Logic and Databases

Phokion G. Kolaitis

UC Santa Cruz & IBM Research – Almaden

Lecture 4 – Part 1

1

Thematic Roadmap

- ✓ Logic and Database Query Languages
 - Relational Algebra and Relational Calculus
 - Conjunctive queries and their variants
 - Datalog
- ✓ Query Evaluation, Query Containment, Query Equivalence
 - Decidability and Complexity
- ✓ Other Aspects of Conjunctive Query Evaluation
- Alternative Semantics of Queries
 - Bag Databases: Semantics and Conjunctive Query Containment
 - Probabilistic Databases: Semantics and Dichotomy Theorems for Conjunctive Query Evaluation
 - Inconsistent Databases: Semantics and Dichotomy Theorems

Alternative Semantics

- So far, we have examined logic and databases under classical semantics:
 - The database relations are sets.
 - Tarskian semantics are used to interpret queries definable be first-order formulas.
- Over the years, several different alternative semantics of queries have been investigated. We will discuss three such scenarios:
 - The database relations can be bags (multisets).
 - The databases may be probabilistic.
 - The databases may be inconsistent.

Sets vs. Multisets

Relation EMPLOYEE(name, dept, salary)

• Relational Algebra Expression:

 $\pi_{\text{salary}} \left(\sigma_{\text{dept} = \text{CS}} \left(\text{EMPLOYEE} \right) \right)$

• SQL query:

SELECT salary FROM EMPLOYEE WHERE dpt = 'CS'

- SQL returns a bag (multiset) of numbers in which a number may appear several times, provided different faculty had the same salary.
- SQL does not eliminate duplicates, in general, because:
 - Duplicates are important for aggregate queries (e.g., average)
 - Duplicate elimination takes nlogn time.

Relational Algebra Under Bag Semantics

Operation	Multiplicity	• R ₁	<u>A B</u> 1 2	
Union $R_1 \cup R_2$	m ₁ + m ₂			1 2 2 3
$\frac{\text{Intersection}}{R_1 \cap R_2}$	min(m ₁ , m ₂)	• R ₂		<u>BC</u> 24 25
Product	$m_1 \times m_2$			20
$R_1 \times R_2$		• (R	₁ ⋈ R₂)	<u>ABC</u> 124
Projection and Selection	Duplicates are not eliminated		1 2 4 1 2 5 1 2 5	

Conjunctive Queries Under Bag Semantics

Chaudhuri & Vardi – 1993 Optimization of *Real* Conjunctive Queries

- Called for a re-examination of conjunctive-query optimization under bag semantics.
- In particular, they initiated the study of the containment problem for conjunctive queries under bag semantics.
- This problem has turned out to be *much more challenging* than originally perceived.

PROBLEMS

Problems worthy of attack prove their worth by hitting back.

in: Grooks by Piet Hein (1905-1996)

Query Containment Under Set Semantics

Class of Queries	Complexity of Query Containment	
Conjunctive Queries	NP-complete Chandra & Merlin – 1977	
Unions of Conjunctive Queries	NP-complete Sagiv & Yannakakis - 1980	
Conjunctive Queries with \neq , \leq , \geq	Π ₂ ^p -complete Klug 1988, van der Meyden -1992	
First-Order (SQL) queries	Undecidable Trakhtenbrot - 1949	

Bag Semantics vs. Set Semantics

- For bags R_1 , R_2 : $R_1 \subseteq_{BAG} R_2$ if $m(a,R_1) \le m(a,R_2)$, for every tuple a.
- Q^{BAG}(D) : Result of evaluating Q on (bag) database D.
- $Q_1 \subseteq_{BAG} Q_2$ if for every (bag) database D, we have that $Q_1^{BAG}(D) \subseteq_{BAG} Q_2^{BAG}(D)$.

Fact:

- $Q_1 \subseteq_{BAG} Q_2$ implies $Q_1 \subseteq Q_2$.
- The converse does not always hold.

Bag Semantics vs. Set Semantics

Fact: $Q_1 \subseteq Q_2$ does not imply that $Q_1 \subseteq_{BAG} Q_2$.

