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Process equivalence is fundamental

Markov chains:
Lumpability
Labelled Markov processes: Bisimulation
Markov decision processes: Bisimulation
Labelled Concurrent Markov Chains with τ transitions: Weak
Bisimulation
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But...

In the context of probability is exact equivalence reasonable?
We say “no”. A small change in the probability distributions may
result in bisimilar processes no longer being bisimilar though they
may be very “close” in behaviour.
Instead one should have a (pseudo)metric for probabilistic
processes.
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Pseudometrics

Function d : X × X −→ R≥0

∀s, d(s, s) = 0; one can have x 6= y and d(x, y) = 0.
∀s, t, d(s, t) = d(t, s)

∀s, t, u, d(s, u) ≤ d(s, t) + d(t, u); triangle inequality.
Quantitative analogue of an equivalence relation.
If we insist on d(x, y) = 0 iff x = y we get a metric.
A pseudometric defines an equivalence relation: x ∼ y if
d(x, y) = 0.
Define d∼ on X/ ∼ by d∼([x], [y]) = d(x, y); well-defined by triangle.
This is a proper metric.
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Bisimulation

Let R be an equivalence relation. R is a bisimulation if: s R t if (∀ a):

(s a→ P)⇒ [t a→ Q,P =R Q]

(t a→ Q)⇒ [s a→ P,P =R Q]

=R means that the measures P,Q agree on unions of
R-equivalence classes.
s, t are bisimilar if there is a bisimulation relating them.
There is a maximum bisimulation relation.
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Properties of bisimulation

Establishing equality of states: Coinduction. Establish a
bisimulation R that relates states s, t.
Distinguishing states: Simple logic is complete for bisimulation.

φ ::= true | φ1 ∧ φ2 | 〈a〉>qφ
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A metric-based approximate viewpoint

Move from equality between processes to distances between
processes (Jou and Smolka 1990).
Quantitative measurement of the distinction between processes.
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Summary of results

Establishing closeness of states: Coinduction
Distinguishing states: Real-valued modal logics
Equational and logical views coincide: Metrics yield same
distances as real-valued modal logics
Compositional reasoning by non-expansiveness.
Process-combinators take nearby processes to nearby processes.

d(s1, t1) < ε1, d(s2, t2) < ε2

d(s1 || s2, t1 ||t2) < ε1 + ε2

Results work for Markov chains, Labelled Markov processes,
Markov decision processes and Labelled Concurrent Markov
chains with τ -transitions.
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Criteria on metrics

Soundness:
d(s, t) = 0⇔ s, t are bisimilar

Stability of distance under temporal evolution:“Nearby states stay
close forever.”
Metrics should be computable.
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Bisimulation Recalled

Let R be an equivalence relation. R is a bisimulation if: s R t if:

(s −→ P)⇒ [t −→ Q,P =R Q]

(t −→ Q)⇒ [s −→ P,P =R Q]

where P =R Q if
(∀R− closed E) P(E) = Q(E)
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A putative definition of a metric-bisimulation

m is a metric-bisimulation if: m(s, t) < ε⇒:

s −→ P⇒ t −→ Q, m(P,Q) < ε

t −→ Q⇒ s −→ P, m(P,Q) < ε

Problem: what is m(P,Q)? — Type mismatch!!
Need a way to lift distances from states to a distances on
distributions of states.
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A detour: Kantorovich metric

Metrics on probability measures on metric spaces.
M: 1-bounded pseudometrics on states.

d(µ, ν) = sup
f
|
∫

fdµ−
∫

fdν|, f 1-Lipschitz

Arises in the solution of an LP problem: transshipment.
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An LP version for Finite-State Spaces

When state space is finite: Let P,Q be probability distributions. Then:

m(P,Q) = max
∑

i

(P(si)− Q(si))ai

subject to:
∀i.0 ≤ ai ≤ 1
∀i, j. ai − aj ≤ m(si, sj).
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The dual form

Dual form from Worrell and van Breugel:

min
∑

i,j

lijm(si, sj) +
∑

i

xi +
∑

j

yj

subject to:
∀i.
∑

j lij + xi = P(si)

∀j.
∑

i lij + yj = Q(sj)
∀i, j. lij, xi, yj ≥ 0.

We prove many equations by using the primal form to show one
direction and the dual to show the other.
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Example 1

m(P,P) = 0.
In dual, match each state with itself, lij = δijP(si), xi = yj = 0. So:∑

i,j

lijm(si, sj) +
∑

i

xi +
∑

j

yj

becomes 0.
This clearly cannot be lowered further so this is the min.
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Example 2

Let m(s, t) = r < 1. Let δs( resp. δt) be the probability measure
concentrated at s(resp. t). Then,

m(δs, δt) = r

Upper bound from dual: Choose lst = 1 all other lij = 0. Then∑
ij

lijm(si, sj) = m(s, t) = r.

