Logic and Databases

Phokion G. Kolaitis

UC Santa Cruz & IBM Research - Almaden

Lecture 3

Aspects of Conjunctive Query Evaluation

Today, we will carry out a fine-grained examination of conjunctive query evaluation, which includes:

- The universal instance problem
- A closer look at the query complexity of conjunctive query evaluation.
- Islands of tractability for the combined complexity of conjunctive query evaluation.
- A brief look at the parameterized complexity of conjunctive query evaluation.
- Tight estimates on the size of natural joins.

The Universal Instance Problem

- If S is a relation, then atr(S) is the list of attributes of S The Universal Instance Problem: Given relations $R_1, R_2, ..., R_m$, is there a relation R such that for every $i \le m$, $R_i = \pi_{atr(Ri)}(R)$?
- Such an R is called a universal instance for R₁, R₂,...,R_m
- In this case, we say that $R_1, R_2, ..., R_m$ are join-consistent. Lemma 1: If R is a universal instance for $R_1, R_2, ..., R_m$, then $R \subseteq R_1 \bowtie R_2 \bowtie ... \bowtie R_m$

Lemma 2: The following statements are equivalent:

- 1. A universal instance for $R_1, R_2, ..., R_m$ exists.
- 2. $R_1 \bowtie R_2 \bowtie ... \bowtie R_m$ is a universal instance for $R_1, R_2, ..., R_m$

The Universal Instance Problem

Example: R(A,B), S(B,C), T(A,C)

R	А	В	S	В	С	Т	А	С
	0	0		0	0		0	1
	1	1		1	1		1	0

• Clearly, $R \bowtie S \bowtie T = \emptyset$

Hence (by Lemma 1 or by Lemma 2), no universal instance for R, S, T exists.

- Note that R, S, T have the same projections on their common attributes, namely, {0,1}.
- In fact, every pair from R, S, T has a universal instance

Complexity of the Universal Instance Problem

Theorem (Honeyman, Ladner, Yannakakis – 1980)

The Universal Instance Problem is NP-complete.

Proof of NP-hardness: Reduction from 3-Colorability

Given a graph G=(V,E): for each edge e = (u,v) of E, introduce a binary relation R_e with attributes u, v and populate with all valid 3-colorings for (u,v), i.e.,

 $\mathsf{R}_{\mathsf{e}} = \{ \ (\mathsf{r},\mathsf{b}), \ (\mathsf{b},\mathsf{r}), \ (\mathsf{r},\mathsf{g}), \ (\mathsf{g},\mathsf{r}), \ (\mathsf{b},\mathsf{g}), \ (\mathsf{g},\mathsf{b}) \ \}.$

Fact: G is 3-colorable if and only if

the relations R_e , $e \in E$, have a universal instance.

In fact, the 3-colorings of G are the members of the natural join

$$\bowtie_{e \in E} R_{e}$$

of all the relations ${\sf R}_{\sf e},\, e\in {\sf E}.$

The Complexity of Database Query Languages

	Relational Calculus	Conjunctive Queries	Unions of Conjunctive Queries	Datalog Queries
Query Eval: Combined / Query Complexity	PSPACE- complete	NP-complete	NP-complete	EXPTIME- complete
Query Eval.: Data Complexity	In LOGSPACE (hence, in P)	In LOGSPACE (hence, in P)	In LOGSPACE (hence, in P)	P-complete
Query Equivalence	Undecidable	NP-complete	NP-complete	Undecidable
Query Containment	Undecidable	NP-complete	NP-complete	Undecidable

Conjunctive Query Evaluation: Summary

- Data Complexity of CQ-evaluation is in LOGSPACE (fixed conjunctive query q; the input is a database D).
- Combined Complexity of CQ-evaluation is NP-complete (fixed database D; the input is a conjunctive query q).
- Query Complexity of CQ-evaluation is NP-complete (the input is a conjunctive query q and a database D).

A Closer Look at the Query Complexity of CQs

Definition:

For every database D, let $P_D(CQ)$ be the following decision problem: Given a Boolean CQ q, does D \models q?

