
Logic and Databases

Phokion G. Kolaitis

UC Santa Cruz & IBM Research - Almaden

Lecture 5

Alternative Semantics of Queries

I Bag Semantics

We focused on the containment problem for conjunctive
queries under bag semantics.

I Probabilistic Databases

We focused on the data complexity of conjunctive query on
tuple independence databases

Today, we will discuss
I Inconsistent Databases

The focus will be on the data complexity of conjunctive
queries in this framework.

2 / 40

Logic and Databases

I Two main uses of logic in databases:

I Logic is used as a database query language to express
questions asked against databases.

I Logic is used as a specification language to express
integrity constraints in databases.

I So far, we have discussed the use of logic as a database
query language.

I In what follows, we will discuss some aspects of the use of
logic as a specification language to express integrity
constraints.

3 / 40

Integrity Constraints in Databases

I Integrity Constraints are semantic restrictions that the data
at hand ought to obey.

I Extensive study of various types of integrity constraints in
relational databases during the 1970s and early 1980s:

I Key constraints and functional dependencies
I Inclusion dependencies, join dependencies, multi-valued

dependencies, ...

I Eventually, it was realized that all these different types of
dependencies can be specified in fragments of first-order
logic.

4 / 40

Two Unifying Classes of Integrity Constraints

Definition
I Equality-generating dependency (egd):

∀x(φ(x)→ xi = xj),
where φ(x) is a conjunction of atoms.

Special Cases:
Key constraints, functional dependencies.

I Tuple-generating dependency (tgd):
∀x(φ(x)→ ∃yψ(x,y)),

where φ(x) is a conjunction of atoms with vars. in x, and
ψ(x,y) is a conjunction of atoms with vars. in x and y.

Special Cases:
LAV (local-as-view) constraints, GAV (global-as-view)
constraints.

5 / 40

Study of Integrity Constraints in Databases

I Initial focus on the decidability and complexity of the
implication problem for integrity constraints:
Given Σ and Σ′, does Σ |= Σ′?

I More recent extensive study of egds and tgds in data
integration and data exchange.
They have been used to design schema-mapping
languages for formalizing data inter-operability tasks.

I More recent extensive study of the decidability and
complexity of query answering over inconsistent
databases, i.e., databases that violate integrity constraints
specified by egds and tgds.

6 / 40

Equality-Generating Dependencies

Definition

I Functional Dependency R : X → Y
If two tuples in R agree on X , then they agree onY .

I Key Constraint R : X → Y , where Y is the set of attributes
of R that are not in X .

Example R(A,B,C,D)

I Functional Dependency R : A,B → D as an egd:
∀a,b, c, c′,d ,d ′(R(a,b, c,d) ∧ R(a,b, c′,d ′)→ d = d ′)

I Key Constraint R : A,B → C,D as two egds:
∀a,b, c, c′,d ,d ′(R(a,b, c,d) ∧ R(a,b, c′,d ′)→ c = c′)
∀a,b, c, c′,d ,d ′(R(a,b, c,d) ∧ R(a,b, c′,d ′)→ d = d ′)

7 / 40

Inconsistent Databases

I In designing databases, one specifies a schema S and a
set Σ of integrity constraints on S.

I An inconsistent database is a database I that does not
satisfy Σ.

I Inconsistent databases arise in a variety of contexts and
for different reasons:

I For lack of support of particular integrity constraints.
I In data integration of heterogeneous data obeying different

integrity constraints.
I In data warehousing and in Extract-Transform-Load (ETL)

applications, where data has to be “cleaned” before it can
be processed.

8 / 40

Coping with Inconsistent Databases

Two different approaches:
I Data Cleaning: Based on heuristics or specific domain

knowledge, the inconsistent database is transformed to a
consistent one by modifying (adding, deleting, updating)
tuples in relations.

I This is the main approach in industry
(e.g., IBM InfoSphere Quality Stage, Microsoft DQS).

I More engineering than science as quite often arbitrary
choices have to be made.

I Database Repairs: A framework for coping with
inconsistent databases in a principled way and without
“cleaning” dirty data first.

