub-Gaussian entries: holds w.h.p. for $n=\Omega\left(s^{2} \log d\right)$
(2) Restricted isometry, or submatrix incoherence
(Candes \& Tao, 2005)

$$
\max _{|U| \leq 2 s}\left\|\left(\frac{X^{T} X}{n}-I_{d \times d}\right)_{U U}\right\| \|_{\text {op }} \leq \delta_{2 s}
$$

Some sufficient conditions

How to verify RN property for a given sparsity s ?
(1) Elementwise incoherence condition (Donoho \& Xuo, 2001; Feuer \& Nem., 2003)

$$
\max _{j, k=1, \ldots, d}\left|\left(\frac{X^{T} X}{n}-I_{d \times d}\right)_{j k}\right| \leq \frac{\delta_{1}}{s}
$$

Matrices with i.i.d. sub-Gaussian entries: holds w.h.p. for $n=\Omega\left(s^{2} \log d\right)$
(2) Restricted isometry, or submatrix incoherence
(Candes \& Tao, 2005)

$$
\max _{|U| \leq 2 s}\left\|\left(\frac{X^{T} X}{n}-I_{d \times d}\right)_{U U}\right\| \|_{\text {op }} \leq \delta_{2 s} .
$$

Matrices with i.i.d. sub-Gaussian entries: holds w.h.p. for $n=\Omega\left(s \log \frac{d}{s}\right)$

Violating matrix incoherence (elementwise/RIP)

Important:
Incoherence/RIP conditions imply RN, but are far from necessary. Very easy to violate them.....

Violating matrix incoherence (elementwise/RIP)

Form random design matrix

Example: For some $\mu \in(0,1)$, consider the covariance matrix

$$
\Sigma=(1-\mu) I_{d \times d}+\mu \mathbf{1 1}^{T} .
$$

Violating matrix incoherence (elementwise/RIP)

Form random design matrix
$X=\underbrace{\left[\begin{array}{cccc}x_{1} & x_{2} & \ldots & x_{d}\end{array}\right]}_{d \text { columns }}=\underbrace{\left[\begin{array}{c}X_{1}^{T} \\ X_{2}^{T} \\ \vdots \\ X_{n}^{T}\end{array}\right]}_{n \text { rows }} \in \mathbb{R}^{n \times d}, \quad$ each row $X_{i} \sim N(0, \Sigma)$, i.i.d.

Example: For some $\mu \in(0,1)$, consider the covariance matrix

$$
\Sigma=(1-\mu) I_{d \times d}+\mu \mathbf{1 1}^{T} .
$$

- Elementwise incoherence violated: for any $j \neq k$

$$
\mathbb{P}\left[\frac{\left\langle x_{j}, x_{k}\right\rangle}{n} \geq \mu-\epsilon\right] \geq 1-c_{1} \exp \left(-c_{2} n \epsilon^{2}\right) .
$$

Violating matrix incoherence (elementwise/RIP)

Form random design matrix

$$
X=\underbrace{\left[\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{d}
\end{array}\right]}_{d \text { columns }}=\underbrace{\left[\begin{array}{c}
X_{1}^{T} \\
X_{2}^{T} \\
\vdots \\
X_{n}^{T}
\end{array}\right]}_{n \text { rows }} \in \mathbb{R}^{n \times d}, \quad \text { each row } X_{i} \sim N(0, \Sigma) \text {, i.i.d. }
$$

Example: For some $\mu \in(0,1)$, consider the covariance matrix

$$
\Sigma=(1-\mu) I_{d \times d}+\mu \mathbf{1 1}^{T} .
$$

- Elementwise incoherence violated: for any $j \neq k$

$$
\mathbb{P}\left[\frac{\left\langle x_{j}, x_{k}\right\rangle}{n} \geq \mu-\epsilon\right] \geq 1-c_{1} \exp \left(-c_{2} n \epsilon^{2}\right) .
$$

- RIP constants tend to infinity as $(n,|S|)$ increases:

$$
\mathbb{P}\left[\left\|\frac{X_{S}^{T} X_{S}}{n}-I_{s \times s}\right\|_{2} \geq \mu(s-1)-1-\epsilon\right] \geq 1-c_{1} \exp \left(-c_{2} n \epsilon^{2}\right)
$$

Noiseless ℓ_{1} recovery for $\mu=0.5$

Probab. versus rescaled sample size $\alpha:=\frac{n}{s \log (d / s)}$.