Theorem:

The query complexity of CQ-evaluation is NP-complete, i.e.,

- $P_D(CQ)$ is in NP, for every database D (but can be in P; e.g. $D = K_2$)
- $P_D(CQ)$ is NP-complete, for some databases D (e.g., D = K₃)

Feder-Vardi Dichotomy Conjecture (1993):

For every database D, one of the following holds:

- $P_D(CQ)$ is in P.
- $P_D(CQ)$ is NP-complete.

Moreover, this dichotomy is effective.

Ladner's Theorem and Complexity Dichotomies

- Ladner's Theorem (1975)
 - If $P \neq NP$, then there are decision problems T such that
 - T is in NP.
 - T is **not** in P.
 - T is **not** NP-complete.
- Feder-Vardi Dichotomy Conjecture (1993) restated: There is no database D for which P_D(CQ) is a Ladner-type decision problem.

Feder-Vardi Dichotomy Conjecture

- The Feder-Vardi Dichotomy Conjecture was originally formulated in the context of Constraint Satisfaction (viewed as the Homomorphism Problem).
- The Feder-Vardi Dichotomy Conjecture has been confirmed for several special cases, including
 - For databases D such that |adom(D)| = 2
 Schaefer 1978 (Generalized Satisfiability Problems)
 - For databases D such that |adom(D)| = 3
 Bulatov 2002
 - For undirected graphs D
 Hell and Nešetřil 1990
- The Feder-Vardi Dichotomy Conjecture remains open to date.

Islands of Tractability of CQ Evaluation

Major Research Program:

Identify tractable cases of the combined complexity of conjunctive query evaluation.

Note:

Over the years, this program has been pursued by two different research communities:

- The Database Theory community.
- The Constraint Satisfaction community. Explanation:

```
Constraint Satisfaction Problem

≡

Homomorphism Problem

≡

Conjunctive Query Evaluation
```

(Feder-Vardi, 1993)

```
(Chandra-Merlin, 1977)
```

An Early Large Island of Tractability

• In 1981, Mihalis Yannakakis discovered a large and useful tractable case of the Conjunctive Query Evaluation Problem.

Specifically,

• Yannakakis showed that the Query Evaluation Problem is tractable for Acyclic Conjunctive Queries.

Definition: A conjunctive query Q is acyclic if it has a join tree.

Definition: Let Q be a conjunctive query of the form

 $\mathsf{Q}(\boldsymbol{x}): \ \exists \ \boldsymbol{y} \ (\mathsf{R}_1(\boldsymbol{z}_1) \land \mathsf{R}_2(\boldsymbol{z}_2) \land ... \land \mathsf{R}_m(\boldsymbol{z}_m)).$

A join tree for Q is a tree T such that

- The nodes of T are the atoms $R_i(\mathbf{z}_i)$, $1 \le i \le m$, of Q.
- For every variable w occurring in Q, the set of the nodes of T that contain w forms a subtree of T; in other words, if a variable w occurs in two different atoms $R_j(z_j)$ and $R_k(z_k)$ of Q, then it occurs in each atom on the unique path of T joining $R_j(z_j)$ and $R_k(z_k)$.

- Path of length 4 is acyclic
 P4(x₁,x₄) : ∃ x₂ x₃ (E(x₁,x₂) ∧ E(x₂,x₃) ∧ E(x₃,x₄))
 Join tree is a path
- Cycle of length 4 is cyclic C4(): $\exists x_1 x_2 x_3 x_4(E(x_1,x_2) \land E(x_2,x_3) \land E(x_3,x_4) \land E(x_4,x_1))$
- The following query Q is acyclic
 Q(): ∃ x y z u v w
 (A(x,y,z) ∧ B(y,v) ∧ C(y,z,v) ∧ D(z,u,v) ∧ F(u,v,w))

$\begin{array}{rll} \mathsf{Q}(\;): & \exists \; x \; y \; z \; u \; v \; w \\ & & (\mathsf{A}(x,y,z) \; \land \; \mathsf{B}(y,v) \; \land \; \mathsf{C}(y,z,v) \; \land \; \mathsf{D}(z,u,v) \; \land \; \mathsf{F}(u,v,w)) \end{array}$

Theorem (Yannakakis – 1981) The Acyclic Conjunctive Query Evaluation Problem is tractable. More precisely, there is an algorithm for this problem having the following properties:

- If Q is a Boolean acyclic conjunctive query, then the algorithm runs in time O(|Q||D|).
- If Q is a k-ary acyclic conjunctive query, k ≥ 1, then the algorithm runs in time O(|Q||D||Q(D)|), i.e., it runs in input/output polynomial time (which is the "right" notion of tractability in this case).