Example:

- Q₁(x) :- P(x), T(x)
- Q₂(x) :- P(x)
- $Q_1 \subseteq Q_2$ (obvious from the definitions)
- $\bullet \ Q_1 \not \subseteq_{BAG} Q_2$
- Consider the (bag) instance D = {P(a), T(a), T(a)}. Then:
 - $Q_1(D) = \{a,a\}$
 - $Q_2(D) = \{a\}$, so $Q_1(D) \notin Q_2(D)$.

Query Containment under Bag Semantics

- Chaudhuri & Vardi 1993 stated that: Under bag semantics, the containment problem for conjunctive queries is Π₂^p-hard.
- Problem:
 - What is the exact complexity of the containment problem for conjunctive queries under bag semantics?
 - Is this problem decidable?

Query Containment Under Bag Semantics

- 23 years have passed since the containment problem for conjunctive queries under bag semantics was raised.
- Several attacks to solve this problem have failed.
- At least two technically flawed PhD theses on this problem have been produced.
- Chaudhuri and Vardi have withdrawn the claimed Π_2^p -hardness of this problem; no one has provided a proof.

Query Containment Under Bag Semantics

• The containment problem for conjunctive queries under bag semantics remains **open** to date.

- However, progress has been made towards the containment problem under bag semantics for the two main extensions of conjunctive queries:
 - Unions of conjunctive queries
 - Conjunctive queries with \neq

Unions of Conjunctive Queries

Theorem (loannidis & Ramakrishnan – 1995): Under bag semantics, the containment problem for unions of conjunctive queries is **undecidable**.

Hint of Proof:

Reduction from Hilbert's 10th Problem.

Hilbert's 10th Problem

 Hilbert's 10th Problem – 1900 (10th in Hilbert's list of 23 problems)

In effect, Hilbert's 10th Problem is: Find an algorithm for the following problem: Given a polynomial $P(x_1,...,x_n)$ with integer coefficients, does it have an all-integer solution?

Hilbert's 10th Problem

Hilbert's 10th Problem – 1900

(10th in Hilbert's list of 23 problems)

Find an algorithm for the following problem:

Given a polynomial $P(x_1,...,x_n)$ with integer coefficients, does it have an all-integer solution?

• Y. Matiyasevich – 1971

(building on M. Davis, H. Putnam, and J. Robinson)

Hilbert's 10th Problem is undecidable, hence no such algorithm exists.

Hilbert's 10th Problem

- Fact: The following variant of Hilbert's 10th Problem is undecidable:
 - Given two polynomials p₁(x₁,...x_n) and p₂(x₁,...x_n) with positive integer coefficients and no constant terms, is it true that p₁ ≤ p₂?
 In other words, is it true that p₁(a₁,...,a_n) ≤ p₂(a₁,...a_n), for all positive integers a₁,...,a_n?
- Thus, there is no algorithm for deciding questions like: - Is $3x_1^4x_2x_3 + 2x_2x_3 \le x_1^6 + 5x_2x_3^2$?

Unions of Conjunctive Queries

Theorem (loannidis & Ramakrishnan – 1995): Under bag semantics, the containment problem for unions of conjunctive queries is **undecidable**.

Hint of Proof:

- Reduction from the previous variant of Hilbert's 10th Problem:
 - Use joins of unary relations to encode monomials (products of variables).
 - Use unions to encode sums of monomials.

Unions of Conjunctive Queries

Example: Consider the polynomial $3x_1^4x_2x_3 + 2x_2x_3$

- The monomial x₁⁴x₂x₃ is encoded by the conjunctive query P₁(w), P₁(w), P₁(w), P₁(w), P₂(w), P₃(w).
- The monomial x₂x₃ is encoded by the conjunctive query P₂(w),P₃(w).
- The polynomial 3x₁⁴x₂x₃ + 2x₂x₃ is encoded by the union having:
 - three copies of P₁(w), P₁(w), P₁(w), P₁(w), P₂(w), P₃(w) and
 - two copies of $P_2(w), P_3(w)$.

Complexity of Query Containment

Class of Queries	Complexity – Set Semantics	Complexity – Bag Semantics
Conjunctive queries	NP-complete CM – 1977	
Unions of conj. queries	NP-complete SY - 1980	Undecidable IR - 1995
Conj. queries with \neq , \leq , \geq	П ₂ ^p -complete vdM - 1992	
First-order (SQL) queries	Undecidable Trakhtenbrot - 1949	Undecidable

Conjunctive Queries with ≠

Theorem (Jayram, K ..., Vee – 2006): Under bag semantics, the containment problem for conjunctive queries with \neq is **undecidable**.