9 / 40

Coping with Inconsistent Databases

Two different approaches:
I Data Cleaning: Based on heuristics or specific domain

knowledge, the inconsistent database is transformed to a
consistent one by modifying (adding, deleting, updating)
tuples in relations.

I This is the main approach in industry
(e.g., IBM InfoSphere Quality Stage, Microsoft DQS).

I More engineering than science as quite often arbitrary
choices have to be made.

I Database Repairs: A framework for coping with
inconsistent databases in a principled way and without
“cleaning” dirty data first.

9 / 40

Database Repairs

Definition (Arenas, Bertossi, Chomicki – 1999)
Σ a set of integrity constraints and I an inconsistent database.
A database J is a repair of I w.r.t. Σ if
I J is a consistent database (i.e., J |= Σ);

I J differs from I in a minimal way.

Fact
Several different types of repairs have been considered:
I Set-based repairs (subset, superset, ⊕-repairs).

I Cardinality-based repairs

I Attribute-based repairs

I Preferred repairs

10 / 40

Database Repairs

Definition (Arenas, Bertossi, Chomicki – 1999)
Σ a set of integrity constraints and I an inconsistent database.
A database J is a repair of I w.r.t. Σ if
I J is a consistent database (i.e., J |= Σ);

I J differs from I in a minimal way.

Fact
Several different types of repairs have been considered:
I Set-based repairs (subset, superset, ⊕-repairs).

I Cardinality-based repairs

I Attribute-based repairs

I Preferred repairs

10 / 40

Subset Repairs

Definition
Σ a set of integrity constraints and I an inconsistent database.
J is a subset-repair of I w.r.t. Σ if
I J ⊂ I
I J |= Σ (i.e., J is consistent)
I there is no J ′ such that J ′ |= Σ and J ⊂ J ′ ⊂ I.

Note
From now on, we will use the term repair, instead of the term
subset repair.

11 / 40

Subset Repairs

Example
Key constraint
Σ = {∀x∀y∀((R(x , y) ∧ R(x , z)→ y = z)}

Database
I = {R(a1,b1),R(a1,b2),R(a2,b1),R(a2,b2)}

I has four (subset) repairs w.r.t. Σ:

I J1 = {R(a1,b1),R(a2,b1)}
I J2 = {R(a1,b1),R(a2,b2)}
I J3 = {R(a1,b2),R(a2,b1)}
I J4 = {R(a1,b2),R(a2,b2)}.

Exponentially many repairs, in general.

12 / 40

Consistent Query Answering (CQA)

Definition (Arenas, Bertossi, Chomicki)
Σ a set of integrity constraints, q a query, and I a database.
The consistent answers of q on I w.r.t. Σ is the set

CON(q, I,Σ) =
⋂
{q(J) : J is a repair of I w.r.t. Σ}.

Note:

I The motivation comes from the semantics of queries in the
context of incomplete information and possible worlds.

I The consistent answers of q in I are the certain answers of
q on I, when the set of all possible worlds is the set of all
repairs of I w.r.t. Σ.

13 / 40

Consistent Query Answering (CQA)

Example (Revisited)
Σ = {∀x∀y∀z((R(x , y) ∧ R(x , z)→ y = z)}
I = {R(a1,b1),R(a1,b2),R(a2,b1),R(a2,b2)}

Recall that I has four repairs w.r.t. Σ:
I J1 = {R(a1,b1),R(a2,b1)}, J2 = {R(a1,b1),R(a2,b2)}
I J3 = {R(a1,b2),R(a2,b1)}, J4 = {R(a1,b2),R(a2,b2)}.

I If q(x) is the query ∃yR(x , y), then

CON(q, I,Σ) = {a1,a2}.

I If q(x) is the query ∃zR(z, x), then

CON(q, I,Σ) = ∅.

14 / 40

Overview of Research on Database Repairs

Main themes explored so far:

I Complexity of CQA for conjunctive queries:
From polynomial-time computability to undecidability.

I Repair Checking: Given I and J, is J a repair of I w.r.t. Σ?
From polynomial-time computability to coNP-completeness.

I Prototype CQA Systems for selected classes of constraints
and selected classes of queries (mainly, conjunctive
queries).