Yannakakis' Algorithm

Dynamic Programming Algorithm

Input: Boolean acyclic conjunctive query Q, database D

- 1. Construct a join tree T of Q
- 2. Populate the nodes of T with the matching relations of D.
- 3. Traverse the tree T bottom up: For each node $R_k(z_k)$, compute the semi-joins of the (current) relation in the node $R_k(z_k)$ with the (current) relations in the children of the node $R_k(z_k)$.
- 4. Examine the resulting relation R at the root of T
 - If R is non-empty, then output Q(D) = 1 (D satisfies Q).
 - If R is empty, then output Q(D) = 0 (D does not satisfy Q).

Yannakakis' Algorithm

$\begin{array}{l} \mathsf{Q}(\):\ \exists\ x\ y\ z\ u\ v\ w\\ (\mathsf{A}(x,y,z)\ \land\ \mathsf{B}(y,v)\ \land\ \mathsf{C}(y,z,v)\ \land\ \mathsf{D}(z,u,v)\ \land\ \mathsf{F}(u,v,w)) \end{array}$

More on Yannakakis' Algorithm

- The join tree makes it possible to avoid exponential explosion in intermediate computations.
- The algorithm can be extended to non-Boolean conjunctive queries using two more traversals of the join tree.
- There are efficient algorithms for detecting acyclicity and computing a join tree.
 - Tarjan and Yannakakis 1984

Linear-time algorithm for detecting acyclicity and computing a join tree.

– Gottlob, Leone, Scarcello – 1998

Detecting acyclicity is in SL

(hence, by Reingold's Theorem detecting acyclicity is in L).

Subsequent Developments

Yannakakis' algorithm became the catalyst for numerous subsequent investigations in different directions, including:

- Direction 1: Identify the exact complexity of Boolean Acyclic Conjunctive Query Evaluation.
 - Yannakakis' algorithm is sequential (e.g., if the join tree is a path of length n, then n-1 semi-joins in sequence are needed).
 - Is Boolean Acyclic Conjunctive Query Evaluation P-complete? Is it in some parallel complexity class?
- Direction 2: Identify other tractable cases of Conjunctive Query Evaluation.

Complexity of Acyclic Conjunctive Query Evaluation

Theorem (Dalhaus – 1990)

Boolean Acyclic Conjunctive Query Evaluation is in NC².

Theorem (Gottlob, Leone, Scarcello - 1998) Boolean Acyclic Conjunctive Query Evaluation is LOGCFL-complete, where LOGCFL is the class of all problems having a logspace-reduction to some context-free language.

Fact:

- $\label{eq:logCFL} \bullet \ \mathsf{NL} \ \subseteq \ \mathsf{LOGCFL} \ \subseteq \ \mathsf{AC^1} \subseteq \mathsf{NC^2} \ \subseteq \mathsf{P}$
- LOGCFL is closed under complements (Borodin et al. 1989)

Tractable Conjunctive Query Evaluation

- Extensive pursuit of tractable cases of conjunctive query evaluation during the past three decades.
- Two different branches of investigation
 - The relational database schema S is fixed in advance;
 in this case, the input conjunctive query is over S.
 - Both the relational database schema and the query are part of the input.
- Note that in Yannakakis' algorithm both the relational database schema and the query are part of the input.

Enter Tree Decompositions and Treewidth

Definition: **S** a fixed relational database schema, D a database over **S**.

- A tree decomposition of D is a tree T such that
 - Every node of T is labeled by a set of values from D.
 - For every relation R of D and every tuple $(d_1, ..., d_m) \in R$, there is a node of T whose label contains $\{d_1, ..., d_m\}$.
 - For every value d in adom(D), the set X of nodes of T whose labels include d forms a subtree of T.
- width(T) = max(cardinality of a label of T) -1
- Treewidth: tw(D) = min {width(T): T tree decomposition of D}

Conjunctive Queries and Treewidth

Definition: **S** a fixed relational database schema, Q a Boolean conjunctive query over **S**.

