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Three Fundamental Problems in Databases

Let L be a database query language.

• The Query Evaluation Problem:

Given a query q in L and a database D, evaluate q(D)

• The Query Containment Problem:

Given queries q and q’ in L, is q ⊆ q’?

• The Query Equivalence Problem:

Given queries q and q’ in L, is q ≡ q’?
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Vardi’s Taxonomy of the Query Evaluation Problem

M.Y Vardi, “The Complexity of Relational Query Languages”,
1982

• Definition: Let L be a database query language.
– The combined complexity of L is the decision problem: 

given an L-sentence  and a database instance D, is ϕ true 
on D? (does D satisfy ϕ?) (in symbols,  does D � ϕ?)

– The data complexity of L is the family of the following
decision problems Pϕ, where ϕ is an L-sentence: 
given a database instance D,  does D � ϕ?

– The query complexity of L is the family of the following 
decision problems PD, where D is a database instance: 
given an L-sentence ϕ, does D � ϕ?
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Summary

• Relational Algebra and Relational Calculus have “essentially” the 
same expressive power.

• The Query Equivalence Problem for Relational Calculus  is 
undecidable.

• The Query Containment Problem for Relational Calculus is 
undecidable.

• The Query Evaluation Problem for Relational Calculus:

– Data Complexity is in LOGSPACE

– Combined Complexity is PSPACE-complete

– Query Complexity is PSPACE-complete.
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Sublanguages of Relational Calculus

• Question: Are there interesting sublanguages of relational 
calculus for which the Query Containment Problem and the 
Query Evaluation Problem are “easier” than the full relational 
calculus?

• Answer:

– Yes, the language of conjunctive queries is such a 
sublanguage.

– Moreover, conjunctive queries are the most frequently 
asked queries against relational databases.
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Conjunctive Queries

• Definition: A conjunctive query is a query expressible by a 
relational calculus formula in prenex normal form built from 
atomic formulas R(y1,…,yn),  and  Æ and ∃ only.

{ (x1,…,xk):  ∃ z1 …∃ zm χ(x1, …,xk, z1,…,zk) },

where χ(x1, …,xk, z1,…,zk) is a conjunction of atomic formulas of the 
form R(y1,…,ym).
� Equivalently, a conjunctive query is a query expressible by a 

relational algebra expression of the form
π

X
(σ

Θ
(R1× …× Rn)), where

Θ is a conjunction of equality atomic formulas (equijoin).
� Equivalently, a conjunctive query is a query expressible by an

SQL expression of the form
SELECT <list of attributes>
FROM    <list of relation names>
WHERE  <conjunction of equalities>
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Conjunctive Queries

• Every natural join is a conjunctive query with no

existentially quantified variables

P(A,B,C), R(B,C,D) two relation symbols

� P ⋈ R =  {(x,y,z,w):  P(x,y,z) Æ R(y,z,w)}

� q(x,y,z,w)  :-- P(x,y,z), R(y,z,w) 

(no variables are existentially quantified)

� SELECT P.A, P.B, P.C, R.D

FROM    P, R

WHERE P.B = R.B  AND  P.C = R.C 
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Conjunctive Query Evaluation and Containment

• Definition: Two fundamental problems about CQs

– Conjunctive Query Evaluation (CQE):

Given a conjunctive query q and a database D, find q(D).

– Conjunctive Query Containment (CQC):

• Given two k-ary conjunctive queries q1 and q2, 

is it true that  q1 ⊆ q2? 

(i.e., for every instance D, we have that q1(D) ⊆ q2(D))

• Given two Boolean conjunctive queries q1 and q2,         
is it true that  q1 � q2? 

(i.e., for all D, if D � q1, then D � q2)

CQC is logical implication.
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The Homomorphism Problem

� Definition: The Homomorphism Problem
Given two database instances D and F, is there a 
homomorphism h: D → F?

� Notation: D → F denotes that a homomorphism from D to F
exists.

� Theorem: The Homomorphism Problem is NP-complete.

Proof: Easy reduction from 3-Colorabilty

G is 3-colorable if and only if  G → K3.
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Homomorphism Problem & Conjunctive Queries

� Theorem: Chandra & Merlin, 1977

� CQE and CQC are the “same” problem.

� Moreover, each is an NP-complete problem.

� Question: What is the common link?

� Answer:

� Both CQE and CQC are “equivalent” to the 
Homomorphism Problem.

