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Aspects of Conjunctive Query Evaluation

Today, we will carry out a fine-grained examination of conjunctive 

query evaluation, which includes:

• The universal instance problem

• A closer look at the query complexity of conjunctive query 

evaluation.

• Islands of tractability for the combined complexity of 

conjunctive query evaluation.

• A brief look at the parameterized complexity of conjunctive 

query evaluation.

• Tight estimates on the size of natural joins.
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The Universal Instance Problem

• If  S is a relation, then atr(S) is the list of attributes of S

The Universal Instance Problem: Given relations 

R1, R2,…,Rm, is there a relation R such that for every i≤ m, 

Ri = π atr(Ri) (R) ?

• Such an R is called a universal instance for R1, R2,…,Rm

• In this case, we say that R1, R2,…,Rm are join-consistent.

Lemma 1:  If R is a universal instance for R1, R2,…,Rm, then

R ⊆ R1 ⋈ R2 ⋈ … ⋈ Rm

Lemma 2:  The following statements are equivalent:

1. A universal instance for R1, R2,…,Rm exists.

2. R1 ⋈ R2 ⋈ … ⋈ Rm is a universal instance for R1, R2,…,Rm
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The Universal Instance Problem

Example:  R(A,B), S(B,C), T(A,C)
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R A B S B C T A C

0 0 0 0 0 1

1 1 1 1 1 0

• Clearly, R ⋈ S ⋈ T = ∅
Hence (by Lemma 1 or by Lemma 2), nononono universal 

instance for R, S, T exists.
• Note that R, S, T have the same projections on their 

common attributes, namely, {0,1}.
• In fact, every pair from R, S, T has a universal instance



Complexity of the Universal Instance Problem

Theorem (Honeyman, Ladner, Yannakakis – 1980)

The Universal Instance Problem is NP-complete.

Proof of NP-hardness: Reduction from 3-Colorability

Given a graph G=(V,E): for each edge e = (u,v) of E, introduce a 

binary relation Re with attributes u, v and populate with all valid 

3-colorings for (u,v), i.e., 

Re = { (r,b), (b,r), (r,g), (g,r), (b,g), (g,b) }.

Fact:   G is 3-colorable if and only if 

the relations Re, e ∈ E, have a universal instance. 

In fact, the 3-colorings of G are the members of the natural join

⋈ e ∈ E  Re

of all the relations Re, e ∈ E.
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The Complexity of Database Query Languages

Relational 
Calculus

Conjunctive 
Queries

Unions of 
Conjunctive 
Queries

Datalog

Queries

Query Eval:

Combined / 
Query

Complexity

PSPACE-
complete

NP-complete NP-complete EXPTIME-
complete

Query Eval.:

Data 
Complexity

In LOGSPACE 
(hence, in P)

In LOGSPACE 
(hence, in P)

In LOGSPACE 
(hence, in P)

P-complete

Query 
Equivalence

Undecidable NP-complete NP-complete Undecidable

Query 
Containment

Undecidable NP-complete NP-complete Undecidable



Conjunctive Query Evaluation: Summary 

• Data Complexity of CQ-evaluation is in LOGSPACE

(fixed conjunctive query q;  the input is a database D).

• Combined Complexity of CQ-evaluation is NP-complete

(fixed database D; the input is a conjunctive query q).

• Query Complexity of CQ-evaluation is NP-complete

(the input is a conjunctive query q and a database D).
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A Closer Look at the Query Complexity of CQs

Definition: 

For every database D, let PD(CQ) be the following decision problem: 
Given a Boolean CQ q, does D � q?

Theorem: 

The query complexity of CQ-evaluation is NP-complete, i.e.,

• PD(CQ) is in NP, for every database D (but can be in P; e.g. D = K2)

• PD(CQ) is NP-complete, for some databases D (e.g., D = K3)

Feder-Vardi Dichotomy Conjecture (1993): 

For every database D, one of the following holds:

• PD(CQ) is in P.

• PD(CQ) is NP-complete.