Direct result for restricted nullspace/eigenvalues

Theorem (Raskutti, W., \& Yu, 2010; Rudelson \& Zhou, 2012)
Random Gaussian/sub-Gaussian matrix $X \in \mathbb{R}^{n \times d}$ with i.i.d. rows, covariance Σ, and let $\kappa^{2}=\max _{j} \Sigma_{j j}$ be the maximal variance. Then
$\frac{\|X \theta\|_{2}^{2}}{n} \geq c_{1}\left\|\Sigma^{1 / 2} \theta\right\|_{2}^{2}-c_{2} \kappa^{2}(\Sigma) \frac{\log \left(\operatorname{ed}\left(\frac{\|\theta\|_{2}}{\|\theta\|_{1}}\right)^{2}\right)}{n}\|\theta\|_{1}^{2} \quad$ for all non-zero $\theta \in \mathbb{R}$ with probability at least $1-2 e^{-c_{3} n}$.

Direct result for restricted nullspace/eigenvalues

Theorem (Raskutti, W., \& Yu, 2010; Rudelson \& Zhou, 2012)
Random Gaussian/sub-Gaussian matrix $X \in \mathbb{R}^{n \times d}$ with i.i.d. rows, covariance Σ, and let $\kappa^{2}=\max _{j} \Sigma_{j j}$ be the maximal variance. Then
$\frac{\|X \theta\|_{2}^{2}}{n} \geq c_{1}\left\|\Sigma^{1 / 2} \theta\right\|_{2}^{2}-c_{2} \kappa^{2}(\Sigma) \log$
with probability at least $1-2 e^{-c_{3} n}$.

- many interesting matrix families are covered
- Toeplitz dependency
- constant μ-correlation (previous example)
- covariance matrix Σ can even be degenerate
- related results hold for generalized linear models

Easy verification of restricted nullspace

- for any $\Delta \in \mathbb{C}(S)$, we have

$$
\|\Delta\|_{1}=\left\|\Delta_{S}\right\|_{1}+\left\|\Delta_{S^{c}}\right\|_{1} \leq 2\left\|\Delta_{S}\right\| \leq 2 \sqrt{s}\|\Delta\|_{2}
$$

- applying previous result:

$$
\frac{\|X \Delta\|_{2}^{2}}{n} \geq \underbrace{\left\{c_{1} \lambda_{\min }(\Sigma)-4 c_{2} \kappa^{2}(\Sigma) \frac{s \log d}{n}\right\}}_{\gamma(\Sigma)}\|\Delta\|_{2}^{2}
$$

Easy verification of restricted nullspace

- for any $\Delta \in \mathbb{C}(S)$, we have

$$
\|\Delta\|_{1}=\left\|\Delta_{S}\right\|_{1}+\left\|\Delta_{S^{c}}\right\|_{1} \leq 2\left\|\Delta_{S}\right\| \leq 2 \sqrt{s}\|\Delta\|_{2}
$$

- applying previous result:

$$
\frac{\|X \Delta\|_{2}^{2}}{n} \geq \underbrace{\left\{c_{1} \lambda_{\min }(\Sigma)-4 c_{2} \kappa^{2}(\Sigma) \frac{s \log d}{n}\right\}}_{\gamma(\Sigma)}\|\Delta\|_{2}^{2}
$$

- have actually proven much more than restricted nullspace....

Easy verification of restricted nullspace

- for any $\Delta \in \mathbb{C}(S)$, we have

$$
\|\Delta\|_{1}=\left\|\Delta_{S}\right\|_{1}+\left\|\Delta_{S^{c}}\right\|_{1} \leq 2\left\|\Delta_{S}\right\| \leq 2 \sqrt{s}\|\Delta\|_{2}
$$

- applying previous result:

$$
\frac{\|X \Delta\|_{2}^{2}}{n} \geq \underbrace{\left\{c_{1} \lambda_{\min }(\Sigma)-4 c_{2} \kappa^{2}(\Sigma) \frac{s \log d}{n}\right\}}_{\gamma(\Sigma)}\|\Delta\|_{2}^{2}
$$

- have actually proven much more than restricted nullspace....