• $tw(Q) = tw(Q^D)$, where

Q^D is the canonical database of Q.

TW(k,S) = All Boolean conjunctive queries Q over S with tw(Q) ≤ k.

Note: Fix a relational database schema S.

- If Q is a Boolean acyclic conjunctive query over S, then tw(Q) ≤ max {arity(R): R is a relation symbol of S} - 1.
- The converse is not true. For every n ≥ 3, the query Cn = "is there a cycle of length n?" is cyclic, yet tw(Cn) = 2.

Conjunctive Queries and Treewidth

Theorem (Dechter & Pearl – 1989, Freuder 1990)

- For every relational database schema S and every k ≥ 1, the query evaluation problem for TW(k,S) is tractable.
- In words, there is a polynomial-time algorithm for the following problem: given a database D and a Boolean conjunctive query Q over S of treewidth at most k, does D ⊨ Q?

Note:

This result was obtained in the quest for islands of tractability of the Constraint Satisfaction Problem.

Beyond Bounded Treewidth

Question: Are there islands of tractability for conjunctive query evaluation larger than bounded treewidth?

Definition: Two queries Q and Q are equivalent, denoted $Q \equiv Q'$, if Q(D) = Q'(D), for every database D.

Fact: Let Q and Q be Boolean conjunctive queries. Then $Q \equiv Q'$ if and only if D^Q and D^{Q'} are homomorphically equivalent, i.e., there are homomorphisms h: D^Q \rightarrow D^{Q'} and h': D^{Q'} \rightarrow D^Q.

Note: This follows from the Chandra-Merlin Theorem.

Beyond Bounded Treewidth

Definition: **S** a fixed relational schema,

Q a Boolean conjunctive query over **S**.

HTW(k,S) = All Boolean conjunctive queries Q over S such that Q ≡ Q', for some Q' ∈ TW(k,S).

Fact: $Q \in HTW(k,S)$ if and only if $core(Q) \in TW(k,S)$, where core(Q) is the minimization of Q, i.e., the smallest subquery of Q that is equivalent to Q.

Note: **TW**(k,**S**) is properly contained in **HTW**(k,**S**) Reason:

The k \times k grid has treewidth k, but it is 2-colorable, hence it is homomorphically equivalent to K₂, which has treewidth 1.

Beyond Bounded Treewidth

Theorem (Dalmau, K ..., Vardi – 2002)

- For every relational schema S and every k ≥ 1, the evaluation problem for HTW(k,S) is tractable.
- In words, there is a polynomial-time algorithm for the following problem: given a database D and a Boolean conjunctive query Q that is equivalent to some conjunctive query of treewidth at most k, does D = Q?
- In fact, this problem is in Least Fixpoint Logic.

Algorithm:

- Determine the winner in a certain pebble game, known as the existential k-pebble game.
- No tree decomposition is used (actually, computing tree decompositions is hard).

A Logical Characterization of Treewidth

Definition: **S** a relational database schema, k positive integer. L^k is the collection of all first-order formulas with k variables, containing all atoms of **S**, and closed under \land and \exists .

Theorem (Dalmau, K ..., Vardi – 2002)

S a relational database schema, Q a Boolean conjunctive query over **S**. Then the following statements are equivalent:

- Q ∈ **HTW**(k,**S**)
- $core(Q) \in TW(k,S)$
- Q is equivalent to some L^{k+1}-sentence.

Example: The query Cn : "is there a cycle of length n?" can be expressed in L³. For instance, C5 is equivalent to $\exists x(\exists y(E(x,y) \land \exists z (E(y,z) \land \exists y (E(z,y) \land \exists z (E(y,z) \land E(z,x)))))$

The Largest Islands of Tractability

Question: Are there islands of tractability larger than HTW(k,S)?

Answer: "No", modulo a complexity-theoretic hypothesis.

Theorem (Grohe – 2007)

Assume that FPT \neq W[1].

Let **S** be a relational database schema and **C** a recursively enumerable collection of Boolean conjunctive queries over **S** such that the query evaluation problem for **C** is tractable. Then there is a positive integer k such that $\mathbf{C} \subseteq \mathbf{HTW}(k, \mathbf{S})$.