Moreover, this dichotomy is effective.
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Ladner’s Theorem and Complexity Dichotomies

• Ladner’s Theorem (1975)  

If P ≠ NP, then there are decision problems T such that

– T is in NP.

– T is not in P.

– T is not NP-complete.

• Feder-Vardi Dichotomy Conjecture (1993)  - restated:

There is no database D for which PD(CQ) is a Ladner-type 

decision problem.                             
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Feder-Vardi Dichotomy Conjecture

• The Feder-Vardi Dichotomy Conjecture was originally formulated in 

the context of Constraint Satisfaction 

(viewed as the Homomorphism Problem).

• The Feder-Vardi Dichotomy Conjecture has been confirmed for 
several special cases, including

– For databases D such that |adom(D)| = 2

Schaefer – 1978 (Generalized Satisfiability Problems)

– For databases D such that |adom(D)| = 3

Bulatov – 2002

– For undirected graphs D 

Hell and Nešetřil – 1990

• The Feder-Vardi Dichotomy Conjecture remains open to date.
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Islands of Tractability of CQ Evaluation

Major Research Program:
Identify tractable cases of the combined complexity of 
conjunctive query evaluation.

Note:
Over the years, this program has been pursued by two different 
research communities:
� The Database Theory community.
� The Constraint Satisfaction community.
Explanation:

Constraint Satisfaction Problem
≡ (Feder-Vardi, 1993)

Homomorphism Problem 
≡ (Chandra-Merlin, 1977)

Conjunctive Query Evaluation
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An Early Large Island of Tractability

• In 1981, Mihalis Yannakakis discovered a large and useful 

tractable case of the Conjunctive Query Evaluation Problem.

Specifically, 

• Yannakakis showed that the Query Evaluation Problem is 

tractable for Acyclic Conjunctive Queries.
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Acyclic Conjunctive Queries

Definition: A conjunctive query Q is acyclic if it has a join tree.

Definition: Let Q be a conjunctive query of the form

Q(x) :  ∃ y (R1(z1) Æ R2(z2) Æ ... Æ Rm(zm)).

A join tree for Q is a tree T such that

– The nodes of T are the atoms Ri(zi), 1≤ i ≤ m, of Q.

– For every variable w occurring in Q, the set of the nodes of

T that contain w forms a subtree of T; 

in other words, if a variable w occurs in two different atoms

Rj(zj) and Rk(zk) of Q, then it occurs in each atom on the 

unique path of T joining Rj(zj) and Rk(zk) .
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Acyclic Conjunctive Queries

� Path of length 4 is acyclic

P4(x1,x4) :  ∃ x2 x3 (E(x1,x2) Æ E(x2,x3) Æ E(x3,x4))

– Join tree is a path

• Cycle of length 4 is cyclic 

C4( ) :   ∃ x1 x2 x3 x4(E(x1,x2) Æ E(x2,x3) Æ E(x3,x4) Æ E(x4,x1))

• The following query Q is acyclic

Q( ) :    ∃ x y z u v w 

(A(x,y,z) Æ B(y,v) Æ C(y,z,v) Æ D(z,u,v) Æ F(u,v,w))
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Acyclic Conjunctive Queries

Q( ) :   ∃ x y z u v w 

(A(x,y,z) Æ B(y,v) Æ C(y,z,v) Æ D(z,u,v) Æ F(u,v,w))

D(z,u,v)

C(y,z,v) F(u,v,w)

A(x,y,z) B(y,v)

Join Tree for Q
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Acyclic Conjunctive Queries

Q( ) :  ∃ x y z u v w 

(A(x,y,z) Æ B(y,v) Æ C(y,z,v) Æ D(z,u,v) Æ F(u,v,w))

D(z,u,v)

C(y,z,v) F(u,v,w)

A(x,y,z) B(y,v)

Join Tree for Q
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Acyclic Conjunctive Queries

Theorem (Yannakakis – 1981)

The Acyclic Conjunctive Query Evaluation Problem is tractable.