� The link is established by bringing into the picture 

� Canonical conjunctive queries and

� Canonical database instances.
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Canonical CQs and Canonical Instances

• Definition: Canonical Conjunctive Query
Given an instance D = (R1, …,Rm), the canonical
CQ of D is the Boolean conjunctive query QD with
(a renaming of) the elements of D as variables
and the facts of D as conjuncts, where a fact of D
is an expression Ri(a1,…,am) such that (a1,…,am) ∈ Ri.

• Example:
D consists of E(a,b), E(b,c), E(c,a)
� QD is given by the rule:

QD :-- E(x,z), E(z,y), E(y,x)
� Alternatively, QD is 

∃ x ∃ y ∃ z (E(x,z) Æ E(z,y) Æ E(y,x)) 
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Canonical Conjunctive Query

• Example: K3, the complete graph with 3 nodes

K3 is a database instance with one binary relation E, where

E  = {(b,r), (r,b), (b,g), (g,b), (r,g), (g,r)}

• The canonical conjunctive query QK3 of K3 is given by the rule:

QK3 :- E(x,y),E(y,x),E(x,z),E(z,x),E(y,z),E(z,y)

• The canonical conjunctive query QK3 of K3 is also given by the 
relational calculus expression:

∃x,y,z(E(x,y) Æ E(y,x) Æ E(x,z) Æ E(z,x) Æ E(y,z) Æ E(z,y))
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Canonical Database Instance

• Definition: Canonical Instance
Given a CQ Q, the canonical instance of Q is the instance DQ

with the variables of Q as elements and the conjuncts of Q as 
facts.

� Example:
Conjunctive query Q :-- E(x,y),E(y,z),E(z,w)

� Canonical instance DQ consists of the facts                 
E(x,y), E(y,z),E(z,w).

� In other words, EDQ
= {(x,y), (y,z), (z,w)}.
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Canonical CQs and Canonical Instances

Magic Lemma: Assume  that Q is a Boolean conjunctive query
and F is a database instance. Then the following statements are
equivalent.
� F � Q.  
� There is a homomorphism h: DQ → F.

Proof: Let Q be ∃ x1 …∃ xm ϕ(x1,…,xm).

1. ⇒ 2. Assume that F � Q.  Hence, there are elements
a1, …, am in adom(F) such that F � ϕ(a1,…,am). The function h with 
h(xi) = ai, for i=1,…,m, is a homomorphism from DQ to F.

2. ⇒ 1. Assume that there is a homomorphism h: DQ → F.
Then the values h(xi) = ai, for i = 1,…, m, give values for the 
interpretation of the existential quantifiers ∃ xi of Q in adom(F) 
so that F � ϕ(a1,…,am). 
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Homomorphisms, CQE, and CQC

The Homomorphism Theorem: Chandra & Merlin – 1977
For Boolean CQs Q and Q’, the following are equivalent:
� Q ⊆ Q’
� There is a homomorphism h: DQ’ → DQ

� DQ � Q’.

In dual form:

The Homomorphism Theorem: Chandra & Merlin – 1977
For instances D and D’, the following are equivalent:
� There is a homomorphism h: D → D’ 
� D’ � QD

� QD’ ⊆ QD
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Homomorphisms, CQE, and CQC

The Homomorphism Theorem: Chandra & Merlin – 1977
For Boolean CQs Q and Q’, the following are equivalent:
1. Q ⊆ Q’
2. There is a homomorphism h: DQ’ → DQ

3. DQ � Q’.

Proof:
1. ⇒ 2. Assume Q ⊆ Q’. Since DQ � Q, we have that DQ � Q’. 

Hence, by the Magic Lemma, there is a homomorphism from DQ’ to DQ.
2. ⇒ 3. It follows from the other direction of the Magic Lemma.
3. ⇒ 1. Assume that DQ � Q’. So, by the Magic Lemma, there is a 
homomorphism h: DQ’ → DQ.  We have to show that if F � Q, then F � Q’. 
Well, if  F � Q, then (by the Magic Lemma), there is a homomorphism 
h’: DQ → F. The composition h’◦ h: DQ’ → F is a homomorphism, hence 
(once again by the Magic Lemma!), we have that F � Q’.
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Illustrating the Homomorphism Theorem

• Example:

– Q :  ∃x1∃x2 (E(x1,x2) Æ E(x2,x1))

– Q’:  ∃x1∃x2∃x3∃x4 (E(x1,x2) Æ E(x2,x1) Æ E(x2,x3) Æ

E(x3,x2) Æ E(x3,x4) Æ E(x4,x3) Æ E(x4,x1) Æ E(x1,x4))

Then:

• Q ⊆ Q’

Homomorphism h: DQ’ → DQ with 

h(x1) = x1, h(x2) = x2, h(x3) = x1, h(x4) = x2.

