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Review

We have seen tools for establishing limits on the expressive power of :
first-order sentences; and

first-order theories with a bounded number of variables.

We have linked the expressive power of MSO to that of finite automata
giving:
tools for studying the expressive power of MSO; and

tools for limiting the complexity of MSO definable properties on
decomposable structures.

We analyzed the complexity of first-order logic on sparse classes of
structures using locality.
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Descriptive Complexity

Descriptive Complexity provides an alternative perspective on
Computational Complexity.

Computational Complexity

e Measure use of resources (space, time, etc.) on a machine model of
computation;

e Complexity of a language—i.e. a set of strings.
Descriptive Complexity
o Complexity of a class of structures—e.g. a collection of graphs.

e Measure the complexity of describing the collection in a formal logic,
using resources such as variables, quantifiers, higher-order operators,
etc.

There is a fascinating interplay between the views.
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Encoding Structures

In order to talk of the complexity of a class of finite structures, we need
to fix some way of representing finite structures as strings.

We use an alphabet ¥ = {0, 1, #}.

For a structure A = (A, Ry,..., R,,), fix a linear order < on
A={ay,...,an}.

R; (of arity k) is encoded by a string [R;]~ of Os and 1s of length n*.

[A]< [R1]<# : '#[Rm]<

1. 1#

n

The exact string obtained depends on the choice of order.
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Invariance

Note that the decision problem:
Given a string [A]« decide whether A = ¢

has a natural invariance property.
It is invariant under the following equivalence relation

Write w1 ~ woy to denote that there is some structure A and
orders <1 and <5 on its universe such that

wy = [A]<, and wa = [A],

Note: deciding the equivalence relation ~ is just the same as deciding
structure isomorphism.
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First-Order Logic

For a first-order sentence ¢, the computational complexity of the
problem:

Given: a structure A
Decide: if A = ¢
is in logarithmic space and polynomial time.

There are computationally easy properties that are not definable in
first-order logic.

e There is no sentence ¢ of first-order logic such that A = ¢ if, and
only if, |A] is even.

e There is no formula ¢(E, x,y) that defines the transitive closure of
a binary relation F.

All of these are definable in second-order logic
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Examples

Evennness
This formula is true in a structure if, and only if, the size of the domain
is even.
3B3S VaIyB(x,y) AVaVyVzB(z,y) A B(z,2) >y ==z
VaVyVzB(z,z) AN B(y,z) =y
VavyS(x) A B(z,y) — =S(y)
VaVy—S(z) A B(z,y) — S(y)
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Examples

Transitive Closure
Each of the following formulas is true of a pair of elements a,b in a
structure if, and only if, there is an E-path from a to b.

VS(S(a) AVaVy[S(z) A E(z,y) — S(y)] — S(b))

3P VaVy P(z,y) — E(x,y)
JzP(a,z) A JzP(x,b) A —=FxP(x,a) A =FzP(b, x)
VaVy(P(z,y) = Vz(P(x,2) =y = 2))
Vavy(P(z,y) — Vz2(P(z,y) = © = 2))
Va((x # a A JyP(x,y)) — JzP(z, 7))
Va((x #bAJyP(y,z)) — 2P (x, 2))
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Examples

3-Colourability
The following formula is true in a graph (V, E) if, and only if, it is

3-colourable.
JRIBIG Vz(Rx V Bz V Gz)A

Va( —(Rx A Bx) A —(Bxz A Gx) AN —~(Rx A Gz))A
VaVy(Exy — ( —(Rxz A Ry)A
—(Bxz A By)A
~(Gz A Gy)))
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Fagin's Theorem

Theorem (Fagin)
A class C of finite structures is definable by a sentence of existential

second-order logic if, and only if, it is decidable by a nondeterminisitic
machine running in polynomial time.

ESO = NP

S = Mod(y) for some ¢ in ESO if, and only if, {[A]l< | A € S} is in NP
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Fagin's Theorem

If ¢ is ARy ---3R,,0 for a first-order 6.

To decide A = ¢, guess an interpretation for the relations Ry, ..., Ry,
and then evaluate 6 in the expanded structure.

Given a nondeterministic machine M and a polynomial p:

3 < a linear order
dH,T, S that code an accepting computation of M of length p

starting with [A]<.
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Is there a logic for P?

The major open question in Descriptive Complexity (first asked by
Chandra and Harel in 1982) is whether there is a logic £ such that

for any class of finite structures C, C is definable by a sentence
of L if, and only if, C is decidable by a deterministic machine
running in polynomial time.