More precisely, there is an algorithm for this problem having the

following properties:

� If Q is a Boolean acyclic conjunctive query, then the algorithm runs 
in time O(|Q||D|).

� If Q is a k-ary acyclic conjunctive query, k ≥ 1, then the

algorithm runs in time O(|Q||D||Q(D)|), i.e., it runs in   

input/output polynomial time

(which is the “right” notion of tractability in this case).
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Yannakakis’ Algorithm

Dynamic Programming Algorithm

Input: Boolean acyclic conjunctive query Q, database D

1. Construct a join tree T of Q

2. Populate the nodes of T with the matching relations of D.

3. Traverse the tree T bottom up:

For each node Rk(zk), compute the semi-joins of the

(current) relation in the node Rk(zk) with the (current)

relations in the children of the node Rk (zk).

4. Examine the resulting relation R at the root of T

� If R is non-empty, then output Q(D) = 1 (D satisfies Q).

� If R is empty, then output Q(D) = 0 (D does not satisfy Q).
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Yannakakis’ Algorithm

Q( ) :  ∃ x y z u v w 

(A(x,y,z) Æ B(y,v) Æ C(y,z,v) Æ D(z,u,v) Æ F(u,v,w))

D(z,u,v)

C(y,z,v) F(u.v,w)

A(x,y,z) B(y,v)

C(y,z,v) semi-join A(x,y,z)

=     

all  triples (y,z,v) in C that “match” 
a triple (x,y,z) in A
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More on Yannakakis’ Algorithm

• The join tree makes it possible to avoid exponential explosion 
in intermediate computations.

• The algorithm can be extended to non-Boolean conjunctive 
queries using two more traversals of the join tree.

• There are efficient algorithms for detecting acyclicity and  
computing a join tree.

– Tarjan and Yannakakis – 1984

Linear-time algorithm for detecting acyclicity and computing

a join tree.

– Gottlob, Leone, Scarcello – 1998

Detecting acyclicity is in SL

(hence, by Reingold’s Theorem detecting acyclicity is in L).
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Subsequent Developments

Yannakakis’ algorithm became the catalyst for numerous

subsequent investigations in different directions, including:

� Direction 1: Identify the exact complexity of 

Boolean Acyclic Conjunctive Query Evaluation.

� Yannakakis’ algorithm is sequential (e.g., if the join tree is a 
path of length n, then n-1 semi-joins in sequence are 
needed).

� Is Boolean Acyclic Conjunctive Query Evaluation P-complete? 
Is it in some parallel complexity class?

� Direction 2: Identify other tractable cases of 

Conjunctive Query Evaluation.
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Complexity of Acyclic Conjunctive Query 

Evaluation

Theorem (Dalhaus – 1990)

Boolean Acyclic Conjunctive Query Evaluation is in NC2 .

Theorem (Gottlob, Leone, Scarcello - 1998)

Boolean Acyclic Conjunctive Query Evaluation is 

LOGCFL-complete, where LOGCFL is the class of all problems

having a logspace-reduction to some context-free language.

Fact:

� NL  ⊆ LOGCFL  ⊆ AC1 ⊆ NC2 ⊆ P

� LOGCFL is closed under complements (Borodin et al. - 1989)
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Tractable Conjunctive Query Evaluation

• Extensive pursuit of tractable cases of conjunctive query 

evaluation during the past three decades.

• Two different branches of investigation

– The relational database schema S is fixed in advance; 

in this case, the input conjunctive query is over S.

– Both the relational database schema and the query are 

part of the input.

• Note that in Yannakakis’ algorithm both the relational 

database schema and the query are part of the input.
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Enter Tree Decompositions and Treewidth

Definition: S a fixed relational database schema, D a database over S.

• A tree decomposition of D is a tree T such that

– Every node of T is labeled by a set of values from D.

– For every relation R of D and every tuple (d1,…dm) ∈ R, there is 

a node of T whose label contains {d1, …, dm }.

– For every value d in adom(D), the set X of nodes of T whose 
labels include d forms a subtree of T.