• Q’ ⊆ Q

Homomorphism h’: DQ → DQ’ with h’(x1) = x1,  h(x2) = x2.

� Hence, Q ≡Q’.
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Illustrating the Homomorphism Theorem

Example: 3-Colorability

For a graph G=(V,E), the following are equivalent:

� G is 3-colorable

� There is a homomorphism h: G → K3

� K3 � QG 

� QK3 ⊆ QG.
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Combined complexity of CQC and CQE

Corollary: The following problems are NP-complete:
� Given two (Boolean) conjunctive queries Q and Q’,           

is Q ⊆ Q’ ?
� Given a Boolean conjunctive query Q and an instance D, 

does D � Q ?

Proof:
(a) Membership in NP follows from the Homom. Theorem:

Q ⊆ Q’ if and only if  there is a homomorphism h: DQ’ → DQ

(b) NP-hardness follows from 3-Colorability:

G is 3-colorable if and only if QK3 ⊆ QG.
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Conjunctive Query Equivalence

• The Conjunctive Query Equivalence Problem: Given two 

conjunctive queries Q and Q’, is Q ≡ Q’?

• Corollary: For conjunctive queries Q and Q’, we have that 

Q ≡ Q’ if and only if DQ ≡h DQ’.

• Corollary: The Conjunctive Query Equivalence Problem is

NP-complete.

Proof:  

– The following problem is NP-complete:

Given a graph H containing a K3, is H 3-colorable?

– Let H be a graph containing a K3. Then

H is 3-colorable if and only if QH ≡ QK3.
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The Complexity of Database Query Languages

Relational Calculus Conjunctive Queries

Query Evaluation Problem: 
Combined Complexity  /

Query Complexity

PSPACE-complete NP-complete

Query Evaluation Problem:

Data Complexity

In LOGSPACE

(hence, in P)

In LOGSPACE

(hence, in P)

Query Equivalence 
Problem

Undecidable NP-complete

Query Containment 
Problem

Undecidable NP-complete
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Beyond Conjunctive Queries

• What can we say about query languages of intermediate 
expressive power between conjunctive queries and the full 
relational calculus?

• Conjunctive queries form the sublanguage of relational 
algebra obtained by using only cartesian product, projection, 
and selection with equality conditions.

• The next step would be to consider relational algebra 
expressions that also involve union.
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Beyond Conjunctive Queries

• Definition:  

– A union of conjunctive queries is a query expressible by an 
expression of the form q1 ∪ q2 ∪ … ∪ qm, where each qi is a 

conjunctive query.

– A monotone query is a query expressible by a relational algebra 
expression which uses only union, cartesian product, projection, 
and selection with equality condition.

• Fact:

– Every union of conjunctive queries is a monotone query.

– Every monotone query is equivalent to a union of conjunctive 
queries, but the union may have exponentially many disjuncts.

(normal form for monotone queries).

– Monotone queries are precisely the queries expressible by 
relational calculus expressions using Æ, Ç, and ∃ only.
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Unions of CQs and Monotone Queries

• Union of Conjunctive Queries

E ∪ π1,4 (σ$2=$3 (E× E)) or, as a relational calculus expression,

E(x1,x2) Ç ∃ z(E(x1,z)Æ E(z,x2))

• Monotone Query

Consider the relation schemas R1(A,B), R2(A,B), R3(B,C), 
R4(B,C).

The monotone query 

(R1 ∪ R2)  ⋈ (R3 ∪ R4) 

is equivalent to the following union of conjunctive queries:

(R1 ⋈ R3) ∪ (R1 ⋈ R4) ∪ (R2 ⋈ R3) ∪ (R2 ⋈ R4).
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The Containment Problem for Unions of CQs

Theorem: Sagiv and Yannakakis – 1981

Let q1 ∪ q2 ∪ … ∪ qm and q’1 ∪ q’2 ∪ … ∪ q’n be two unions of 

conjunctive queries. Then the following are equivalent:

1. q1 ∪ q2 ∪ … ∪ qm ⊆ q’1 ∪ q’2 ∪ … ∪ q’n.

