Analysis of Probabilistic Systems
Bootcamp Lecture 2: Measure and Integration

Prakash Panangaden

School of Computer Science
McGill University

Fall 2016, Simons Institute
Outline

1. Measurable spaces
2. Measures
3. Integration
4. Radon-Nikodym theorem
What is measure theory?

- We want to assign a “size” to sets so that we can use it for quantitative purposes, like integration or probability.
- We could count the number of points, but this is useless for a continuous space.
- We want to generalize the notion of “length” or “area.”
- What is the “length” of the rational numbers between 0 and 1?
- We want a consistent way of assigning sizes to these and (all?) other sets.
What are measurable sets?

- Alas! Not all sets can be given a sensible notion of size that generalizes the notion of length of an interval.
- We take a family of sets satisfying “reasonable” axioms and deem them to be “measurable.”
- **Countable** unions are the key.
A **measurable space** \((X, \Sigma)\) is a set \(X\) together with a family \(\Sigma\) of subsets of \(X\), called a **\(\sigma\)-algebra** or **\(\sigma\)-field**, satisfying the following axioms:

- \(\emptyset \in \Sigma\),
- \(A \in \Sigma\) implies that \(A^c \in \Sigma\), and
- if \(\{A_i \in \Sigma | i \in I\}\) is a **countable** family then \(\bigcup_{i \in I} A_i \in \Sigma\).
Basic facts

- The intersection of any collection of σ-algebras on a set is another σ-algebra.
- Thus, given any family of sets \mathcal{F} there is a least σ-algebra containing \mathcal{F}: the σ-algebra generated by \mathcal{F}; written $\sigma(\mathcal{F})$.
- Measurable sets are complicated beasts, we often want to work with the sets of family of simpler sets that generate the σ-algebra.
Examples

- X a set, $\Sigma = \{X, \emptyset\}$
- $\sigma = \mathcal{P}(X)$, the power set.
- The σ-algebra generated by intervals in \mathbb{R} is called the *Borel* algebra. For any topological space the σ-algebra generated by the opens (or the closed sets) is called its Borel algebra.
- There is a larger σ-algebra containing the Borel sets called the Lebesgue σ-algebra; more later.
- Fix a finite set A; $A^\infty = \text{finite and infinite sequences of elements from } A$. Define, for $x \in A^*$, $x \uparrow = \{y : x \leq y\}$. The σ-algebra generated by the $x \uparrow$ is very commonly used to study discrete-step processes.
Notation: If $A_1 \subseteq A_2 \subseteq \ldots \subseteq A_n \ldots$ and $A = \bigcup_{n} A_n$ we write $A_n \uparrow A$; similarly $A_n \downarrow A$.

If \mathcal{M} is a collection of sets and is closed under up and down arrows it is called a **monotone class**.

Arbitrary intersections of monotone classes form a monotone class; hence we have the monotone class generated by a family of sets.

A collection of sets closed under complements and finite unions is called a **field** of sets.

Any σ-algebra is a monotone class and if a monotone class is also a field it is a σ-algebra.

Theorem: If \mathcal{F} is a field of sets then the monotone class that it generates is the same as the σ-algebra that it generates.
\(\pi \) and \(\lambda \) systems

- **A \(\pi \)-system** is a family of sets closed under finite intersections.
- The open intervals of \(\mathbb{R} \) form a \(\pi \)-system. It generates the Borel sets.
- **Slogan:** \(\pi \)-systems are usually easy to describe but they can generate complicated \(\sigma \)-algebras. Try to use a generating \(\pi \)-system.
- **A \(\lambda \)-system** over \(X \) is a family of subsets of \(X \) containing \(X \), closed under complements and closed under countable unions of pairwise disjoint sets.
- **Prop:** If \(\Omega \) is a \(\pi \)-system and a \(\lambda \)-system it is a \(\sigma \)-algebra.
- If \(\Omega \) is a \(\pi \)-system and \(\Lambda \) is a \(\lambda \)-system and \(\Omega \subseteq \Lambda \) then \(\sigma(\Omega) \subseteq \Lambda \). Dynkin’s \(\lambda - \pi \) theorem.
Measurable functions