Definition

A design matrix $X \in \mathbb{R}^{n \times d}$ satisfies the restricted eigenvalue (RE) condition over S (denote $\operatorname{RE}(S)$) with parameters $\alpha \geq 1$ and $\gamma>0$ if

$$
\frac{\|X \Delta\|_{2}^{2}}{n} \geq \gamma\|\Delta\|_{2}^{2} \quad \text { for all } \Delta \in \mathbb{R}^{d} \text { such that }\left\|\Delta_{S^{c}}\right\|_{1} \leq \alpha\left\|\Delta_{S}\right\|_{1}
$$

Lasso and restricted eigenvalues

Turning to noisy observations...

Estimator: Lasso program

$$
\widehat{\theta}_{\lambda_{n}} \in \arg \min _{\theta \in \mathbb{R}^{d}}\left\{\frac{1}{2 n}\|y-X \theta\|_{2}^{2}+\lambda_{n}\|\theta\|_{1}\right\} .
$$

Goal: Obtain bounds on \{ prediction error, parametric error, variable selection \}.

Different error metrics

(1) (In-sample) prediction error: $\left\|X\left(\widehat{\theta}-\theta^{*}\right)\right\|_{2}^{2} / n$

- "weakest" error measure
- appropriate when θ^{*} itself not of primary interest
- strong dependence between columns of X possible (no RE needed)
- proof technique: basic inequality

Different error metrics

(1) (In-sample) prediction error: $\left\|X\left(\widehat{\theta}-\theta^{*}\right)\right\|_{2}^{2} / n$

- "weakest" error measure
- appropriate when θ^{*} itself not of primary interest
- strong dependence between columns of X possible (no RE needed)
- proof technique: basic inequality
(2) parametric error: $\left\|\widehat{\theta}-\theta^{*}\right\|_{r}$ for some $r \in[1, \infty]$
- appropriate for recovery problems
- RE-type conditions appear in both lower/upper bounds
- variable selection is not guaranteed
- proof technique: basic inequality

Different error metrics

(1) (In-sample) prediction error: $\left\|X\left(\widehat{\theta}-\theta^{*}\right)\right\|_{2}^{2} / n$

- "weakest" error measure
- appropriate when θ^{*} itself not of primary interest
- strong dependence between columns of X possible (no RE needed)
- proof technique: basic inequality
(2) parametric error: $\left\|\widehat{\theta}-\theta^{*}\right\|_{r}$ for some $r \in[1, \infty]$
- appropriate for recovery problems
- RE-type conditions appear in both lower/upper bounds
- variable selection is not guaranteed
- proof technique: basic inequality
(3) variable selection: is $\operatorname{supp}(\widehat{\theta})$ equal to $\operatorname{supp}\left(\theta^{*}\right)$?
- appropriate when non-zero locations are of scientific interest
- most stringent of all three criteria
- requires incoherence or irrepresentability conditions on X
- proof technique: primal-dual witness condition

Lasso ℓ_{2}-bounds: Four simple steps

Let's analyze constrained version:

$$
\min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|y-X \theta\|_{2}^{2} \quad \text { such that }\|\theta\|_{1} \leq R=\left\|\theta^{*}\right\|_{1} .
$$

Lasso ℓ_{2}-bounds: Four simple steps

Let's analyze constrained version:

$$
\min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|y-X \theta\|_{2}^{2} \quad \text { such that }\|\theta\|_{1} \leq R=\left\|\theta^{*}\right\|_{1}
$$

(1) By optimality of $\widehat{\theta}$ and feasibility of θ^{*} :

$$
\frac{1}{2 n}\|y-X \widehat{\theta}\|_{2}^{2} \leq \frac{1}{2 n}\left\|y-X \theta^{*}\right\|_{2}^{2}
$$

Lasso ℓ_{2}-bounds: Four simple steps

Let's analyze constrained version:

$$
\min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|y-X \theta\|_{2}^{2} \quad \text { such that }\|\theta\|_{1} \leq R=\left\|\theta^{*}\right\|_{1} .
$$

(1) By optimality of $\widehat{\theta}$ and feasibility of θ^{*} :

$$
\frac{1}{2 n}\|y-X \widehat{\theta}\|_{2}^{2} \leq \frac{1}{2 n}\left\|y-X \theta^{*}\right\|_{2}^{2}
$$

(2) Derive a basic inequality: re-arranging in terms of $\widehat{\Delta}=\widehat{\theta}-\theta^{*}$:

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle
$$

Lasso ℓ_{2}-bounds: Four simple steps

Let's analyze constrained version:

$$
\min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|y-X \theta\|_{2}^{2} \quad \text { such that }\|\theta\|_{1} \leq R=\left\|\theta^{*}\right\|_{1} .
$$