15 / 40

Complexity of CQA: A “Simple” Case Study

Definition Assume that
I Σ is a set of key constraints with one key per relation.
I q is a Boolean conjunctive query (no free variables).

CERTAINTY(q,Σ) is the following decision problem:
Given a database I, is CON(q, I,Σ) true?
(i.e., is q true on every repair of I?)

Fact
I Repair checking is in P (in fact, it is in L).

I CERTAINTY(q,Σ) is in coNP.

16 / 40

Complexity of CQA: An Illustration

Binary relations R and S having the first attribute as key, i.e.,

Σ = {R(u, v)∧R(u,w)→ v = w , S(u, v)∧S(u,w)→ v = w}.

I Let q1 be the Boolean query ∃x , y , z(R(x , y) ∧ S(y , z)).

I Let q2 be the Boolean query ∃x , y(R(x , y) ∧ S(y , x)).

I Let q3 be the Boolean query ∃x , y , z(R(x , y) ∧ S(z, y)).

Question:
What can we say about CERTAINTY(qi ,Σ), where i = 1,2,3?

17 / 40

Complexity of CQA: An Illustration

Binary relations R and S having the first attribute as key, i.e.,

Σ = {R(u, v)∧R(u,w)→ v = w , S(u, v)∧S(u,w)→ v = w}.

I Let q1 be the query ∃x , y , z(R(x , y) ∧ S(y , z)).
CERTAINTY(q1,Σ) is in P; in fact, it is FO-rewritable as
∃x , y , z(R(x , y) ∧ S(y , z) ∧ ∀y ′(R(x , y ′)→ ∃z ′S(y ′, z ′))).

I Let q2 be the query ∃x , y(R(x , y) ∧ S(y , x)).
CERTAINTY(q2,Σ) is in P, but it is not FO-rewritable.

I Let q3 be the query ∃x , y , z(R(x , y) ∧ S(z, y)).
CERTAINTY(q3,Σ) is coNP-complete.

18 / 40

Classifying the Complexity of CQA

Question: Can we classify the complexity of CERTAINTY(q,Σ)?

Conjecture (Dichotomy Conjecture for CERTAINTY(q,Σ))
If Σ is a set of key constraints with one key per relation and q is
a Boolean conjunctive query, then one of the following holds:
I CERTAINTY(q,Σ) is in P.
I CERTAINTY(q,Σ) is coNP-complete.

Moreover, the dichotomy is effective: we can decide in PTIME
whether CERTAINTY(q,Σ) is in P or it is coNP-complete.

19 / 40

Classifying the Complexity of CQA

Question: Can we classify the complexity of CERTAINTY(q,Σ)?

Conjecture (Dichotomy Conjecture for CERTAINTY(q,Σ))
If Σ is a set of key constraints with one key per relation and q is
a Boolean conjunctive query, then one of the following holds:
I CERTAINTY(q,Σ) is in P.
I CERTAINTY(q,Σ) is coNP-complete.

Moreover, the dichotomy is effective: we can decide in PTIME
whether CERTAINTY(q,Σ) is in P or it is coNP-complete.

19 / 40

Ladner’s Theorem and Dichotomies in Complexity

Theorem (Ladner - 1975)
If P 6= NP, then there is a decision problem Q such that
I Q is in NP, but not in P.
I Q is not NP-complete.

The Fine Structure of NP

NP-complete
not NP-complete, not in P

P

Dichotomy Conjecture for CERTAINTY(q,Σ)

↗ coNP-complete
CERTAINTY(q,Σ) not coNP-complete, not in P

↘ P

20 / 40

Ladner’s Theorem and Dichotomies in Complexity

Theorem (Ladner - 1975)
If P 6= NP, then there is a decision problem Q such that
I Q is in NP, but not in P.
I Q is not NP-complete.