Proof: Uses the Excluded Grid Theorem by Robertson & Seymour.

Fixed vs. Variable Relational Schemas

- The preceding results assume that we have a fixed relational database schema **S**, and the conjunctive queries are over **S**.
- As mentioned earlier, in Yannakakis' algorithm both the relational schema and the query are part of the input.
- When the relational schema is part of the input, then acyclic queries may have (cores of) unbounded treewidth.

- $Q_n()$: $\exists x_1 ... \exists x_n R_n(x_1,...,x_n)$

• Thus, the preceding results do not subsume Yannakakis' work in the case in which the relational schema is part of the input.

Variable Relational Schemas

- Extensive pursuit of tractable cases of conjunctive query evaluation when the relational schema is part of the input.
 - Several extensions of treewidth have been explored.
 - Hypertree decomposition notions have been studied.
- Chekuri & Rajaraman 1997: query-width
- Gottlob, Leone, Scarcello 2000: hypertree-width:
 - Acyclicity amounts to hypertree-width = 1.
 - Tractable conjunctive query evaluation for conjunctive queries of bounded hypertree-width.

Parameterized Complexity

Theorem (Papadimitriou & Yannakakis – 1997)

For both fixed and variable relational database schemas, and with the query size as the parameter:

- The parameterized complexity of conjunctive query evaluation is W[1]-complete.
- The parameterized complexity of relational calculus query evaluation is W[t]-hard, for all t.

Note: Several subsequent investigations of the parameterized complexity of query evaluation by

- Downey, Fellows and Taylor
- Flum, Frick and Grohe
- ...

Estimates on the Size of Natural Joins

- Definition: A full conjunctive query is a quantifier-free conjunctive query.
- Important Special Case: Natural Joins
- Examples:
 - Q(x,y,z,w) :- R(x,y), S(z,w)
 - Q(x,y,z) :- R(x,y), S(y,z)
 - Q(x,y,z,w) := R(x,y), S(y,z), T(z,w)
 - Q(x,y,z) := R(x,y), S(y,z), T(z,x)
- Question: Given a database D in which |P(D)| ≤ N, for each relation P, how big can |Q(D)| be?

Estimates on the Size of Natural Joins

- Question: Given a database D in which |P(D)| ≤ N, for each relation P, how big can |Q(D)| be?
- Examples:

- Q(x,y,z,w)	: -	R(x,y), S(z,w)	$ Q(D) \leq N^2$		
- Q(x,y,z)	:-	R(x,y), S(y,z)	$ Q(D) \leq N^2$		
- Q(x,y,z,w)	:-	R(x,y), S(y,z), T(z,w)	$ Q(D) \leq N^2$		
- Q(x,y,z)	:-	R(x,y), S(y,z), T(z,x)	$ Q(D) \leq N^2$		
Non-Obvious Fact:					
- Q(x,y,z)	:-	R(x,y),S(y,z),T(z,x)	$ Q(D) \leq N^{3/2}$		

Where does the $N^{3/2}$ bound come from?

Estimates on the Size of Natural Joins

Atserias, Grohe, Marx (2011):

Established tight estimates on the size of natural joins. Results extend to the size of full conjunctive queries.

Interesting mix of ingredients:

- Fractional edge covers of hypergraphs
- Linear Programming (duality theory)
- Entropy (Shearer's Lemma)

Edge Covers and Fractional Edge Covers

- Hypergraph: G=(V,E) such that if $e \in E$, then $e \subseteq V$
- Edge Cover of G=(V,E): Set $C \subseteq E$ such that for every $v \in V$, there is $e \in C$ with $v \in e$.
- Edge Cover Number $\rho(G)$: minimum cardinality of edge covers of G.
- Edge Cover Number as a 0-1 Linear Programming Problem
 - Variable $x_e,$ taking values in {0, 1}, for each $e \in E$
 - min $(\Sigma_{e \in E} x_e)$ subject to

 $\Sigma_{v \in e} x_e \ge 1$, for each $v \in V$.