2. For every i ≤ m, there is j ≤ n such that qi ⊆ q’j.

Proof: Use the Homomorphism Theorem

1. ⇒ 2. Since Dqi � qi, we have that Dqi � q1 ∪ q2 ∪ … ∪ qm 

hence Dqi � q’1 ∪ q’2 ∪ … ∪ q’n  , hence there is some j ≤ n such

that Dqi � q’j, hence (by the Homomorphism Theorem) qi ⊆ q’j.

2. ⇒ 1. This direction is obvious.
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The Containment Problem for Unions of CQ

• Corollary: The Query Containment Problem for 

Unions of Conjunctive Queries is NP-complete.

Proof:

– Membership in NP follows from the Sagiv-Yannakakis
Theorem.

• Guess m pairs (q’ki
, hki

) and verify that for every i ≤ m, 

the function hki
is a homomorphism from Dq’ki to Dqi.

– NP-hardness follows from the fact that Conjunctive Query 
Containment is a special case of this problem.

• Fact: The Query Evaluation Problem for Unions of 
Conjunctive Queries is NP-complete (combined complexity).

Proof: Exercise.
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The Complexity of Database Query Languages

Relational 
Calculus

Conjunctive 
Queries

Unions of 
Conjunctive 
Queries

Query Evaluation: 
Combined 
Complexity

PSPACE-complete NP-complete NP-complete

Query Evaluation:

Data Complexity

In LOGSPACE

(hence, in P)

In LOGSPACE

(hence, in P)

In LOGSPACE

(hence, in P)

Query Equivalence Undecidable NP-complete NP-complete

Query 
Containment

Undecidable NP-complete NP-complete
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Monotone Queries

• Even though monotone queries have the same expressive 
power as unions of conjunctive queries, the containment 
problem for monotone queries has higher complexity than the 
containment problem for unions of conjunctive queries  
(syntax/complexity tradeoff)

• Theorem: Sagiv and Yannakakis – 1982

The containment problem for monotone queries is Π2
p-

complete.

• Note: The prototypical Π2
p-complete problem is ∀∃-SAT, i.e., 

the restriction of QBF to formulas of the form 

∀ x1…∀ xm∃ y1 …∃ yn ϕ.
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The Complexity of Database Query Languages

Relational 
Calculus

Conjunctive 
Queries

Unions of 
Conjunctive 
Queries

Monotone 
Queries

Query Eval.: 
Combined 
Complexity

PSPACE-
complete

NP-complete NP-complete NP-complete

Query Eval.:

Data 
Complexity

In LOGSPACE 
(hence, in P)

In LOGSPACE 
(hence, in P)

In LOGSPACE 
(hence, in P)

In LOGSPACE 
(hence, in P)

Query 
Equivalence

Undecidable NP-complete NP-complete Π2
p-complete

Query 
Containment

Undecidable NP-complete NP-complete Π2
p-complete
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Conjunctive Queries with Inequalities

• Definition: Conjunctive queries with inequalities form the 

sublanguage of relational algebra obtained by using only 
cartesian product, projection, and selection with equality and 
inequality (≠, <, ≤) conditions.

• Example: Q(x,y):-- E(x,z), E(z,w),E(w,y), z ≠ w, z < y.

• Theorem: (Klug – 1988, van der Meyden – 1992)

– The query containment problem for conjunctive queries 
with inequalities is Π2

p-complete.

– The query evaluation problem for conjunctive queries with 
inequalities in NP-complete.
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The Complexity of Database Query Languages

Relational 
Calculus

Conjunctive 
Queries

Unions of 
Conjunctive 
Queries

Monotone 
Queries/

Conj.Queries 
with Inequal.

Query Eval.: 
Combined 
Complexity

PSPACE-
complete

NP-complete NP-complete NP-complete

Query Eval.:

Data 
Complexity

In LOGSPACE 
(hence, in P)

In LOGSPACE 
(hence, in P)

In LOGSPACE 
(hence, in P)

In LOGSPACE 
(hence, in P)

Query 
Equivalence

Undecidable NP-complete NP-complete Π2
p-complete

Query 
Containment

Undecidable NP-complete NP-complete Π2
p-complete
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Limitations of Relational Algebra & Calculus

Outline:

• Relational Algebra and Relational Calculus have substantial 
expressive power. In particular, they can express

– Natural Join

– Unions of conjunctive queries

– …

• However, they cannot express recursive queries.