Formally, we require £ to be a recursively enumerable set of sentences,

with a computable map taking each sentence to a Turing machine M and

a polynomial time bound p such that (M, p) accepts a class of structures.
(Gurevich 1988)
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Inductive Definitions

Let o(R, z1,...,xk) be a first-order formula in the vocabulary o U {R}
Associate an operator ® on a given o-structure A:

O(R*) ={a| (A, R" a) F ¢(R,x)}
We define the non-decreasing sequence of relations on A:
PO =)
ol = o™y ¢(P™)
The inflationary fixed point of ® is the limit of this sequence.

On a structure with n elements, the limit is reached after at most n*
stages.
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FP

The logic FP is formed by closing first-order logic under the rule:

If ¢ is a formula of vocabulary o U {R} then [ifpp ](t) is a
formula of vocabulary o.

The formula is read as:
the tuple t is in the inflationary fixed point of the operator
defined by ¢

LFP is the similar logic obtained using least fixed points of monotone
operators defined by positive formulas.

LFP and FP have the same expressive power (Gurevich-Shelah 1986;
Kreutzer 2004).
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Transitive Closure

The formula

[ifpr., (v =y Vv 32(E(z,2) AT(2,9)))l(u, v)

defines the transitive closure of the relation
The expressive power of FP properly extends that of first-order logic.

Still, every property definable in FP is decidable in polynomial time.

On a structure with n elements, the fixed-point of an induction
of arity k is reached in at most n* steps.
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Immerman-Vardi Theorem

Theorem

On structures which come equipped with a linear order FP expresses
exactly the properties that are in P.

(Immerman; Vardi 1982)

Recall from Fagin’s theorem:

d < a linear order
JH, T, S that code an accepting computation of M of length p
starting with [Al]<.
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FP vs. Ptime

The order cannot be built up inductively.
It is an open question whether a canonical string representation of a
structure can be constructed in polynomial-time.

If it can, there is a logic for P (and also graph isomorphism is in
P.
If not, then P # NP.

All P classes of structures can be expressed by a sentence of FP with <,
which is invariant under the choice of order. The set of all such sentences
is not r.e.

FP by itself is too weak to express all properties in P.
Evenness is not definable in FP.
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Finite Variable Logic

Recall that L* is first order formulas using only the variables z1, ..., zj.

If o(R,x) has k variables all together, then each of the relations in the
sequence:

(I)O — @ (I)nz+1 = pm U @(@m)
is definable in L2
Proof by induction, using substitution and renaming of bound variables.
On structures of a fixed size n, [ifpy . ](t) is equivalent to a formula of
L2k,
For any sentence ¢ of FP there is a k such that the property defined by
¢ is invariant under =*.
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Inexpressibility in FP

The following are not definable in FP:

e Fvenness;
o Perfect Matching;

e Hamiltonicity.

The examples showing these inexpressibility results all involve some form
of counting.
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Fixed-point Logic with Counting

Immerman proposed FPC—the extension of FP with a mechanism for
counting

Two sorts of variables:
® 11,xo,...range over |A|—the domain of the structure;
® vy, Vvs,... which range over non-negative integers.

If o(z) is a formula with free variable x, then #x¢ is a term denoting
the number of elements of A that satisfy (.

We have arithmetic operations (+, X) on number terms.

Quantification over number variables is bounded: (Jz < t) ¢
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Counting Quantifiers

C* is the logic obtained from first-order logic by allowing:
e counting quantifiers: 3'x ; and
e only the variables z1, ... .x.

Every formula of C* is equivalent to a formula of first-order logic, albeit
one with more variables.

For every sentence ¢ of FPC, there is a k such that if A =C" B, then

A E ¢ if andonlyif, BE ¢.
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Limits of FPC

FPC was proposed by Immerman as a possible logic for capturing P:

It was proved (Cai, Fiirer, Immerman 1992) that there are
polynomial-time graph properties that are not expressible in FPC.

A number of other results about the limitations of FPC followed.
In particular, it has been shown that the problem of solving linear
equations over the two element field Z5 is not definable in FPC.

(Atserias, Bulatov, D. 09)

The problem is clearly solvable in polynomial time by means of Gaussian
elimination.
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Systems of Linear Equations

We see how to represent systems of linear equations as
unordered relational structures.

Consider structures over the domain {z1,...,Zn,€1,...,€mn}, (where
€1,...,€en are the equations) with relations:

e unary Ej for those equations e whose r.h.s. is 0.
e unary E; for those equations e whose r.h.s. is 1.
e binary M with M (x,e) if  occurs on the L.h.s. of e.