- Fractional Cover Number $\rho^*(H)$: optimal value of the LP relaxation
- Natural Join $Q(\mathbf{x})$: $R_1(\mathbf{x}_1)$, $R_2(\mathbf{x}_2)$, ..., $R_m(\mathbf{x}_m)$ as a hypergraph
 - V = set of variables
 - Edge e_R consisting of the variables of R, for each atom R of Q.
- Edge cover number $\rho(Q)$ and fractional edge cover number $\rho^*(Q)$

Edge Covers and Fractional Edge Covers

Example: Q(x,y,z) := R(x,y), S(y,z), T(z,x)

- Linear Program for Edge Cover and Fractional Edge Cover min $(x_{B} + x_{S} + x_{T})$

subject to

- $x_R + x_S \ge 1$
- $x_S + x_T \ge 1$
- $x_R + x_T \ge 1$
- Edge Cover Number: $\rho(Q) = 2$
- Fractional Edge Cover Number: $\rho^*(Q) = 3/2$

Tight Estimates on the Size of Natural Joins

Theorem (Atserias, Grohe, Marx – 2011) Natural Join Q(**x**) : - R₁(**x**₁), R₂(**x**₂), ..., R_m(**x**_m) If D is a database such that $|R_i(D)| \le N$, for all $i \le m$, then $|Q(D)| \le N^{\rho^*(Q)}$.

Moreover, this upper bound is tight.

Proof Ingredients:

- Upper Bound: Entropy and Shearer's Lemma
- Lower Bound: Linear Programming Duality Theory

Crash Course on Entropy

- Random Variable X taking values $a_1, ..., a_m$ Entropy $H[X] = \Sigma_i Pr(X = a_i) \log (1/Pr(X = a_i))$
- Basic Facts:
 - If X is uniform on a space of size n, then H[X] = logn
 - If the support of X has cardinality n, then $H[X] \le logn$ (Reason: logx is a concave function)
- Shearer's Lemma: Let $X = (X_j, j \in J)$ be a r.v. and let $A_1, ..., A_m$ be subsets of J such that each j appears in at least k of them. Then $k \cdot H[X] \leq H[X_{A1}] + ... + H[X_{Am}]$

Tight Bounds on the Size of Natural Joins

Theorem (Atserias, Grohe, Marx – 2011) – Upper Bound by Example $\begin{array}{l} Q(x,y,z):= R(x,y), \ S(y,z), \ T(z,x) \\ \mbox{If } D \ \mbox{is such that } |R(D)| \leq N, \ |S(D)| \leq N, \ |T(D)| \leq N, \ \mbox{then } |Q(D)| \leq N^{3/2} \ . \\ \mbox{Proof: Let } X_{x,y,z} \ \mbox{be the uniform distribution on } Q(D). \\ \mbox{Consider the projections } X_{x,y}, X_{y,z}, \ X_{z,x}. \end{array}$

- Shearer's Lemma applies with k = 2 and implies that

 $2 \cdot H[X_{x,y,z}] \le H[X_{x,y}] + H[X_{y,z}] + H[X_{z,x}]$

- $H[X_{x,y,z}] = log(|Q(D)|) \qquad (X_{x,y,z} \text{ is uniform})$
- $H[X_{x,y}] \le log(|R(D)|) \le log(N)$ (support is contained in R(D))

 $H[X_{v,z}] \leq log(|S(D)|) \leq log(N)$ (support is contained in S(D))

 $H[X_{z,x}] \leq log(|T(D)|) \leq log(N)$ (support is contained in T(D))

Thus, $2 \cdot log(|Q(D)|) \le 3 \cdot log(N)$, hence $|Q(D)| \le N^{3/2}$

Natural Joins and Fractional Edge Covers

Theorem (Atserias, Grohe, Marx – 2011)

Let **Q** be a class of natural join queries. The following statements are equivalent:

- 1. Queries in Q have answers bounded by a polynomial in |D|.
- 2. Queries in *Q* can be evaluated in time bounded by a polynomial in |Q| and |D|.
- 3. There is a fixed bound on the fractional edge cover number of queries in *Q*.

Note: Only 2. \Rightarrow 1. is obvious

Corollary: The Universal Instance Problem is solvable in polynomial time on inputs of bounded fractional edge cover.