• Datalog is a declarative database query language that 
augments the language of conjunctive queries with a 
recursion mechanism.
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Transitive Closure and Relational Calculus

Theorem: A. Aho and J. Ullman – 1979 (really, Fraïssé – 1954)

There is no relational algebra (or relational calculus) expression

that defines the Transitive Closure of a given binary relation E.

Intuition behind this result:

� Relational Calculus queries can only express “local” 
properties

E F
t

s

t

s
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Overcoming the Limitations of Relational Calculus

• Question: What is to be done to overcome the limitations of 
the expressive power of relational calculus?

• Answer 1: Embedded Relational Calculus (Embedded SQL):

– Allow SQL commands inside a conventional programming 
language, such as C, Java, etc.

– This is an inferior solution, as it destroys the high-level 
character of SQL.

• Answer 2: 

– Augment relational calculus with a high-level declarative 
mechanism for recursion.

– Conceptually, this a superior solution as it maintains the 
high-level declarative character of relational calculus.
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Datalog

• Datalog = “Conjunctive Queries +  Recursion”

• Datalog was introduced by Chandra and Harel in 1982 and 
has been studied by the research community in depth: 

– Hundreds of research papers in major database 
conferences; numerous doctoral dissertations.

– Recent applications outside databases:

• Specification of network properties

• Access control languages

• Business analytics (LogicBlox)

• SQL:1999 and subsequent versions of the SQL standard 
provide support for a sublanguage of Datalog, called linear 
Datalog.
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Datalog Syntax

Definition:  A Datalog program π is a finite set of rules each 
expressing a conjunctive query 

T(x1,…,xk) :-- R1(u1), …, Rn(un), 

where each variable xi occurs in the body of the rule.

� Some relational symbols occurring in the heads of the rules 
may also occur in the bodies of the rules

(unlike the rules for conjunctive queries).  

� These relational symbols are the recursive relational 
symbols; they are also known as intensional database 
predicates (IDBs).

� The remaining relational symbols in the rules are known as 
the extensional database predicates (EDBs).
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Datalog

• Example: Datalog program for Transitive Closure

T(x,y) :- E(x,y)

T(x,y) :- E(x,z), T(z,y)

– E is the EDB predicate

– T is the IDB predicate

– The intuition is that the Datalog program gives a recursive 
specification of the IDB predicate T in terms of the EDB E.

• Example: Another Datalog program for Transitive Closure

T(x,y) :- E(x,y)

T(x,y) :- T(x,z), T(z,y)

(“divide and conquer” algorithm for Transitive Closure)
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Datalog

• Example: Paths of Even and Odd Length

Consider the Datalog program:

ODD(x,y)  :- E(x,y)

ODD(x,y)  :- E(x,z), EVEN(z,y)

EVEN(x,y) :- E(x,z), ODD(z,y).

– E is the EDB predicate

– EVEN and ODD are the IDB predicates.

– This program gives a recursive specification of the IDB 
predicates EVEN and ODD in terms of the EDB predicate 
E.

– This is a Datalog program expressing mutual recursion.
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Datalog Semantics

• Question: What is the precise semantics of a Datalog program?

• Short Answer:  Datalog is a fragment of Least Fixed-Point Logic LFP, 
hence it inherits the semantics of LFP.

• Fact:  Datalog coincides with Existential Positive LFP

• Example:

– Datalog program π

T(x,y) :- E(x,y)

T(x,y) :- E(x,z), T(z,y)

– Existential Positive First-Order Formula

ϕ(x,y,T) ≡ E(x,y) Ç ∃ z (E(x,z) Æ T(z,y))

– The semantics of the Datalog program π is the least fixed-point of 

the formula ϕ(x,y,T).
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Datalog Semantics

• Question: What is the precise semantics of a Datalog program?

• Long Answer (self-contained): Datalog programs can be given two 
different types of semantics.

– Declarative Semantics (denotational semantics)

• Smallest solutions of recursive specifications.

• Least fixed-points  of monotone operators.

– Procedural Semantics (operational semantics)

• An iterative process for computing the “meaning” of Datalog 
programs.

• Main Result: The declarative semantics coincides with the 
procedural semantics.
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Declarative Semantics of Datalog Programs

• Each Datalog program can be viewed as a recursive 
specification of its IDB predicates.

