Analysis of Probabilistic Systems

Boot camp Lecture 5: Metrics for Markov Processes

Prakash Panangaden ${ }^{1}$

${ }^{1}$ School of Computer Science
McGill University

Fall 2016, Simons Institute

Outline

(1) Introduction
(2) Metrics for bisimulation
(3) A logical view

4 Concluding remarks

Process equivalence is fundamental

- Markov chains:
- Lumpability
- Labelled Markov processes: Bisimulation
- Markov decision processes: Bisimulation
- Labelled Concurrent Markov Chains with τ transitions: Weak Bisimulation

But...

- In the context of probability is exact equivalence reasonable?
- We say "no". A small change in the probability distributions may result in bisimilar processes no longer being bisimilar though they may be very "close" in behaviour.
- Instead one should have a (pseudo)metric for probabilistic processes.

Pseudometrics

- Function $d: X \times X \rightarrow \mathbb{R}^{\geq 0}$
- $\forall s, d(s, s)=0$; one can have $x \neq y$ and $d(x, y)=0$.
- $\forall s, t, d(s, t)=d(t, s)$
- $\forall s, t, u, d(s, u) \leq d(s, t)+d(t, u)$; triangle inequality.
- Quantitative analogue of an equivalence relation.
- If we insist on $d(x, y)=0$ iff $x=y$ we get a metric.
- A pseudometric defines an equivalence relation: $x \sim y$ if $d(x, y)=0$.
- Define d^{\sim} on X / \sim by $d^{\sim}([x],[y])=d(x, y)$; well-defined by triangle. This is a proper metric.

Bisimulation

- Let R be an equivalence relation. R is a bisimulation if: $s R t$ if $(\forall a)$:

$$
\begin{aligned}
& (s \xrightarrow{a} P) \Rightarrow\left[t \xrightarrow{a} Q, P==_{R} Q\right] \\
& (t \stackrel{a}{\rightarrow} Q) \Rightarrow\left[s \xrightarrow{a} P, P==_{R} Q\right]
\end{aligned}
$$

- $=_{R}$ means that the measures P, Q agree on unions of R-equivalence classes.
- s, t are bisimilar if there is a bisimulation relating them.
- There is a maximum bisimulation relation.

Properties of bisimulation

- Establishing equality of states: Coinduction. Establish a bisimulation R that relates states s, t.
- Distinguishing states: Simple logic is complete for bisimulation.

$$
\phi::=\text { true }\left|\phi_{1} \wedge \phi_{2}\right|\langle a\rangle_{>q} \phi
$$

A metric-based approximate viewpoint

- Move from equality between processes to distances between processes (Jou and Smolka 1990).
- Quantitative measurement of the distinction between processes.

Summary of results

- Establishing closeness of states: Coinduction
- Distinguishing states: Real-valued modal logics
- Equational and logical views coincide: Metrics yield same distances as real-valued modal logics
- Compositional reasoning by non-expansiveness.

Process-combinators take nearby processes to nearby processes.

$$
\frac{d\left(s_{1}, t_{1}\right)<\epsilon_{1}, \quad d\left(s_{2}, t_{2}\right)<\epsilon_{2}}{d\left(s_{1}\left\|s_{2}, t_{1}\right\| t_{2}\right)<\epsilon_{1}+\epsilon_{2}}
$$

- Results work for Markov chains, Labelled Markov processes, Markov decision processes and Labelled Concurrent Markov chains with τ-transitions.

Criteria on metrics

- Soundness:

$$
d(s, t)=0 \Leftrightarrow s, t \text { are bisimilar }
$$

- Stability of distance under temporal evolution:"Nearby states stay close forever."
- Metrics should be computable.

Bisimulation Recalled

Let R be an equivalence relation. R is a bisimulation if: $s R t$ if:

$$
\begin{aligned}
& (s \longrightarrow P) \Rightarrow\left[t \longrightarrow Q, P={ }_{R} Q\right] \\
& (t \longrightarrow Q) \Rightarrow\left[s \longrightarrow P, P={ }_{R} Q\right]
\end{aligned}
$$

where $P={ }_{R} Q$ if

$$
(\forall R-\operatorname{closed} E) P(E)=Q(E)
$$

A putative definition of a metric-bisimulation

- m is a metric-bisimulation if: $m(s, t)<\epsilon \Rightarrow$:

$$
\begin{aligned}
& s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P, Q)<\epsilon \\
& t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P, Q)<\epsilon
\end{aligned}
$$

- Problem: what is $m(P, Q)$? - Type mismatch!!
- Need a way to lift distances from states to a distances on distributions of states.

A detour: Kantorovich metric

- Metrics on probability measures on metric spaces.
- M: 1-bounded pseudometrics on states.

$$
d(\mu, \nu)=\sup _{f}\left|\int f d \mu-\int f d \nu\right|, f \text { 1-Lipschitz }
$$

- Arises in the solution of an LP problem: transshipment.