- \(f : (X, \Sigma) \rightarrow (Y, \Omega) \) is **measurable** if for every \(B \in \Omega, f^{-1}(B) \in \Sigma \).
- Just like the definition of continuous in topology.
- Why is this the definition? Why backwards?
- \(x \in f^{-1}(B) \) if and only if \(f(x) \in B \).
- No such statement for the forward image.
- Exactly the same reason why we give the Hoare triple for the assignment statement in terms of preconditions.
- Older books (Halmos) give a more general definition that is not compositional.
- Measurable spaces and measurable functions form a category.
Examples

If $A \subset X$ is a measurable set, $1_A(x) = 1$ if $x \in A$ and 0 otherwise is called the *indicator* or *characteristic* function of A and is measurable.

The sum and product of real-valued measurable functions is measurable.

If we take *finite* linear combinations of indicators we get *simple* functions: measurable functions with finite range.
Convergence properties

- If \(\{f_i : \mathbb{R} \to \mathbb{R}\}_{i \in \mathbb{N}} \) converges pointwise to \(f \) and all the \(f_i \) are measurable then so is \(f \).

- Stark difference with continuity.

- If \(f : (X, \Sigma) \to (\mathbb{R}, \mathcal{B}) \) is non-negative and measurable then there is a sequence of non-negative simple functions \(s_i \) such that \(s_i \leq s_{i+1} \leq f \) and the \(s_i \) converge pointwise to \(f \).

- The secret of integration.
A measure (probability measure) μ on a measurable space (X, Σ) is a function from Σ (a set function) to $[0, \infty]$ ([0, 1]), such that if $\{A_i|i \in I\}$ is a countable family of pairwise disjoint sets then

$$\mu \left(\bigcup_{i \in I} A_i \right) = \sum_{i \in I} \mu(A_i).$$

In particular if I is empty we have

$$\mu(\emptyset) = 0.$$

A set equipped with a σ-algebra and a measure defined on it is called a measure space.
A simple example

Fix a set X and a point x of X. We define a measure, in fact a probability measure, on the σ-algebra of all subsets of X as follows. We use the slightly peculiar notation $\delta(x, A)$ to emphasize that x is a parameter in the definition.

$$
\delta(x, A) = \begin{cases}
1 & \text{if } x \in A, \\
0 & \text{if } x \notin A.
\end{cases}
$$

This measure is called the \textit{Dirac delta measure}. Note that we can fix the set A and view this as the definition of a (measurable) function on X. What we get is the characteristic function of the set A, χ_A.
Monotonicity and Continuity

- Fix (X, Σ, μ); write A, B, C, \ldots for sets in Σ.
- If $A \subseteq B$ then $\mu(A) \leq \mu(B)$.
- If $A_n \uparrow A$ then $\lim_{n \to \infty} \mu(A_n) = \mu(A)$.
- If $A_n \downarrow A$ and $\mu(A_1)$ is finite then $\lim_{n \to \infty} \mu(A_n) = \mu(A)$.
Consider combining probability and nondeterminism.

Given \((X, \Sigma)\), suppose we have a family of measures \(\mu_i\). Define \(c(A) := \sup_i \mu_i(A)\). Is it a measure?

No! It is not additive, not even finitely.

But, it does satisfy monotonicity and both continuity properties.

Such a thing is called a “Choquet capacity.”

Not all capacities arise in this way.
For any subset A of \mathbb{R} we define the outer measure of A, $\mu^*(A)$, as
the infimum of the total length of any family of intervals covering A.

The rationals have outer measure zero.

μ^* is not additive so it does not give a measure defined on all sets.

It does however satisfy countable subadditivity:

$$\mu^*(\bigcup A_i) \leq \sum_i \mu^*(A_i).$$

We define an outer measure to be a set function satisfying
monotonicity and countable subadditivity and defined on all sets.
Let X be a set and μ^* an other measure defined on it.