The Fine Structure of NP

NP-complete
not NP-complete, not in P

P

Dichotomy Conjecture for CERTAINTY(q,Σ)

↗ coNP-complete
CERTAINTY(q,Σ) not coNP-complete, not in P

↘ P

20 / 40

Progress towards the Dichotomy for CERTAINTY(q,Σ)

Theorem (Koutris and Wijsen - 2015)
If Σ is a set of key constraints with one key per relation and q is
a Boolean self-join free conjunctive query, then one of the
following holds:
I CERTAINTY(q,Σ) is in P.
I CERTAINTY(q,Σ) is coNP-complete.

Moreover, this dichotomy is decidable in quadratic time.

Key Notion: The attack graph associated with Σ and q.

I The nodes of the attack graph are the atoms of q.
I The edges of the attack graph are determined by the

functional dependencies on the variables of an atom that
are implied by the keys of the other atoms.

21 / 40

Progress towards the Dichotomy for CERTAINTY(q,Σ)

Theorem (Koutris and Wijsen - 2015)
If Σ is a set of key constraints with one key per relation and q is
a Boolean self-join free conjunctive query, then one of the
following holds:
I CERTAINTY(q,Σ) is in P.
I CERTAINTY(q,Σ) is coNP-complete.

Moreover, this dichotomy is decidable in quadratic time.

Key Notion: The attack graph associated with Σ and q.

I The nodes of the attack graph are the atoms of q.
I The edges of the attack graph are determined by the

functional dependencies on the variables of an atom that
are implied by the keys of the other atoms.

21 / 40

The Attack Graph

Σ a set of key constraints with one key per relation.
q a Boolean self-join free conjunctive query

I K (q) = {key(F)→ Var(F) : F is an atom of q}.
I F+,q = {x ∈ Var(q) : K (q \ F) |= key(F)→ x}.
I F attacks G, denoted F G, if there is a sequence

F1, . . .Fn such that
I F1 = F and Fn = G.
I Var(Fi) ∩ Var(Fi+1) 6⊆ F+,q , for every i ≤ n − 1,

I An attack F G is weak if K (q) |= key(F)→ key(G);
otherwise, the attack is strong.

I A cycle in the attack graph is strong if it contains at least
one strong attack.

22 / 40

Progress towards the Dichotomy for CERTAINTY(q,Σ)

Theorem (Koutris and Wijsen - 2015)
Let Σ be a set of key constraints with one key per relation and
let q is a Boolean self-join free conjunctive query.
I If the attack graph is acyclic, then

CERTAINTY(q,Σ) is in P and, in fact, it FO-rewritable;
otherwise,
CERTAINTY(q,Σ) is L-hard, hence it is not FO-rewritable.

I If the attack graph contains no strong cycle, then
CERTAINTY(q,Σ) is in P.

I If the attack graph contains a strong cycle, then
CERTAINTY(q,Σ) is coNP-complete.

Moreover, these conditions can be checked in quadratic time.

23 / 40

Applying the Koutris-Wisjen Dichotomy Theorem
Theorem (K . . . and Pema - 2012)
Assume Σ consists of a key for R and a key for S, and let q be a
Boolean query with two atoms, one R-atom and one S-atom. If
CERTAINTY(q,Σ) is not FO-rewritable, then the following hold:
I If key(R) ∪ key(S) ⊆ Var(R) ∩ Var(S), then

CERTAINTY(q,Σ) is in P.
I If key(R) ∪ key(S) 6⊆ Var(R) ∩ Var(S), then

CERTAINTY(q,Σ) is coNP-complete.

Examples:
I Let q2 be the query ∃x , y(R(x , y) ∧ S(y , x)).

CERTAINTY(q2,Σ) is in P, because
key(R) ∪ key(S) = {x , y}, Var(R) ∩ Var(S) = {x , y}.

I Let q3 be the query ∃x , y , z(R(x , y) ∧ S(z, y)).
CERTAINTY(q3,Σ) is coNP-complete, because
key(R) ∪ key(S) = {x , z}, Var(R) ∩ Var(S) = {y}.

24 / 40

Applying the Koutris-Wisjen Dichotomy Theorem
Theorem (K . . . and Pema - 2012)
Assume Σ consists of a key for R and a key for S, and let q be a
Boolean query with two atoms, one R-atom and one S-atom. If
CERTAINTY(q,Σ) is not FO-rewritable, then the following hold:
I If key(R) ∪ key(S) ⊆ Var(R) ∩ Var(S), then

CERTAINTY(q,Σ) is in P.
I If key(R) ∪ key(S) 6⊆ Var(R) ∩ Var(S), then

CERTAINTY(q,Σ) is coNP-complete.