(1) By optimality of $\widehat{\theta}$ and feasibility of θ^{*} :

$$
\frac{1}{2 n}\|y-X \widehat{\theta}\|_{2}^{2} \leq \frac{1}{2 n}\left\|y-X \theta^{*}\right\|_{2}^{2}
$$

(2) Derive a basic inequality: re-arranging in terms of $\widehat{\Delta}=\widehat{\theta}-\theta^{*}$:

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle .
$$

(3) Restricted eigenvalue for LHS; Hölder's inequality for RHS

$$
\gamma\|\widehat{\Delta}\|_{2}^{2} \leq \frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle \leq 2\|\widehat{\Delta}\|_{1}\left\|\frac{X^{T} w}{n}\right\|_{\infty} .
$$

Lasso ℓ_{2}-bounds: Four simple steps

Let's analyze constrained version:

$$
\min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|y-X \theta\|_{2}^{2} \quad \text { such that }\|\theta\|_{1} \leq R=\left\|\theta^{*}\right\|_{1}
$$

(1) By optimality of $\widehat{\theta}$ and feasibility of θ^{*} :

$$
\frac{1}{2 n}\|y-X \widehat{\theta}\|_{2}^{2} \leq \frac{1}{2 n}\left\|y-X \theta^{*}\right\|_{2}^{2}
$$

(2) Derive a basic inequality: re-arranging in terms of $\widehat{\Delta}=\widehat{\theta}-\theta^{*}$:

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle .
$$

(3) Restricted eigenvalue for LHS; Hölder's inequality for RHS

$$
\gamma\|\widehat{\Delta}\|_{2}^{2} \leq \frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle \leq 2\|\widehat{\Delta}\|_{1}\left\|\frac{X^{T} w}{n}\right\|_{\infty} .
$$

(4) As before, $\widehat{\Delta} \in \mathbb{C}(S)$, so that $\|\widehat{\Delta}\|_{1} \leq 2 \sqrt{s}\|\widehat{\Delta}\|_{2}$, and hence

$$
\|\widehat{\Delta}\|_{2} \leq \frac{4}{\gamma} \sqrt{s}\left\|\frac{X^{T} w}{n}\right\|_{\infty}
$$

Lasso error bounds for different models

Proposition

Suppose that

- vector θ^{*} has support S, with cardinality s, and
- design matrix X satisfies $\operatorname{RE}(S)$ with parameter $\gamma>0$.

For constrained Lasso with $R=\left\|\theta^{*}\right\|_{1}$ or regularized Lasso with $\lambda_{n}=2\left\|X^{T} w / n\right\|_{\infty}$, any optimal solution $\hat{\theta}$ satisfies the bound

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2} \leq \frac{4 \sqrt{s}}{\gamma}\left\|\frac{X^{T} w}{n}\right\|_{\infty}
$$

Lasso error bounds for different models

Proposition

Suppose that

- vector θ^{*} has support S, with cardinality s, and
- design matrix X satisfies $\operatorname{RE}(S)$ with parameter $\gamma>0$.

For constrained Lasso with $R=\left\|\theta^{*}\right\|_{1}$ or regularized Lasso with $\lambda_{n}=2\left\|X^{T} w / n\right\|_{\infty}$, any optimal solution $\widehat{\theta}$ satisfies the bound

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2} \leq \frac{4 \sqrt{s}}{\gamma}\left\|\frac{X^{T} w}{n}\right\|_{\infty} .
$$

- this is a deterministic result on the set of optimizers
- various corollaries for specific statistical models

Lasso error bounds for different models

Proposition

Suppose that

- vector θ^{*} has support S, with cardinality s, and
- design matrix X satisfies $\operatorname{RE}(S)$ with parameter $\gamma>0$.