Lower bound from primal: Choose as = 0, at = r, all others to
match the constraints. Then∑

i

(δt(si)− δs(si))ai = r.
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The Importance of Example 2

We can isometrically embed the original space in the metric space of
distributions.
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Example 3 - I

Let P(s) = r,P(t) = 0 if s 6= t. Let Q(s) = r′,Q(t) = 0 if s 6= t.
Then m(P,Q) = |r − r′|.
Assume that r ≥ r′.
Lower bound from primal: yielded by ∀i.ai = 1,∑

i

(P(si)− Q(si))ai = P(s)− Q(s) = r − r′.
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Example 3 - II

Upper bound from dual: lss = r′ and xs = r − r′, all others 0∑
i,j

lijm(si, sj) +
∑

i

xi +
∑

j

yj = xs = r − r′.

and the constraints are satisfied:∑
j

lsj + xs = lss + xs = r

∑
i

lis + ys = lss = r′.
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Return from detour

Summary
Given a metric on states in a metric space, can lift to a metric on
probability distributions on states.
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Metric “bisimulation”

m is a metric-bisimulation if: m(s, t) < ε⇒:

s −→ P⇒ t −→ Q, m(P,Q) < ε

t −→ Q⇒ s −→ P, m(P,Q) < ε

The required canonical metric on processes is the least such: ie.
the distances are the least possible.
Thm: Canonical least metric exists.
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Tarski’s theorem

If L is a complete lattice and F : L −→ L is monotone then the set of
fixed points of F with the induced order is itself a complete lattice. In
particular there is a least fixed point and a greatest fixed point.
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Metrics: some details

M: 1-bounded pseudometrics on states with ordering

m1 � m2 if (∀s, t) [m1(s, t) ≥ m2(s, t)]

(M,�) is a complete lattice.

⊥(s, t) =

{
0 if s = t
1 otherwise

>(s, t) = 0, (∀s, t)
(u{mi}(s, t) = sup

i
mi(s, t)
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Greatest fixed-point definition

Let m ∈M. F(m)(s, t) < ε if:

s −→ P⇒ t −→ Q, m(P,Q) < ε

t −→ Q⇒ s −→ P, m(P,Q) < ε

F(m)(s, t) can be given by an explicit expression.
F is monotone onM, and metric-bisimulation is the greatest fixed
point of F.
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A key tool

Splitting Lemma (Jones)
Let P and Q be probability distributions on a set of states. Let P1 and
P2 be such that: P = P1 + P2. Then, there exist Q1,Q2, such that
Q1 + Q2 = Q and

m(P,Q) = m(P1,Q1) + m(P2,Q2).

The proof uses the duality theory of LP for discrete spaces and
Kantorovich-Rubinstein duality for continuous spaces.
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Kantorovich-Rubinstein duality

Definition
Given two probability measures P1,P2 on (X,Σ), a coupling is a
measure Q on the product space X × X such that the marginals are
P1,P2. Write C(P1,P2) for the set of couplings between P1,P2.

Theorem
Let (X, d) be a compact metric space. Let P1,P2 be Borel probability
measures on X

sup
f :X−→[0,1] nonexpansive

{∫
X

f dP1 −
∫

X
f dP2

}
= inf

Q∈C(P1,P2)

{∫
X×X

d dQ
}
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Real-valued modal logic I

Develop a real-valued “modal logic” based on the analogy:

Kozen’s analogy

Program Logic Probabilistic Logic
State s Distribution µ
Formula φ Random Variable f
Satisfaction s |= φ

∫
f dµ

Define a metric based on how closely the random variables agree.
Another approach: use the Kantorovich metric [van Breugel and
Worrell]
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Real-valued modal logic II

f ::= 1 | max(f , f ) | h ◦ f | 〈a〉.f

1(s) = 1 True
max(f1, f2)(s) = max(f1(s), f2(s)) Conjunction
h ◦ f (s) = h(f (s)) Lipschitz
〈a〉.f (s) = γ

∫
s′∈S f (s′)τa(s, ds′) a-transition

where h 1-Lipschitz : [0, 1]→ [0, 1] and γ ∈ (0, 1].
d(s, t) = supf |f (s)− f (t)|
Thm: d coincides with the fixed-point definition of
metric-bisimulation.

Panangaden (McGill) Analysis of Probabilistic Systems Metrics 29 / 33



Finitary syntax for the modal logic

1(s) = 1 True
max(f1, f2)(s) = max(f1(s), f2(s)) Conjunction
(1− f )(s) = 1− f (s) Negation

bfq(s)c =

{
q , f (s) ≥ q
f (s) , f (s) < q

Cutoffs

〈a〉.f (s) = γ
∫

s′∈S f (s′)τa(s, ds′) a-transition

q is a rational.
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The role of γ

γ discounts the value of future steps.
γ < 1 and γ = 1 yield very different topologies
For γ < 1 there is an LP-based algorithm to compute the metric.
For γ = 1 the existence of an algorithm to compute the metric has
been discovered by van Breugel, Sharma and Worrell.
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Approximation of LMPs and metric

One can define a sequence of finite-state approximants to any
LMP such that
the sequence converges in the metric to the original LMP.
One can put domain structure on LMPs and show that the
approximants converge in order as well.
One can construct a universal LMP (final co-algebra).
We have extended the metric to MDPs and used it to give bounds
on approximations to the optimal value function: Ferns, Precup, P.
(UAI 04,05).
Metric is hard to compute; need algorithms to approximate it:
SIAM 2011, QEST 2012, AAAI 2015, NIPS 2015.
Approximate equational reasoning using =ε (Mardare, P., Plotkin).
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Everything should be dualized!

Slogan
One should recast the whole subject in terms of linear transformations
on the space of random variables. Forget measures, work with the
algebra of measurable functions!

Approximating Markov Processes by Averaging, Chaput, Danos, P. and
Plotkin; JACM 2014.
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