• width(T) =  max(cardinality of a label of T)  – 1

• Treewidth:  tw(D) = min {width(T): T tree decomposition of D}
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Conjunctive Queries and Treewidth

Definition: S a fixed relational database schema, 
Q a Boolean conjunctive query over S.
• tw(Q) = tw(QD), where 

QD is the canonical database of Q.

� TW(k,S) = All Boolean conjunctive queries Q over S with 
tw(Q) ≤ k.

Note: Fix a relational database schema S.
� If Q is a Boolean acyclic conjunctive query over S, then 

tw(Q)  ≤ max {arity(R): R is a relation symbol of S}  - 1.

� The converse is not true. For every n ≥ 3, the query 

Cn = “is there a cycle of length n?” is cyclic, yet  tw(Cn) = 2. 
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Conjunctive Queries and Treewidth

Theorem (Dechter & Pearl – 1989, Freuder 1990)

� For every relational database schema S and every k ≥ 1, 

the query evaluation problem for TW(k,S) is tractable. 

� In words, there is a polynomial-time algorithm for the following

problem: given a database D and a Boolean conjunctive 

query Q over S of treewidth at most k, does D � Q?

Note: 

This result was obtained in the quest for islands of tractability of 

the Constraint Satisfaction Problem.
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Beyond Bounded Treewidth

Question: Are there islands of tractability for conjunctive query 

evaluation larger than bounded treewidth?

Definition: Two queries Q and Q are equivalent, denoted Q ≡ Q’,

if Q(D) = Q’(D), for every database D.

Fact: Let Q and Q be Boolean conjunctive queries. Then

Q ≡ Q’ if and only if DQ and DQ’ are homomorphically equivalent,

i.e., there are homomorphisms h: DQ → DQ’ and h’: DQ’ → DQ.

Note: This follows from the Chandra-Merlin Theorem.
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Beyond Bounded Treewidth

Definition: S a fixed relational schema, 
Q a Boolean conjunctive query over S.
� HTW(k,S) = All Boolean conjunctive queries Q over S such 

that Q ≡ Q’, for some Q’ ∈ TW(k,S). 

Fact: Q ∈ HTW(k,S) if and only if core(Q) ∈ TW(k,S), 

where core(Q) is the minimization of Q, i.e., 
the smallest subquery of Q that is equivalent to Q.

Note: TW(k,S)  is properly contained in HTW(k,S)
Reason:
The k × k grid has treewidth k, but it is 2-colorable, hence it is  

homomorphically equivalent to K2, which has treewidth 1. 
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Beyond Bounded Treewidth

Theorem (Dalmau, K …, Vardi – 2002)
� For every relational schema S and every k ≥ 1, the evaluation

problem for HTW(k,S) is tractable.
� In words, there is a polynomial-time algorithm for the following

problem: given a database D and a Boolean conjunctive 
query Q that is equivalent to some conjunctive query of 
treewidth at most  k, does D � Q?

� In fact, this problem is in Least Fixpoint Logic.

Algorithm:
� Determine the winner in a certain pebble game, known as the

existential k-pebble game.
� No tree decomposition is used (actually, computing tree 

decompositions is hard).
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A Logical Characterization of Treewidth

Definition: S a relational database schema, k positive integer.
Lk is the collection of all first-order formulas with k variables, 
containing all atoms of S, and closed under Æ and ∃.

Theorem (Dalmau, K …, Vardi – 2002) 
S a relational database schema, Q a Boolean conjunctive query over S.
Then the following statements are equivalent:
� Q ∈ HTW(k,S)
� core(Q) ∈ TW(k,S) 

� Q is equivalent to some Lk+1-sentence.

Example: The query Cn : “is there a cycle of length n?” 
can be expressed in L3.  For instance, C5 is equivalent to
∃x(∃y(E(x,y) Æ ∃z (E(y,z) Æ ∃y (E(z,y) Æ ∃z (E(y,z) ÆE(z,x))))) 
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The Largest Islands of Tractability

Question: Are there islands of tractability larger than HTW(k,S)?