For constrained Lasso with $R=\left\|\theta^{*}\right\|_{1}$ or regularized Lasso with $\lambda_{n}=2\left\|X^{T} w / n\right\|_{\infty}$, any optimal solution $\widehat{\theta}$ satisfies the bound

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2} \leq \frac{4 \sqrt{s}}{\gamma}\left\|\frac{X^{T} w}{n}\right\|_{\infty} .
$$

- this is a deterministic result on the set of optimizers
- various corollaries for specific statistical models
- Compressed sensing: $X_{i j} \sim N(0,1)$ and bounded noise $\|w\|_{2} \leq \sigma \sqrt{n}$
- Deterministic design: X with bounded columns and $w_{i} \sim N\left(0, \sigma^{2}\right)$

$$
\left\|\frac{X^{T} w}{n}\right\|_{\infty} \leq \sqrt{\frac{3 \sigma^{2} \log d}{n}} \quad \text { w.h.p. } \Longrightarrow\left\|\widehat{\theta}-\theta^{*}\right\|_{2} \leq \frac{4 \sigma}{\gamma} \sqrt{3 \frac{s \log d}{n}}
$$

Extension to an oracle inequality

Previous theory assumed that θ^{*} was "hard" sparse. Not realistic in practice.

Extension to an oracle inequality

Previous theory assumed that θ^{*} was "hard" sparse. Not realistic in practice.

Theorem (An oracle inequality)

Suppose that least-squares loss satisfies $\gamma-R E$ condition. Then for $\lambda_{n} \geq \max \left\{2\left\|\frac{X^{T} w}{n}\right\|_{\infty}, \sqrt{\frac{\log d}{n}}\right\}$, any optimal Lasso solution satisfies

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2}^{2} \leq \min _{S \subseteq\{1, \ldots, d\}}\{\underbrace{\frac{9}{4} \frac{\lambda_{n}^{2}}{\gamma^{2}}|S|}_{\text {estimation error }}+\underbrace{\frac{2 \lambda_{n}}{\gamma}\left\|\theta_{S^{c}}^{*}\right\|_{1}}_{\text {approximation error }}\} .
$$

(cf. Bunea et al., 2007; Buhlmann and van de Geer, 2009; Koltchinski et al., 2011)

Extension to an oracle inequality

Previous theory assumed that θ^{*} was "hard" sparse. Not realistic in practice.

Theorem (An oracle inequality)

Suppose that least-squares loss satisfies $\gamma-R E$ condition. Then for $\lambda_{n} \geq \max \left\{2\left\|\frac{X^{T} w}{n}\right\|_{\infty}, \sqrt{\frac{\log d}{n}}\right\}$, any optimal Lasso solution satisfies

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2}^{2} \leq \min _{S \subseteq\{1, \ldots, d\}}\{\underbrace{\frac{9}{4} \frac{\lambda_{n}^{2}}{\gamma^{2}}|S|}_{\text {estimation error }}+\underbrace{\frac{2 \lambda_{n}}{\gamma}\left\|\theta_{S^{c}}^{*}\right\|_{1}}_{\text {approximation error }}\} .
$$

- when θ^{*} is exactly sparse, set $S=\operatorname{supp}\left(\theta^{*}\right)$ to recover previous result
(cf. Bunea et al., 2007; Buhlmann and van de Geer, 2009; Koltchinski et al., 2011)

Extension to an oracle inequality

Previous theory assumed that θ^{*} was "hard" sparse. Not realistic in practice.

Theorem (An oracle inequality)

Suppose that least-squares loss satisfies $\gamma-R E$ condition. Then for $\lambda_{n} \geq \max \left\{2\left\|\frac{X^{T} w}{n}\right\|_{\infty}, \sqrt{\frac{\log d}{n}}\right\}$, any optimal Lasso solution satisfies

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2}^{2} \leq \min _{S \subseteq\{1, \ldots, d\}}\{\underbrace{\frac{9}{4} \frac{\lambda_{n}^{2}}{\gamma^{2}}|S|}_{\text {estimation error }}+\underbrace{\frac{2 \lambda_{n}}{\gamma}\left\|\theta_{S^{c}}^{*}\right\|_{1}}_{\text {approximation error }}\} .
$$

- when θ^{*} is exactly sparse, set $S=\operatorname{supp}\left(\theta^{*}\right)$ to recover previous result
- more generally, choose S adaptively to trade-off estimation error versus approximation error
(cf. Bunea et al., 2007; Buhlmann and van de Geer, 2009; Koltchinski et al., 2011)

Consequences for $\ell_{q^{-}}$"ball" sparsity

- for some $q \in[0,1]$, say θ^{*} belongs to $\ell_{q^{-}}$"ball"

$$
\mathbb{B}_{q}\left(R_{q}\right):=\left\{\left.\theta \in \mathbb{R}^{d}\left|\sum_{j=1}^{d}\right| \theta_{j}\right|^{q} \leq R_{q}\right\} .
$$

Consequences for ℓ_{q}-"ball" sparsity

- for some $q \in[0,1]$, say θ^{*} belongs to $\ell_{q^{-}}$"ball"

$$
\mathbb{B}_{q}\left(R_{q}\right):=\left\{\left.\theta \in \mathbb{R}^{d}\left|\sum_{j=1}^{d}\right| \theta_{j}\right|^{q} \leq R_{q}\right\} .
$$

Corollary

Consider the linear model $y=X \theta^{*}+w$, where X satisfies lower $R E$ conditions, and w has i.i.d σ sub-Gaussian entries. For $\theta^{*} \in \mathbb{B}_{q}\left(R_{q}\right)$, any Lasso solution satisfies (w.h.p.)