• This specification is expressed using relational algebra 
operators

– The body of each rule uses π, σ, and cartesian product ×

– All rules having the same predicate in the head are 
combined using union.

– The recursive specification is given by equations involving

unions of conjunctive queries.

• Example: T(x,y)  :- E(x,y)

T(x,y)  :- T(x,z), T(z,y)

– Recursive equation:

T  =  E ∪ π1,4(σ$2=$3 (T×T))
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Declarative Semantics of Datalog Programs

Example: Consider the Datalog program:

ODD(x,y)  :- E(x,y)

ODD(x,y)  :- E(x,z), EVEN(z,y)

EVEN(x,y) :- E(x,z), ODD(z,y).

� System of recursive equations:

ODD = E ∪ π1,4(σ$2=$3 (E×EVEN))

EVEN = π1,4(σ$2=$3 (E×ODD)).
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Declarative Semantics of Datalog Programs

• Recursive equations arising from Datalog programs need not

have a unique solution.

• Example: Consider the recursive equation:

T  =  E ∪ π1,4(σ$2=$3 (T×T))

Let E = { (1,2), (2,3) }.

Then both T1 and T2 satisfy this recursive equation, where

� T1 = { (1,2), (2,3), (1,3) } 

� T2 = { (1,2),(2,1),(2,3),(3,2),(1,3),(3,2),(1,1),(2,2),(3,3) }.

Furthermore, this recursive equation has many other

solutions.
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Declarative Semantics of Datalog Programs

• Theorem: Every recursive equation arising from a Datalog program 
has a smallest solution (smallest w.r.t. the ⊆ partial order).

• Example: Datalog program

T(x,y) :- E(x,y)

T(x,y):- T(x,z), T(z,y)

– Recursive equation:

T  =  E ∪ π1,4(σ$2=$3 (T×T))

– The smallest solution of this recursive equation is the Transitive 
Closure of E.                

• Note: A special case of the Knaster-Tarski Theorem for smallest 
solutions of recursive equations arising from monotone operators 
(Datalog uses monotone relational algebra operators only).
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Procedural Semantics of Datalog Programs

Definition: Let π be a Datalog program.  The procedural 

semantics of π are obtained by the following bottom-up 

evaluation of the recursive predicates (IDBs) of π:

1. Set all IDBs of π to ∅.

2. Apply all rules of π in parallel; update the IDBs by 

evaluating the bodies of the rules on the given database D.

3. Repeat until no IDB predicate changes.

4. Return the values of the IDB predicates obtained at the 
end of Step 3.
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Procedural Semantics of Datalog Programs

Example: Datalog program for Transitive Closure

T(x,y) :- E(x,y)

T(x,y):- E(x,z),T(z,y)

– Bottom-up evaluation:

T0 = ∅

Tn+1 = {(a,b): E(a,b) Ç ∃ z(E(a,z) Æ Tn(z,b))}

Fact: The following statements are true:

– Tn ={ (a,b): there is a path of length at most n from a to b }

– Transitive Closure of E =  ∪ n ≥ 1T
n.

Proof: By induction on n. 
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Procedural Semantics of Datalog Programs

Example: Another Datalog program for Transitive Closure

T(x,y) :- E(x,y)

T(x,y):- T(x,z),T(z,y)

– Bottom-up evaluation:

T0 = ∅

Tn+1 = {(a,b): E(a,b) Ç ∃ z(Tn(a,z) Æ Tn(z,b))}

Fact: The following statements are true:

– Tn ={ (a,b): there is a path of length at most 2n from a to b }

– Transitive Closure of E =  ∪ n ≥ 1T
n.

Proof: By induction on n. 
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Procedural Semantics of Datalog Programs

Example: Consider the Datalog program 
ODD(x,y)   :- E(x,y)
ODD(x,y)   :- E(x,z), EVEN(z,y)
EVEN(x,y)  :- E(x,z), ODD(z,y)

– Bottom-up evaluation:
ODD0 =  ∅
EVEN0  =  ∅
ODDn+1 =   {(a,b): E(a,b) Ç ∃ z(E(a,z) Æ EVENn(z,b))}
EVENn+1 =  {(a,b):  ∃ z(E(a,z) Æ ODDn(z,b))}

Fact: The following statements are true:
– ∪ n ≥ 1 ODDn = { (a,b): there is a path of odd length from a to b }
– ∪ n ≥ 1  EVENn = { (a,b): there is a path of even length from a to b }.