Examples:
I Let q2 be the query ∃x , y(R(x , y) ∧ S(y , x)).

CERTAINTY(q2,Σ) is in P, because
key(R) ∪ key(S) = {x , y}, Var(R) ∩ Var(S) = {x , y}.

I Let q3 be the query ∃x , y , z(R(x , y) ∧ S(z, y)).
CERTAINTY(q3,Σ) is coNP-complete, because
key(R) ∪ key(S) = {x , z}, Var(R) ∩ Var(S) = {y}.

24 / 40

Beyond the Koutris-Wijsen Dichotomy Theorem

Open Problems

I Prove the Dichotomy Conjecture for CERTAINTY(q,Σ),
where Σ is a set of keys, one for each relation, and q is an
arbitrary Boolean conjunctive query.

I Prove a Dichotomy Theorem for CERTAINTY(q,Σ),
where Σ is a set of functional dependencies and q is a
union of Boolean conjunctive queries.

25 / 40

Beyond Keys and Functional Dependencies

The Broader Classification Challenge:
Classify the complexity of CERTAINTY(q,Σ), where q is a
FO-query and Σ is a “well-behaved” set of egds and tgds.

Fontaine - 2015:
Discovered an a priori unexpected connection between
Consistent Query Answering and Constaint Satisfaction
(equivalently, the query complexity of conjunctive queries).

Theorem (Fontaine - 2015)
If the dichotomy theorem holds for CERTAINTY(q,Σ), where Σ
is a finite set of GAV constraints and q is a union of Boolean
conjunctive queries, then the Feder-Vardi Conjecture is true,
i.e., a dichotomy theorem holds for the family PD(CQ) of
problems about the query complexity of CQ-evaluation.

26 / 40

Beyond Keys and Functional Dependencies

The Broader Classification Challenge:
Classify the complexity of CERTAINTY(q,Σ), where q is a
FO-query and Σ is a “well-behaved” set of egds and tgds.

Fontaine - 2015:
Discovered an a priori unexpected connection between
Consistent Query Answering and Constaint Satisfaction
(equivalently, the query complexity of conjunctive queries).

Theorem (Fontaine - 2015)
If the dichotomy theorem holds for CERTAINTY(q,Σ), where Σ
is a finite set of GAV constraints and q is a union of Boolean
conjunctive queries, then the Feder-Vardi Conjecture is true,
i.e., a dichotomy theorem holds for the family PD(CQ) of
problems about the query complexity of CQ-evaluation.

26 / 40

Beyond Keys and Functional Dependencies

The Broader Classification Challenge:
Classify the complexity of CERTAINTY(q,Σ), where q is a
FO-query and Σ is a “well-behaved” set of egds and tgds.

Fontaine - 2015:
Discovered an a priori unexpected connection between
Consistent Query Answering and Constaint Satisfaction
(equivalently, the query complexity of conjunctive queries).

Theorem (Fontaine - 2015)
If the dichotomy theorem holds for CERTAINTY(q,Σ), where Σ
is a finite set of GAV constraints and q is a union of Boolean
conjunctive queries, then the Feder-Vardi Conjecture is true,
i.e., a dichotomy theorem holds for the family PD(CQ) of
problems about the query complexity of CQ-evaluation.

26 / 40

Global-As-View (GAV) Constraints

Definition:

I Recall that a tgd is a constraint of the form
∀x(φ(x)→ ∃yψ(x,y)),

where φ(x) and ψ(x,y) are conjunctions of atoms.

I A global-as-view (GAV) constraint is a tgd of the form
∀x(φ(x)→ T (x)),

where T (x) is a single atom.
In effect, a GAV constraint is a Horn clause.

Examples:

I ∀x , y(R(x , y)→ R(y , x))

I ∀x , y , z(R(x , z) ∧ S(z, y)→ T (x , y))

27 / 40

Constraint Satisfaction and CQA for GAV Constraints

Fact
If Σ is a finite set of GAV constraints and q is a union of Boolean
conjunctive queries, then ⊕-CERTAINTY(q,Σ) is in coNP.