An LP version for Finite-State Spaces

When state space is finite: Let P, Q be probability distributions. Then:

$$
m(P, Q)=\max \sum_{i}\left(P\left(s_{i}\right)-Q\left(s_{i}\right)\right) a_{i}
$$

subject to:

$$
\begin{aligned}
& \forall i .0 \leq a_{i} \leq 1 \\
& \forall i, j . a_{i}-a_{j} \leq m\left(s_{i}, s_{j}\right)
\end{aligned}
$$

The dual form

- Dual form from Worrell and van Breugel:

$$
\min \sum_{i, j} l_{i j} m\left(s_{i}, s_{j}\right)+\sum_{i} x_{i}+\sum_{j} y_{j}
$$

subject to:

$$
\begin{aligned}
& \forall i . \sum_{j} l_{i j}+x_{i}=P\left(s_{i}\right) \\
& \forall j . \sum_{i} l_{i j}+y_{j}=Q\left(s_{j}\right) \\
& \forall i, j . l_{i j}, x_{i}, y_{j} \geq 0 .
\end{aligned}
$$

- We prove many equations by using the primal form to show one direction and the dual to show the other.

Example 1

- $m(P, P)=0$.
- In dual, match each state with itself, $l_{i j}=\delta_{i j} P\left(s_{i}\right), x_{i}=y_{j}=0$. So:

$$
\sum_{i, j} l_{i j} m\left(s_{i}, s_{j}\right)+\sum_{i} x_{i}+\sum_{j} y_{j}
$$

becomes 0 .

- This clearly cannot be lowered further so this is the min.

Example 2

- Let $m(s, t)=r<1$. Let $\delta_{s}\left(\right.$ resp. $\left.\delta_{t}\right)$ be the probability measure concentrated at $s($ resp. $t)$. Then,

$$
m\left(\delta_{s}, \delta_{t}\right)=r
$$

- Upper bound from dual: Choose $l_{s t}=1$ all other $l_{i j}=0$. Then

$$
\sum_{i j} l_{i j} m\left(s_{i}, s_{j}\right)=m(s, t)=r
$$

- Lower bound from primal: Choose $a_{s}=0, a_{t}=r$, all others to match the constraints. Then

$$
\sum_{i}\left(\delta_{t}\left(s_{i}\right)-\delta_{s}\left(s_{i}\right)\right) a_{i}=r
$$

The Importance of Example 2

We can isometrically embed the original space in the metric space of distributions.

Example 3-I

- Let $P(s)=r, P(t)=0$ if $s \neq t$. Let $Q(s)=r^{\prime}, Q(t)=0$ if $s \neq t$.
- Then $m(P, Q)=\left|r-r^{\prime}\right|$.
- Assume that $r \geq r^{\prime}$.

Lower bound from primal: yielded by $\forall i . a_{i}=1$,

$$
\sum_{i}\left(P\left(s_{i}\right)-Q\left(s_{i}\right)\right) a_{i}=P(s)-Q(s)=r-r^{\prime}
$$

Example 3-II

Upper bound from dual: $l_{s s}=r^{\prime}$ and $x_{s}=r-r^{\prime}$, all others 0

$$
\sum_{i, j} l_{i j} m\left(s_{i}, s_{j}\right)+\sum_{i} x_{i}+\sum_{j} y_{j}=x_{s}=r-r^{\prime}
$$

and the constraints are satisfied:

$$
\begin{gathered}
\sum_{j} l_{s j}+x_{s}=l_{s s}+x_{s}=r \\
\sum_{i} l_{i s}+y_{s}=l_{s s}=r^{\prime}
\end{gathered}
$$

Return from detour

Summary

Given a metric on states in a metric space, can lift to a metric on probability distributions on states.

Metric "bisimulation"

- m is a metric-bisimulation if: $m(s, t)<\epsilon \Rightarrow$:

$$
\begin{aligned}
& s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P, Q)<\epsilon \\
& t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P, Q)<\epsilon
\end{aligned}
$$

- The required canonical metric on processes is the least such: ie. the distances are the least possible.
- Thm: Canonical least metric exists.

Tarski's theorem

If L is a complete lattice and $F: L \rightarrow L$ is monotone then the set of fixed points of F with the induced order is itself a complete lattice. In particular there is a least fixed point and a greatest fixed point.

Metrics: some details

- \mathcal{M} : 1-bounded pseudometrics on states with ordering

$$
m_{1} \preceq m_{2} \text { if }(\forall s, t)\left[m_{1}(s, t) \geq m_{2}(s, t)\right]
$$

- (\mathcal{M}, \preceq) is a complete lattice.

$$
\begin{aligned}
\perp(s, t) & =\left\{\begin{array}{l}
0 \text { if } s=t \\
1 \text { otherwise }
\end{array}\right. \\
\top(s, t) & =0,(\forall s, t) \\
\left(\sqcap\left\{m_{i}\right\}(s, t)\right. & =\sup _{i} m_{i}(s, t)
\end{aligned}
$$

Greatest fixed-point definition

- Let $m \in \mathcal{M} . F(m)(s, t)<\epsilon$ if:

$$
\begin{aligned}
& s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P, Q)<\epsilon \\
& t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P, Q)<\epsilon
\end{aligned}
$$

- $F(m)(s, t)$ can be given by an explicit expression.
- F is monotone on \mathcal{M}, and metric-bisimulation is the greatest fixed point of F.