Answer: “No”, modulo a complexity-theoretic hypothesis.

Theorem  (Grohe – 2007)

Assume that FPT ≠ W[1].

Let S be a relational database schema  and C a recursively 

enumerable collection of Boolean conjunctive queries over S such that

the query evaluation problem for C is tractable. 

Then there is a positive integer k such that C ⊆ HTW(k,S).

Proof: Uses the Excluded Grid Theorem by Robertson & Seymour.
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Fixed vs. Variable Relational Schemas

• The preceding results assume that we have a fixed relational 
database schema S, and the conjunctive queries are over S.

• As mentioned earlier, in Yannakakis’ algorithm both the relational 
schema and the query are part of the input.

• When the relational schema is part of the input, then acyclic queries 
may have (cores of) unbounded treewidth.

– Qn( ):  ∃ x1 …∃ xnRn(x1,…,xn)

• Thus, the preceding results do not subsume Yannakakis’ work in the 
case in which the relational schema is part of the input.
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Variable Relational Schemas

• Extensive pursuit of tractable cases of conjunctive query 
evaluation when the relational schema is part of the input.
– Several extensions of treewidth have been explored.
– Hypertree decomposition notions have been studied.

• Chekuri & Rajaraman – 1997: query-width

• Gottlob, Leone, Scarcello – 2000: hypertree-width: 
– Acyclicity amounts to hypertree-width = 1.

– Tractable conjunctive query evaluation for conjunctive queries of 
bounded hypertree-width.
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Parameterized Complexity

Theorem (Papadimitriou & Yannakakis – 1997)
For both fixed and variable relational database schemas, 
and with the query size as the parameter:
� The parameterized complexity of conjunctive query evaluation is 

W[1]-complete.
� The parameterized complexity of relational calculus query 

evaluation is W[t]-hard, for all t.

Note: Several subsequent investigations of the parameterized 
complexity of query evaluation by
� Downey, Fellows and Taylor
� Flum, Frick and Grohe 
� …



Estimates on the Size of Natural Joins

• Definition: A full conjunctive query is a quantifier-free 

conjunctive query.

• Important Special Case: Natural Joins

• Examples:

– Q(x,y,z,w) : - R(x,y), S(z,w)

– Q(x,y,z)     :- R(x,y), S(y,z)

– Q(x,y,z,w) :- R(x,y), S(y,z), T(z,w)

– Q(x,y,z)     :- R(x,y), S(y,z), T(z,x)

• Question: Given a database D in which |P(D)| ≤ N, for each 

relation P, how big can |Q(D)| be?
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Estimates on the Size of Natural Joins

• Question: Given a database D in which |P(D)| ≤ N, for each 

relation P, how big can |Q(D)| be?

• Examples:

– Q(x,y,z,w)  : - R(x,y), S(z,w)                    |Q(D)| ≤ N2

– Q(x,y,z)      :- R(x,y), S(y,z)                     |Q(D)| ≤ N2

– Q(x,y,z,w)  :- R(x,y), S(y,z), T(z,w)         |Q(D)| ≤ N2

– Q(x,y,z)      :- R(x,y), S(y,z), T(z,x)          |Q(D)| ≤ N2

Non-Obvious Fact: 

– Q(x,y,z)     :- R(x,y),S(y,z),T(z,x)    |Q(D)| ≤ N3/2

Where does the N3/2 bound come from?
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Estimates on the Size of Natural Joins

Atserias, Grohe, Marx (2011): 

Established tight estimates on the size of natural joins.

Results extend to the size of full conjunctive queries.

Interesting mix of ingredients:

• Fractional edge covers of hypergraphs 

• Linear Programming  (duality theory)

• Entropy (Shearer’s Lemma)
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Edge Covers and Fractional Edge Covers

• Hypergraph: G=(V,E) such that if e ∈ E, then e ⊆ V

• Edge Cover of G=(V,E): 

Set C ⊆ E such that for every v ∈ V, there is e ∈ C with v ∈ e.