In fact, this problem is **undecidable** even if

- the queries use only a single relation of arity 2;
- the number of inequalities in the queries is at most some fixed (albeit huge) constant.

Conjunctive Queries with ≠

Proof Idea:

Reduction from a variant of Hilbert's10th Problem:

Given homogeneous polynomials $P_1(x_1,...,x_{59})$ and $P_2(x_1,...,x_{59})$ both with integer coefficients and both of degree 5, is $P_1(x_1,...,x_{59}) \leq (x_1)^5 P_2(x_1,...,x_{59})$, for all integers $x_1,...,x_{59}$?

Proof Idea (continued)

- Given polynomials P₁ and P₂
 - Both with integer coefficients
 - Both homogeneous, degree 5
 - Both with at most n=59 variables
- We want to find Q_1 and Q_2 such that
 - Q_1 and Q_2 are conjunctive queries with inequalities \neq
 - $\mathsf{P}_{1}(\mathsf{x}_{1}, \dots, \mathsf{x}_{59}) \leq (\mathsf{x}_{1})^{5} \mathsf{P}_{2}(\mathsf{x}_{1}, \dots, \mathsf{x}_{59})$

for all integers $x_1, ..., x_{59}$

if and only if

 $Q_1(D) \subseteq_{BAG} Q_2(D)$ for all (bag) databases D.

Proof Outline:

Proof is carried out in three steps.

Step 1: Only consider DBs of a special form. Show how to use conjunctive queries to encode polynomials and reduce Hilbert's 10th Problem to conjunctive query containment over databases of special form (**no** inequalities are used!)

Step 2: Arbitrary databases

Use inequalities \neq in the queries to achieve the following:

- If a database D is of special form, then we are back to the previous case.
- If a database D is not of special form, then $Q_1(D) \subseteq_{BAG} Q_2(D)$.

Step 3: Show that we only need a single relation of arity **2**.

Additional Comments

- The reduction uses seven different "control" gadgets.
- In Step 2, inequalities \neq are used in both queries.
- Number of inequalities ≠ depends on size of special-form DBs, not counting the tuples in the VALUE table.
 - Hence, the number of inequalities depends on the degree of polynomials and the number of variables.
 - It is a huge constant (about 59^{10}).

Complexity of Query Containment

Class of Queries	Complexity – Set Semantics	Complexity – Bag Semantics
Conjunctive queries	NP-complete CM – 1977	Open
Unions of conj. queries	NP-complete SY - 1980	Undecidable IR - 1995
Conj. queries with \neq , \leq , \geq	П ₂ ^p -complete vdM - 1992	Undecidable JKV - 2006
First-order (SQL) queries	Undecidable Trakhtenbrot - 1949	Undecidable

Subsequent Developments

- Some progress has been made towards identifying special classes of conjunctive queries for which the containment problem under bag semantics is decidable.
 - Afrati, Damigos, Gergatsoulis 2010
 - Projection-free conjunctive queries.
 - Kopparty and Rossman 2011
 - A large class of boolean conjunctive queries on graphs.

The Containment Problem for Boolean Queries

• Note:

For boolean conjunctive queries, the containment problem under bag semantics is equivalent to the Homomorphism Domination Problem.

- The Homomorphism Domination Problem for graphs Given two graphs G and H, is it true that # Hom(G,T) ≤ # Hom(H,T), for every graph T? (where,
 - # Hom(G,T) = number of homomorphisms from G to T
 - # Hom(H,T) = number of homomorphisms from H to T.)

The Homomorphism Domination Problem

Theorem (Kopparty and Rossman – 2011):

 There is an algorithm to decide, given a series-parallel graph G and a chordal graph H, whether or not # Hom(G,T) ≤ # Hom(H,T), for all directed graphs T.

Equivalently,

• The conjunctive query containment problem $Q_1 \subseteq_{BAG} Q_2$ is decidable for boolean conjunctive queries Q_1 and Q_2 such that the canonical database D^{Q1} is a series-parallel graph and the canonical database D^{Q2} is a chordal graph.