Theorem (Fontaine - 2015)
For every relational structure B, there is a finite set Σ of GAV
constraints and a union q of Boolean conjunctive queries, such
that CSP(B) is PTIME-equivalent to ⊕-CERTAINTY(q,Σ).

Corollary
If the dichotomy theorem holds for ⊕-CERTAINTY(q,Σ), where
Σ is a finite set of GAV constraints and q is a union of Boolean
conjunctive queries, then the dichotomy theorem holds for
CSP(B), where B is a relational structure.

28 / 40

Constraint Satisfaction and CQA for GAV Constraints

Fact
If Σ is a finite set of GAV constraints and q is a union of Boolean
conjunctive queries, then ⊕-CERTAINTY(q,Σ) is in coNP.

Theorem (Fontaine - 2015)
For every relational structure B, there is a finite set Σ of GAV
constraints and a union q of Boolean conjunctive queries, such
that CSP(B) is PTIME-equivalent to ⊕-CERTAINTY(q,Σ).

Corollary
If the dichotomy theorem holds for ⊕-CERTAINTY(q,Σ), where
Σ is a finite set of GAV constraints and q is a union of Boolean
conjunctive queries, then the dichotomy theorem holds for
CSP(B), where B is a relational structure.

28 / 40

Pragmatics of Consistent Query Answering

Note
I CQA has been criticized as being too conservative: too

many repairs may imply too few answers.
I CQA does not differentiate between repairs: all repairs are

treated as equals.

Staworko, Chomicki, and Marcinkowski - 2012
Introduced prioritized repairing that incorporates preferences
between facts: if facts f and g conflict, we may prefer to resolve
the conflict by deleting g (and not f).

I f may come from a more reliable source.
I f may be more current.

29 / 40

Pragmatics of Consistent Query Answering

Note
I CQA has been criticized as being too conservative: too

many repairs may imply too few answers.
I CQA does not differentiate between repairs: all repairs are

treated as equals.

Staworko, Chomicki, and Marcinkowski - 2012
Introduced prioritized repairing that incorporates preferences
between facts: if facts f and g conflict, we may prefer to resolve
the conflict by deleting g (and not f).

I f may come from a more reliable source.
I f may be more current.

29 / 40

Prioritizing Inconsistent Databases

Definition: Let Σ be a set of functional dependencies (FDs).
An inconsistent prioritizing database is a pair (I,�), where
I I is an inconsistent database w.r.t. Σ.
I � is an acyclic binary relation on the facts of I such that if

f � g, then f and g violate one of the FDs in Σ.

Intuition:

I f � g should be interpreted as “between the conflicting
facts f and g, we prefer to keep f rather than g”.

I A preference relation between conflicting facts induces a
preference relation between repairs.

I Thus, we can focus on “optimally preferred” repairs.

30 / 40

Globally Optimal Repairs

Definition (Staworko, Chomicki, Marcinkowski - 2012)
Σ set of FDs, (I,�) an inconsistent prioritizing database.

I If J, K are two different consistent sub-databases of I, then
J is a global improvement of K if for every fact g ∈ K \ J,
there is a fact f ∈ J \ K such that f � g.

J \ K f
J ∩ K
K \ J g

f � g

I J is a globally optimal repair of I (in short, a g-repair of I) if
J is consistent and has no global improvement.

Note: Every g-repair of (I,�) is a (subset) repair of I.

31 / 40

course, term→ instructor and instructor, term→ course

course term instructor
f1 DB Fall Anna
f2 DB Fall Elsa
f3 PL Fall Elsa

I f4 PL Fall Anna
f5 PL Spring John
f6 DB Spring John
f7 PL Spring George

Preferences
f2 � f1
f4 � f3
f5 � f6
f5 � f7

course term instructor
f1 DB Fall Anna

K f3 PL Fall Elsa K is a repair of I
f5 PL Spring John

course term instructor
f2 DB Fall Elsa

J f4 PL Fall Anna J is a g-repair of (I,�)
f5 PL Spring John

32 / 40

Repair Checking

Σ a fixed set of functional dependencies (FDs).