• Edge Cover Number ρ(G) : minimum cardinality of edge covers of G.

• Edge Cover Number as a 0-1 Linear Programming Problem

– Variable xe, taking values in {0, 1}, for each e ∈ E

– min (Ʃe ∈ E xe) subject to

Ʃ v∈ e xe ≥ 1, for each v ∈ V.

• Fractional Cover Number ρ*(H): optimal value of the LP relaxation 

• Natural Join Q(x) : - R1(x1), R2(x2), …, Rm(xm) as a hypergraph 

– V = set of variables

– Edge eR consisting of the variables of R, for each atom R of Q.

• Edge cover number ρ(Q) and fractional edge cover number ρ*(Q)
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Edge Covers and Fractional Edge Covers

Example:   Q(x,y,z) :- R(x,y), S(y,z), T(z,x)

– Linear Program for Edge Cover and Fractional Edge Cover

min (xR + xS + xT)

subject to 

• xR + xS ≥ 1

• xS + xT ≥ 1

• xR + xT ≥ 1

– Edge Cover Number:  ρ(Q) = 2

– Fractional Edge Cover Number: ρ*(Q) = 3/2
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Tight Estimates on the Size of Natural Joins

Theorem (Atserias, Grohe, Marx – 2011)

Natural Join Q(x) : - R1(x1), R2(x2), …, Rm(xm)

If D is a database such that |Ri(D)| ≤ N, for all i≤ m, then 

|Q(D)| ≤ Nρ*(Q). 
Moreover, this upper bound is tight.

Proof Ingredients:

– Upper Bound: Entropy and Shearer’s Lemma

– Lower Bound: Linear Programming Duality Theory 
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Crash Course on Entropy

• Random Variable X taking values a1, …, am

Entropy H[X] = Ʃi Pr(X = ai) log (1/Pr(X = ai))

• Basic Facts:

– If X is uniform on a space of size n, then H[X] = logn

– If the support of X has cardinality n, then H[X] ≤ logn

(Reason: logx is a concave function)

• Shearer’s Lemma: Let X = (Xj, j ∈ J) be a r.v. and let A1, …, Am

be subsets of J such that each j appears in at least k of them.  
Then        k·H[X] ≤ H[XA1] + … + H[XAm] 
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Tight Bounds on the Size of Natural Joins

Theorem (Atserias, Grohe, Marx – 2011) – Upper Bound by Example

Q(x,y,z) :- R(x,y), S(y,z), T(z,x)

If D is such that |R(D)| ≤ N, |S(D)| ≤ N, |T(D)| ≤ N, then |Q(D)| ≤ N3/2 .

Proof:  Let Xx,y,z be the uniform distribution on Q(D). 

Consider the projections Xx,y ,Xy,z, Xz,x.  

– Shearer’s Lemma applies with k = 2 and implies that 

2·H[Xx,y,z] ≤ H[Xx,y] + H[Xy,z] + H[Xz,x]

– H[Xx,y,z] =  log(|Q(D)|)  (Xx,y,z is uniform)

– H[Xx,y]  ≤ log(|R(D)|) ≤ log(N)   (support is contained in R(D))

H[Xy,z]  ≤ log(|S(D)|) ≤ log(N)   (support is contained in S(D))

H[Xz,x]  ≤ log(|T(D)|) ≤ log(N)   (support is contained in T(D))

Thus, 2·log(|Q(D)|) ≤ 3·log(N), hence |Q(D)| ≤ N3/2
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Natural Joins and Fractional Edge Covers

Theorem (Atserias, Grohe, Marx – 2011)

Let Q be a class of natural join queries. The following statements 

are equivalent:

1. Queries in Q have answers bounded by a polynomial in |D|.

2. Queries in Q can be evaluated in time bounded by a 

polynomial in |Q| and |D|.

3. There is a fixed bound on the fractional edge cover number 

of queries in Q.

Note: Only 2. ⇒ 1. is obvious

Corollary: The Universal Instance Problem is solvable in 

polynomial time on inputs of bounded fractional edge cover.
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