Proof: By induction on n. 
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Declarative vs. Procedural Datalog Semantics

Theorem: Let π be a Datalog program. Then the following 

statements are true:

• The bottom-up evaluation of the procedural semantics of π

terminates within a number of steps bounded by a polynomial 
in the size of the database instance D (= size of the EDB 
predicates).

• The declarative semantics of π coincides with the procedural 
semantics of π.
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Declarative vs. Procedural Datalog Semantics

Proof: For simplicity, assume that π has a single IDB T of arity k.

– By induction on n, show that Tn ⊆ Tn+1, for every n.

(this uses the monotonicity of unions of conjunctive queries).

– Hence, T0 ⊆ T1 ⊆ … ⊆ Tn ⊆ Tn+1 ⊆ … 

– Since each Tn ⊆ adom(D)k, there is an m ≤ |adom(D)|k such that 

Tm = Tm+1.

– Since Tm = Tm+1, we have that the procedural semantics 
produces a solution to the recursive equation arising from π.

– By induction on n, show that if T* is another solution of this 
recursive equation, then Tn ⊆ T*, for all n 

(use the monotonicity of unions of conjunctive queries again).

– In particular, Tm ⊆ T*, hence Tm is the smallest solution of this 
recursive equation.
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The Query Evaluation Problem for Datalog 

Theorem: Let π be a Datalog program. 

There is a polynomial-time algorithm such that, given a database

instance D, it evaluates π on D. 

Proof: The bottom-up evaluation of the procedural semantics of 

π on a database D runs in polynomial time because:

– The number of iterations is bounded by a polynomial in the size 
of D.

– Each step of the iteration can be carried out in polynomial time

(why?).

Corollary: The data complexity of Datalog is in P.
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The Query Evaluation Problem for Datalog 

Corollary: The data complexity of Datalog is in P.

Theorem: The combined complexity of Datalog is EXPTIME-

complete.

Note: Recall that

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME.

Thus, Datalog has higher combined complexity than relational 
calculus (since the combined complexity of relational calculus is 
PSPACE-complete).
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Some Interesting Datalog Programs

Example: Non 2-Colorability can be expressed by a Datalog program.

Fact: A graph E is 2-colorable if and only if it does not contain a cycle 

of odd length.

Datalog program for Non 2-Colorability:

ODD(x,y)    :-- E(x,y)

ODD(x,y)    :-- E(x,z), EVEN(z,y)               

EVEN(x,y)   :-- E(x,z), ODD(z,y).

Q                :-- ODD(x,x)   

Sanity check: Can you find a Datalog program for Non 3-Colorability?



54

Some Interesting Datalog Programs

Example: Path Systems Problem

T(x) :-- A(x)

T(x) :-- R(x,y,z), T(y), T(z)

Theorem: S. Cook – 1974 

Evaluating this Datalog program is a P-complete problem

(via logspace-reductions).

Note:

� Path Systems was the first problem shown to be P-complete.

� In particular, it is highly unlikely that Path Systems is in LOGSPACE.

� Thus, Datalog has higher data complexity than relational calculus.
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Linear Datalog

Example: Give a linear Datalog program that computes the binary 
query COUSIN from the binary relation schema PARENT

SIBLING(x,y)  :- PARENT(z,x), PARENT(z,y)
COUSIN(x,y)   :- PARENT(z,x), PARENT(w,y), SIBLING(z,w)
COUSIN(x,y)   :- PARENT(z,x), PARENT(w,y), COUSIN(z,w). 

Fact: COUSIN(Barack Obama, Dick Cheney) 
Actually,  COUSIN8(Barack Obama, Dick Cheney)

http://www.msnbc.msn.com/id/21340764/

Fact: COUSIN(Sarah Palin, Princess Diana). 
Actually, COUSIN10(Sarah Palin, Princess Diana)

http://www.dailymail.co.uk/news/worldnews/article-1073249/Sarah-Palin-
Princess-Diana-cousins-genealogists-reveal.html
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Linear Datalog 

• Definition: A Datalog program π is linearizable if there is a 
linear Datalog program π* that is equivalent to π.