There are some sets that “split all other sets nicely.”

For some sets A, $\forall E \subseteq X$, $\mu^*(E) = \mu^*(A \cap E) + \mu^*(A^c \cap E)$. Call the collection of all such sets Σ.

Define $\mu(A) = \mu^*(A)$ for $A \in \Sigma$.

(X, Σ, μ) is a measure space.

The proof uses the $\lambda - \pi$ theorem.

Applied to \mathbb{R} with the outer measure above we get the Lebesgue measure on the Borel sets.
An extension theorem

- Want to define measures on “nice” sets and extend to all the sets in the generated \(\sigma \)-algebra.

- A family of sets \(\mathcal{F} \) is called a semi-ring if:
 - \(\emptyset \in \mathcal{F} \)
 - \(A, B \in \mathcal{F} \) implies \(A \cap B \in \mathcal{F} \)
 - \(A \subset B \) implies there are finitely many pairwise disjoint sets \(C_1, \ldots, C_k \), all in \(\mathcal{F} \), such that \(B \setminus A = \bigcup_{i=1}^{k} C_i \).

- If \(\mu \) defined on a semi-ring satisfies:
 - \(\mu(\emptyset) = 0 \),
 - \(\mu \) is finitely additive and
 - \(\mu \) is countably subadditive,

 then \(\mu \) extends uniquely to a measure on \(\sigma(\mathcal{F}) \).
Why I like \(\pi\)-systems

- Given two measures, \(\mu_1, \mu_2\) on \((X, \Sigma)\); are they the same?
- Suppose that \(\Sigma = \sigma(\mathcal{P})\) where \(\mathcal{P}\) is a \(\pi\)-system.
- Then if \(\mu_1, \mu_2\) agree on \(\mathcal{P}\) they will agree on \(\Sigma\).
- We need to know in advance that \(\mu_1, \mu_2\) are measures.
Recall: A a finite set, \(A^\infty \) = finite and infinite sequences of elements from A. Define, for \(x \in A^* \), \(x \uparrow = \{ y : x \leq y \} \). Here \(A = \{ H, T \} \).

We have \(\Pr(H), \Pr(T) \). Want to define a measure on sets of \(H - T \) (possibly infinite) sequences.

Define, \(\Pr(a_1 \ldots a_n) = \prod_i \Pr(a_i) \).

The sets of the form \(x \uparrow \) form a semi-ring so \(\Pr \) extends to a measure on the generated \(\sigma \)-algebra.
Lebesgue integration

Proceed by working up from “simple” functions.
Fix \((X, \Sigma, \mu)\). If \(A \in \Sigma\) define \(\chi_A : X \to \mathbb{R}\) by \(\chi_A(x) = 1\) if \(x \in A\) else 0.

Natural definition: \(\int \chi_A d\mu = \mu(A)\)

Define *simple* functions as finite linear combinations of characteristic functions: \(s = \sum r_i \chi_{A_i}; r_i \in \mathbb{R}, A_i \in \Sigma\).

\[\int s d\mu = \sum r_i \mu(A_i). \]

Need to verify that the integral of \(s\) does not depend on how it is represented.

Fact: every positive measurable function is the pointwise limit of a sequence of simple functions.

For a positive measurable function \(f\) we define \(\int f d\mu = \bigvee_{s \leq f} \int s d\mu.\)

For a general measurable function we split it into positive and negative parts and compute the integrals separately.