I REPAIR CHECKING: Given I and J, is J a repair of I?
I Recall that REPAIR CHECKING in P (in fact, it is in L).

Definition
g-REPAIR CHECKING: Given (I,�) and J, is J a g-repair of I?

I It is easy to see that g-REPAIR CHECKING is in coNP.

Theorem (Staworko, Chomicki, Marcinkowski - 2012)
There is a set Σ of four FDs on a relation of arity 8 such that
g-REPAIR CHECKING is coNP-complete.

Question:
Can we classify the complexity of g-REPAIR CHECKING?

33 / 40

Repair Checking

Σ a fixed set of functional dependencies (FDs).

I REPAIR CHECKING: Given I and J, is J a repair of I?
I Recall that REPAIR CHECKING in P (in fact, it is in L).

Definition
g-REPAIR CHECKING: Given (I,�) and J, is J a g-repair of I?

I It is easy to see that g-REPAIR CHECKING is in coNP.

Theorem (Staworko, Chomicki, Marcinkowski - 2012)
There is a set Σ of four FDs on a relation of arity 8 such that
g-REPAIR CHECKING is coNP-complete.

Question:
Can we classify the complexity of g-REPAIR CHECKING?

33 / 40

Dichotomy Theorem for g-Repair Checking

Theorem (Fagin, Kimelfeld, K . . . - 2015)
Let Σ be a set of FDs on a collection of relations.
I If Σ induces a single FD or two key constraints on each

relation, then g-REPAIR CHECKING is solvable in P.
I Otherwise, g-REPAIR CHECKING is coNP-complete.

Moreover, this dichotomy is effective.

Note
This is a data complexity result: the constraints are held fixed,
the input consists of (I,�) and J.

34 / 40

Illustrating the Dichotomy for g-Repair Checking

Courses
course term instructor

Functional Dependencies Complexity
course, term→ instructor P
instructor, term→ course (two keys)

instructor→ course P
(one FD)

course→ instructor coNP-complete
instructor→ course (two non-key FDs)

35 / 40

Proof Strategy for the Intractability Side

Two main steps:

1. Proof of intractability for six basic sets of FDs.
All six basic sets of FDs are for a ternary relation
R(A,B,C):

A→ B , B → A A→ B , B → C
A→ B , C → B AB → C , C → B

AB → C , AC → B , BC → A → A , B → C

2. Proof of intractability for an arbitrary set of FDs,
Use case analysis and distinct reductions from one of the
six basic sets of FDs.

36 / 40

Open Problems for Preferred Repairs

I Classify the complexity of g-CERTAINTY(q,Σ), where q is a
Boolean conjunctive query and Σ is a set of FDs.

I Is there a Trichotomy Theorem for g-CERTAINTY(q,Σ)?
(P, coNP-complete, Πp

2-complete)

I What if the preference relation � is specified syntactically?

I Is there a “useful” language for expressing preferences
such that g-repair checking and g-CERTAINTY(q,Σ) are of
lower complexity?

37 / 40

Topics Covered

I Logic and Database Query Languages
I Relational Algebra and Relational Calculus
I Conjunctive Queries and their variants
I Datalog

I Query Evaluation, Query Containment, Query Equivalence
I Other aspects of Conjunctive Query Evaluation

I Acyclic joins, treewidth, bounds on the size of natural joins
I Alternative Semantics

I Bag Databases, Probabilistic Databases, Inconsistent
Databases

I Emphasis on the interplay between databases, logic, and
computational complexity

38 / 40

Topics Not Covered

I Automata-theoretic techniques in databases
I Reasoning about database dependencies (the implication

problem)
I Incomplete databases
I Information integration, data exchange, data warehousing
I Data privacy and security
I Data provenance

Guest Lecture by Val Tannen

I Beyond relational databases
I Semi-structured data and XML
I Graph databases, web data

39 / 40

Logic and Databases are inextricably intertwined

∀|ψ ⟩

NP

P(A|B
)

⋈

40 / 40