• Example: The following Datalog program is linearizable:

T(x,y) :- E(x,y)

T(x,y) :- T(x,z), T(z,y)

• Example: The following Datalog program is not linearizable:

T(x) :- A(x)

T(x) :- R(x,y,z), T(y), T(z)

(the proof of this fact is non-trivial).
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Datalog and SQL

• SQL:1999 and subsequent versions of the SQL standard provide 
support for linear Datalog programs (but not for non-linear ones)

• Syntax:  

WITH RECURSIVE T AS 

<Datalog program for T> 

<query involving T>

• Semantics:

– Compute T as the semantics of <Datalog program for T>

– The result of the previous step is a temporary relation that is then 
used, together with other EDBS,  as if it were a stored relation 
(an EDB) in <query involving T>.
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Datalog vs. First-Order Logic

Facts: 

• Unions of Conjunctive Queries are contained in  Datalog

• Relational Calculus  is not contained in   Datalog

– Datalog cannot express universal first-order sentences.

• Datalog is not contained in Relational Calculus

– Transitive closure is not expressible in Relational Calculus

Corollary to Rossman’s Theorem:

Datalog � Relational Calculus = Unions of Conjunctive Queries

Proof:

Datalog queries are preserved under homomorphisms.
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Datalog vs. First-Order Logic

Theorem (Ajtai-Guvevich – 1987)

The following statements are equivalent for a Datalog program π:

1. π is bounded. 

2. The query q defined by π is expressible in first-order logic.

Proof: Use Rossman’s Theorem (2005) for:  (2) implies  (1).

� If q is first-order expressible, then, by Rossman, q is equivalent to a

finite union of conjunctive queries q’1 ∪ …∪ q’m.

� Therefore, 

q1 ∪ …∪ qn ∪ …  ≡ q’1 ∪ …∪ q’m

� By Sagiv and Yannakakis, it follows that there is some N such that

q1 ∪ …∪ qn∪ …  ≡ q1 ∪ …∪ qN.

� Hence, π is bounded.
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Datalog with Negation

• Question: What if we allow negation in the bodies of Datalog rules?

• Examples:

– T(x) :- ¬ T(x)    

(the recursive specification has no solutions!)

– S(x) :- E(x,y), ¬ S(y)

• Note: Several different semantics for Datalog programs with negation 
have been proposed over the years (see Ch. 15 of AHV):

• Stratified datalog programs

• Well-founded semantics

• Inflationary semantics 

• Stable model semantics 

• … 
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Query Equivalence and Containment for Datalog 

• Note: Recall that the following are known about the Query 
Evaluation Problem for Datalog queries:

– The data complexity of Datalog is in P.

– The combined complexity of Datalog is EXPTIME-complete.

• Questions:

– What about the Query Equivalence Problem for Datalog:

Given two Datalog programs π and π’, is π equivalent to π’?

(do they return the same answer on every database instance?)

– What about the Query Containment Problem for Datalog:

Given two Datalog programs π and π’, is π ⊆ π’?

(is π(I) ⊆ π’(I), on every database instance I?)
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Query Equivalence and Containment for Datalog

Theorem: O. Shmueli – 1987

• The query equivalence problem for Datalog queries is 
undecidable. In fact, it is undecidable even for Datalog 
queries with a single binary IDB.

• Consequently, the query containment problem for Datalog 
queries is undecidable, even for Datalog programs with a 
single binary IDB.

Hint of Proof:

• Reduction from Context-Free Grammar Equivalence:

Given two context-free grammars G and G’, is L(G) = L(G’)?



Decidable Containment for Datalog Fragments

Theorem (Cosmadakis, Gaifman, Kanellakis, Vardi – 1988)

The query containment problem for monadic Datalog queries (all 
IDBs in the Datalog program are unary) is decidable. 

In fact, it is in 2EXPTIME-time and is EXPTIME-hard.

Theorem (Reutter, Romero, Vardi – 2015)

The query containment problem for regular queries (a large 
fragment of binary Datalog) is 2EXPSPACE-complete.

Note: Both these results make systematic use of automata-
theoretic techniques.
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The Complexity of Database Query Languages

Relational 
Calculus

Conjunctive 
Queries

Unions of 
Conjunctive 
Queries

Datalog

Queries

Query Eval.: 
Combined 
Complexity

PSPACE-
complete

NP-complete NP-complete EXPTIME-
complete

Query Eval.:

Data 
Complexity

In LOGSPACE 
(hence, in P)

In LOGSPACE 
(hence, in P)

In LOGSPACE 
(hence, in P)

P-complete

Query 
Equivalence

Undecidable NP-complete NP-complete Undecidable

Query 
Containment

Undecidable NP-complete NP-complete Undecidable