I have skated over some issues about integrability.
Suppose that \(f_n : X \rightarrow \mathbb{R} \) is a sequence of measurable functions such that

\[
\forall x \in X, \ 0 \leq f_1(x) \leq f_2(x) \leq \ldots \leq f_n(x) \leq \ldots < \infty \quad \text{and}
\]

\[
\forall x \in X, \bigvee_n f_n(x) = f(x) \quad \text{then}
\]

\(f \) is measurable and

\[
\int f \, d\mu = \bigvee_n \int f_n \, d\mu.
\]

One uses this theorem to prove that the integral is linear.
The monotone convergence mantra: an example

- Let $T : (X, \Sigma, \mu) \rightarrow (Y, \Omega, \nu)$ be measurable.
- Let $f : Y \rightarrow \mathbb{R}$ be measurable.
- Suppose that $\nu = \mu \circ T^{-1}$ then for any $B \in \Omega$,
- $\int_{T^{-1}(B)} f \circ T \, d\mu = \int_B f \, d\nu$.
- Easy to check that the equation holds for $f = \chi_A$.
- Hence true for f a simple function by linearity of integration.
- Hence true for any positive measurable function by the monotone convergence theorem.
- Hence true for any measurable function by splitting.
The Radon-Nikodym theorem

- Fix a measurable space \((X, \Sigma)\) and two measures \(\mu, \nu\).
- We say \(\mu, \nu\) are *mutually singular* if there are disjoint measurable sets \(A, B\) with \(\mu(X \setminus A) = 0 = \nu(X \setminus B)\). We write \(\mu \perp \nu\).
- We say \(\nu\) is absolutely continuous with respect to \(\mu\), written \(\nu << \mu\), if \(\mu(A) = 0\) implies \(\nu(A) = 0\).
- If we define \(\nu\) by \(\nu(A) = \int_A f \, d\mu\) for some positive measurable function we will have \(\nu << \mu\).
- If both \(\mu, \nu\) are \((\sigma-)\) finite measures, then \(\nu\) can be decomposed into \(\nu = \nu_a + \nu_s\) with \(\nu_a << \mu\) and \(s \perp \mu\).
- There is a non-negative measurable function \(h\) such that \(\nu_a(A) = \int_A h \, d\mu\).
- If \(h'\) satisfies the same property as \(h\) then \(h, h'\) differ at most on a set of \(\mu\)-measure 0.
- \(h\) is called the Radon-Nikodym derivative of \(\nu_a\) with respect to \(\mu\) and is sometimes written as \(\frac{d\nu_a}{d\mu}\).
Product space $X \times Y$, joint probability measure P on $X \times Y$; marginals P_X, P_Y.

Suppose I know that the X coordinate is x, how do I revise my estimate of the probability distribution over Y?

Fix a measurable subset $A \subseteq X$, there is a measurable function $P_A : Y \rightarrow [0, 1]$ which satisfies: $\forall B \subseteq Y, P(A \times B) = \int_B P_A(y) dP_Y$.

Similarly there is a function P_B such that $\forall A \in \Sigma_X, P(A \times B) = \int P_B(x) dP_X$.

How do we know such things exist? Radon-Nikodym! $P(A \times \cdot) \ll P(X \times \cdot)$.

I will write $P(x, B)$ and $P(y, A)$.

Panangaden (McGill) Analysis of Probabilistic Systems Measure and Integration 26 / 28
We have a probability space \((X, \Sigma, P)\).

Suppose we have \(\Lambda \subset \Sigma\). I tell you for every \(B \in \Lambda\) whether the result is in \(B\) or not. How do we now estimate probabilities?

For any \(A \in \Sigma\), there is a \(\Lambda\)-measurable function, written \(P[A | \Lambda](\cdot)\) such that for any \(B \in \Lambda\) we have:

\[
P(A \cap B) = \int_B P[A | \Lambda](x) dP.
\]
Back to the product case: I wrote $P(x, B)$.
For fixed x it is a probability measure. For fixed B it is a measurable function.
Not quite! For a fixed countable family of measurable sets we get countable additivity almost everywhere.
But there are lots of countable families; we could end up with something that is not a proper measure anywhere!
We want something stronger than what RNT promises: regular conditional probabilities or disintegrations.
For disintegrations the statements of (2) are true everywhere.
How do we construct disintegrations? They can be constructed on spaces that are equipped with metric structure.
A Polish space is the topological space underlying a complete separable metric space. On Polish spaces disintegrations can always be constructed.