Note:

The proof using conditional entropy and linear programming.

Set Semantics vs. Bag Semantics

Question: What is the complexity of conjunctive query evaluation and of conjunctive query equivalence under bag semantics?

Problem	Set Semantics	Bag Semantics
CQ Evaluation Combined Complexity / Query Complexity	NP-complete	#P-complete
CQ Equivalence	NP-complete	GRAPH ISOMORPHISM - complete
CQ Containment	NP-complete	Open

Backup Slides

Conjunctive Queries with \neq

Theorem: Jayram, K ..., Vee – 2006 Under bag semantics, the containment problem for conjunctive queries with \neq is **undecidable**.

In fact, this problem is **undecidable** even if

- the queries use only a single relation of arity 2;
- the number of inequalities in the queries is at most some fixed (albeit huge) constant.

Conjunctive Queries with ≠

Proof Idea:

Reduction from a variant of Hilbert's10th Problem:

Given homogeneous polynomials $P_1(x_1,...,x_{59})$ and $P_2(x_1,...,x_{59})$ both with integer coefficients and both of degree 5, is $P_1(x_1,...,x_{59}) \leq (x_1)^5 P_2(x_1,...,x_{59})$, for all integers $x_1,...,x_{59}$?

Proof Idea (continued)

- Given polynomials P₁ and P₂
 - Both with integer coefficients
 - Both homogeneous, degree 5
 - Both with at most n=59 variables
- We want to find Q_1 and Q_2 such that
 - Q₁ and Q₂ are conjunctive queries with inequalities ≠ - P₁(x₁,..., x₅₉) ≤ (x₁)⁵ P₂(x₁,..., x₅₉) for all integers x₁, ..., x₅₉ if and only if Q₁(D) ⊆_{BAG} Q₂(D) for all (bag) databases D.

Proof Outline:

Proof is carried out in three steps.

Step 1: Only consider DBs of a special form. Show how to use conjunctive queries to encode polynomials and reduce Hilbert's 10th Problem to conjunctive query containment over databases of special form (**no** inequalities are used!)

Step 2: Arbitrary databases

Use inequalities \neq in the queries to achieve the following:

- If a database D is of special form, then we are back to the previous case.
- If a database D is not of special form, then $Q_1(D) \subseteq_{BAG} Q_2(D)$.
- **Step 3:** Show that we only need a single relation of arity 2.

Step 1: DBs of a Special Form - Example

Encode a homogeneous, 2-variable, degree 2 polynomial in which all coefficients are 1.

 $\mathsf{P}(\mathsf{x}_1,\mathsf{x}_2) = \mathsf{x}_1^2 + \mathsf{x}_1\mathsf{x}_2 + \mathsf{x}_2^2$

- DBs of special form:
 - Ternary relation TERM consisting of

• $(X_1, X_1, T_1), (X_1, X_2, T_2), (X_2, X_2, T_3)$

all special DBs have precisely this table for TERM

- Binary relation VALUE
 - Table for VALUE varies to encode different values for the variables x₁, x₂.
- Query Q :- TERM (u_1, u_2, t) , VALUE (u_1, v_1) , VALUE (u_2, v_2)

Step 1: DBs of a Special Form - Example

•
$$P(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^2$$

 $x_1 = 3, x_2 = 2, P(3, 2) = 3^2 + 3 \cdot 2 + 2^2 = 19.$

- Query Q :- TERM(u_1, u_2, t), VALUE(u_1, v_1), VALUE(u_2, v_2)
- DB D of special form:
 - TERM: $(X_1, X_1, T_1), (X_1, X_2, T_2), (X_2, X_2, T_3)$
 - VALUE: (X₁,1), (X₁,2), (X₁,3) (X₂,1), (X₂,2)