A key tool

Splitting Lemma (Jones)

Let P and Q be probability distributions on a set of states. Let P_{1} and P_{2} be such that: $P=P_{1}+P_{2}$. Then, there exist Q_{1}, Q_{2}, such that $Q_{1}+Q_{2}=Q$ and

$$
m(P, Q)=m\left(P_{1}, Q_{1}\right)+m\left(P_{2}, Q_{2}\right)
$$

The proof uses the duality theory of LP for discrete spaces and Kantorovich-Rubinstein duality for continuous spaces.

Kantorovich-Rubinstein duality

Definition

Given two probability measures P_{1}, P_{2} on (X, Σ), a coupling is a measure Q on the product space $X \times X$ such that the marginals are P_{1}, P_{2}. Write $\mathcal{C}\left(P_{1}, P_{2}\right)$ for the set of couplings between P_{1}, P_{2}.

Theorem

Let (X, d) be a compact metric space. Let P_{1}, P_{2} be Borel probability measures on X

$$
\sup _{f: X \rightarrow[0,1] \text { nonexpansive }}\left\{\int_{X} f \mathrm{~d} P_{1}-\int_{X} f \mathrm{~d} P_{2}\right\}=\inf _{Q \in \mathcal{C}\left(P_{1}, P_{2}\right)}\left\{\int_{X \times X} d \mathrm{~d} Q\right\}
$$

Real-valued modal logic I

- Develop a real-valued "modal logic" based on the analogy:

Kozen's analogy

Program Logic	Probabilistic Logic
State s	Distribution μ
Formula ϕ	Random Variable f
Satisfaction $s=\phi$	$\int f \mathrm{~d} \mu$

- Define a metric based on how closely the random variables agree.
- Another approach: use the Kantorovich metric [van Breugel and Worrell]

Real-valued modal logic II

$$
f::=\mathbf{1}|\max (f, f)| h \circ f \mid\langle a\rangle . f
$$

$\mathbf{1}(s)$	$=1$
$\max \left(f_{1}, f_{2}\right)(s)$	$=\max \left(f_{1}(s), f_{2}(s)\right)$
$h \circ f(s)$	$=h(f(s))$
$\langle a\rangle: f(s)$	$=\gamma \int_{s^{\prime} \in S} f\left(s^{\prime}\right) \tau_{a}\left(s, \mathrm{~d} s^{\prime}\right)$

True
Conjunction Lipschitz
a-transition
where h 1-Lipschitz : $[0,1] \rightarrow[0,1]$ and $\gamma \in(0,1]$.

- $d(s, t)=\sup _{f}|f(s)-f(t)|$
- Thm: d coincides with the fixed-point definition of metric-bisimulation.

Finitary syntax for the modal logic

$\mathbf{1}(s)$	$=1$	True
$\max \left(f_{1}, f_{2}\right)(s)$	$=\max \left(f_{1}(s), f_{2}(s)\right)$	Conjunction
$(1-f)(s)$	$=1-f(s)$	Negation
$\left\lfloor f_{q}(s)\right\rfloor$	$= \begin{cases}q, & f(s) \geq q \\ f(s), f(s)<q & \text { Cutoffs } \\ \langle a\rangle . f(s) & =\gamma \int_{s^{\prime} \in S} f\left(s^{\prime}\right) \tau_{a}\left(s, \mathrm{~d} s^{\prime}\right)\end{cases}$	a-transition

q is a rational.

The role of γ

- γ discounts the value of future steps.
- $\gamma<1$ and $\gamma=1$ yield very different topologies
- For $\gamma<1$ there is an LP-based algorithm to compute the metric.
- For $\gamma=1$ the existence of an algorithm to compute the metric has been discovered by van Breugel, Sharma and Worrell.

Approximation of LMPs and metric

- One can define a sequence of finite-state approximants to any LMP such that
- the sequence converges in the metric to the original LMP.
- One can put domain structure on LMPs and show that the approximants converge in order as well.
- One can construct a universal LMP (final co-algebra).
- We have extended the metric to MDPs and used it to give bounds on approximations to the optimal value function: Ferns, Precup, P. (UAI 04,05).
- Metric is hard to compute; need algorithms to approximate it: SIAM 2011, QEST 2012, AAAI 2015, NIPS 2015.
- Approximate equational reasoning using $={ }_{\varepsilon}$ (Mardare, P., Plotkin).

Everything should be dualized!

Slogan

One should recast the whole subject in terms of linear transformations on the space of random variables. Forget measures, work with the algebra of measurable functions!

Approximating Markov Processes by Averaging, Chaput, Danos, P. and Plotkin; JACM 2014.