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2}^{2} \precsim R_{q}\left(\frac{\sigma^{2} \log d}{n}\right)^{1-q / 2} .
$$

Are these good results? Minimax theory

- let \mathcal{P} be a family of probability distributions
- consider a parameter $\mathbb{P} \mapsto \theta(\mathbb{P})$
- define a metric ρ on the parameter space

Are these good results? Minimax theory

- let \mathcal{P} be a family of probability distributions
- consider a parameter $\mathbb{P} \mapsto \theta(\mathbb{P})$
- define a metric ρ on the parameter space

Definition (Minimax rate)

The minimax rate for $\theta(\mathcal{P})$ with metric ρ is given

$$
\mathfrak{M}_{n}(\theta(\mathcal{P}) ; \rho):=\inf _{\widehat{\theta}} \sup _{\mathbb{P} \in \mathcal{P}} \mathbb{E}\left[\rho^{2}(\widehat{\theta}, \theta(\mathbb{P}))\right]
$$

where the infimum ranges over all measureable functions of n samples.

Are these good results? Minimax theory

Definition (Minimax rate)

The minimax rate for $\theta(\mathcal{P})$ with metric ρ is given

$$
\mathfrak{M}_{n}(\theta(\mathcal{P}) ; \rho):=\inf _{\widehat{\theta}} \sup _{\mathbb{P} \in \mathcal{P}} \mathbb{E}\left[\rho^{2}(\widehat{\theta}, \theta(\mathbb{P}))\right]
$$

where the infimum ranges over all measureable functions of n samples.
Concrete example:

- let \mathcal{P} be family of sparse linear regression problems with $\theta^{*} \in \mathbb{B}_{q}\left(R_{q}\right)$
- consider ℓ_{2}-error metric $\rho^{2}(\widehat{\theta}, \theta)=\|\widehat{\theta}-\theta\|_{2}^{2}$

Are these good results? Minimax theory

Definition (Minimax rate)

The minimax rate for $\theta(\mathcal{P})$ with metric ρ is given

$$
\mathfrak{M}_{n}(\theta(\mathcal{P}) ; \rho):=\inf _{\widehat{\theta}} \sup _{\mathbb{P} \in \mathcal{P}} \mathbb{E}\left[\rho^{2}(\widehat{\theta}, \theta(\mathbb{P}))\right]
$$

where the infimum ranges over all measureable functions of n samples.
Concrete example:

- let \mathcal{P} be family of sparse linear regression problems with $\theta^{*} \in \mathbb{B}_{q}\left(R_{q}\right)$
- consider ℓ_{2}-error metric $\rho^{2}(\widehat{\theta}, \theta)=\|\widehat{\theta}-\theta\|_{2}^{2}$

Theorem (Raskutti, W. \& Yu, 2011)
Under "mild" conditions on design X and radius R_{q}, we have

$$
\mathfrak{M}_{n}\left(\mathbb{B}_{q}\left(R_{q}\right) ;\|\cdot\|_{2}\right) \asymp R_{q}\left(\frac{\sigma^{2} \log d}{n}\right)^{1-\frac{q}{2}}
$$

Look-ahead to Lecture 2: A more general theory

Recap: Thus far.....

- Derived error bounds for basis pursuit and Lasso (ℓ_{1}-relaxation)
- Seen importance of restricted nullspace and restricted eigenvalues
- Touched upon notion of oracle inequality and minimax rates

Look-ahead to Lecture 2: A more general theory

The big picture:
Lots of other estimators with same basic form:

Look-ahead to Lecture 2: A more general theory

The big picture:

Lots of other estimators with same basic form:

Past years have witnessed an explosion of results (graph estimation, matrix completion, matrix decomposition, nonparametric regression...)

Question:

Is there a common set of underlying principles?