Claim: $P(3,2) = 19 = Q^{BAG}(D)$

Step 1: DBs of a Special Form - Example

- $P(3,2) = 3^2 + 3 \cdot 2 + 2^2 = 19$.
- Query Q :- TERM(u_1, u_2, t), VALUE(u_1, v_1), VALUE(u_2, v_2)
- D has TERM: $(X_1, X_1, T_1), (X_1, X_2, T_2), (X_2, X_2, T_3)$ VALUE: $(X_1, 1), (X_1, 2), (X_1, 3), (X_2, 1), (X_2, 2)$
- $Q^{BAG}(D) = 19$, because:
 - $t \rightarrow T_1$, $u_1 \rightarrow X_1$, $u_2 \rightarrow X_1$. Hence: $v_1 \rightarrow 1,2$, or 3 and $v_2 \rightarrow 1$ or 2, so we get 3² witnesses.
 - $t \rightarrow T_2$, $u_1 \rightarrow X_1$, $u_2 \rightarrow X_2$. Hence: $v_1 \rightarrow 1,2$, or 3 and $v_2 \rightarrow 1$ or 2, so we get 3.2 witnesses.
 - $t \rightarrow T_3$, $u_1 \rightarrow X_2$, $u_2 \rightarrow X_2$. Hence:

 $v_1 \rightarrow 1$ or 2, and $v_2 \rightarrow 1$ or 2, so we get 2^2 witnesses.

Step 1: Complete Argument and Wrap-up

- Previous technique only works if all coefficients are 1
- For the complete argument:
 - add a fixed table for every term to the DB;
 - encode coefficients in the query;
 - only table for VALUE can vary.
- Summary:
 - If the database has a special form, then we can encode separately homogeneous polynomials

 P_1 and P_2 by conjunctive queries Q_1 and Q_2 .

- By varying table for VALUE, we vary the variable values.
- No ≠-constraints are used in this encoding; hence, conjunctive query containment is undecidable, if restricted to databases of the special form.

Step 2: Arbitrary Databases

Idea:

Use inequalities \neq in the queries to achieve the following:

- If a database D is of special form, then we are back to the previous case.
- If a database D is not of special form, then $Q_1(D) \subseteq_{BAG} Q_2(D)$ necessarily.

Step 2: Arbitrary Databases - Hint

- **1.** Ensure that certain "facts" in special-form DBs appear (else neither query is satisfied).
 - This is done by adding a part of the canonical query of specialform DBs as subgoals to each encoding query.
- **2.** Modify special-form DBs by adding gadget tuples to TERM and to VALUE.
 - TERM: $(X_1, X_1, T_1), (X_1, X_2, T_2), (X_2, X_2, T_3), (T_0, T_0, T_0)$
 - VALUE: $(X_1,1), (X_1,2), (X_1,3), (X_2,1), (X_2,2), (T_0,T_0)$
- **3.** Add extra subgoals to Q_2 , so that if D is not of special form, then Q_2 "benefits" more than Q_1 and, as a result, $Q_1(D) \subseteq_{BAG} Q_2(D)$.

Step 2: Arbitrary Databases - Example

- $P_1(X_1, X_2) = X_1^2 + X_1 X_2 + X_2^2$
- Poly₁(u₁,u₂,t) :- TERM(u₁,u₂,t), VALUE(u₁,v₁), VALUE(u₂,v₂) the query encoding P₁ on special-form DBs.
 - TERM: $(X_1, X_1, T_1), (X_1, X_2, T_2), (X_2, X_2, T_3), (T_0, T_0, T_0)$
 - VALUE: $(X_1,1), (X_1,2), (X_1,3), (X_2,1), (X_2,2), (T_0, T_0)$
- $Q_1 := Poly_1(u_1, u_2, t)$
- Q_2 :- Poly₂(u₁, u₂, t), Poly₁(w₁, w₂, w), w \neq T_1, w \neq T_2, w \neq T_3

Fact:

- If DB is of special form, then Q_2 gets no advantage, because $w \to T_0, w_1 \to T_0, w_2 \to T_0$ is the only possible assignment.
- If DB not of special form, say it has an extra fact (X₂,X₁,T'), then both Q₁ and Q₂ can use it equally.

Step 2: Arbitrary Databases – Wrap-up

- Additional tricks are needed for the full construction.
- Full construction uses seven different control gadgets.
 - Additional complications when we encode coefficients.
 - Inequalities \neq are used in both queries.
- Number of inequalities ≠ depends on size of special-form DBs, not counting the facts in VALUE table.
 - Hence, depends on degree of polynomials, # of variables.
 - It is a huge constant (about 59^{10}).