Solv(Zs) is the class of structures representing solvable systems.
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Undefinability in FPC

To show that the satisfiability of systems of equations is not definable in
FPC it suffices to show that for each k, we can construct a two systems
of equations

FE), and I},
such that:
e [, is satisfiable;

e [ is unsatisfiable; and
o F} =C* Fy,
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Constructing systems of equations

Take G a 4-regular, connected graph.
Define equations E¢ with two variables zf, x{ for each edge e.
For each vertex v with edges ey, es, €3, €4 incident on it, we have 16

equations:
E,: ) +at+al +a =a+b+c+d (mod 2)
E¢ is obtained from E¢ by replacing, for exactly one vertex v, E,, by:

E! - St 4arP+r=a+b+c+d+1 (mod 2)

We can show: E is satisfiable; E is unsatisfiable.
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Satisfiability
Lemma E( is satisfiable.
by setting the variables x§ to i.

Lemma E is unsatisfiable.

Consider the subsystem consisting of equations involving only
the variables x§.
The sum of all left-hand sides is

2> 25=0 (mod2)
However, the sum of right-hand sides is 1.

Now we show that, for each k, we can find a graph G such that

EG Eck Eg.
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Counting Game

Immerman and Lander (1990) defined a pebble game for C*.
This is again played by Spoiler and Duplicator using k pairs of pebbles
{(a1,b1),...,(ar,bg)} on a pair of structures A and B
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At each move, Spoiler picks i and a set of elements of one
structure (say X C B)

Duplicator responds with a set of vertices of the other structure
(say Y C A) of the same size.

Spoiler then places a; on an element of Y and Duplicator must
place b; on an element of X.

Spoiler wins at any stage if the partial map from A to B defined
by the pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for p moves, then A and B
agree on all sentences of C* of quantifier rank at most p.
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Bijection Games

=C" is also characterised by a k-pebble bijection game. (Hella 96).

The game is played on graphs A and B with pebbles a1, ...,a; on A and
b1,...,b; on B.

e Spoiler chooses a pair of pebbles a; and b;;

e Duplicator chooses a bijection h : A — B such that for pebbles a;

and bj(j 7& Z), h(aj) = bj;

e Spoiler chooses a € A and places a; on a and b; on h(a).
Duplicator loses if the partial map a; — b; is not a partial isomorphism.
Duplicator has a strategy to play forever if, and only if, A =C" B,
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Equivalence of Games

It is easy to see that a winning strategy for Duplicator in the bijection
game yields a winning strategy in the counting game:

Respond to a set X C A (or Y C B) with h(X) (h=1(Y),
respectively).

For the other direction, consider the partition induced by the equivalence

relation
{(a.a') | (A, ala/a:]) =" (A,ald/a;))}

and for each of the parts X, take the response Y of Duplicator to a
move where Spoiler would choose X.
Stitch these together to give the bijection h.
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Cops and Robbers

A game played on an undirected graph G = (V, E) between a
player controlling k cops and another player in charge of a
robber.

At any point, the cops are sitting on a set X C V of the nodes and the
robber on a node r € V.

A move consists in the cop player removing some cops from X’ C X
nodes and announcing a new position Y for them. The robber responds
by moving along a path from r to some node s such that the path does
not go through X \ X".

The new position is (X \ X’)UY and s. If a cop and the robber are on
the same node, the robber is caught and the game ends.
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Cops and Robbers on the Grid

If G is the k x k toroidal grid, than the robber has a winning strategy in
the k-cops and robbers game played on G.

To show this, we note that for any set X of at most k vertices, the graph

G\ X contains a connected component with at least half the vertices of
G.

If all vertices in X are in distinct rows then G \ X is connected.
Otherwise, G \ X contains an entire row and column and in its connected

component there are at least k — 1 vertices from at least k/2 columns.

Robber's strategy is to stay in the large component.
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Cops, Robbers and Treewidth

Actually, the cops and robbers game characterizes tree-width.

A connected graph G has tree-width > k if, and only if, robber
has a winning strategy against a team of k cops on G.
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Cops, Robbers and Bijections

Suppose G is such that the robber has a winning strategy in the k-cops
and robbers game played on G.

We use this to construct a winning strategy for Duplicator in the
k-pebble bijection game on Eq and Eg.

e A bijection h: Eqg — Eq is good bar v if it is an isomorphism
everywhere except at the variables x{, for edges e incident on v.
e If h is good bar v and there is a path from v to u, then there is a

bijection I’ that is good bar u such that h and 1’ differ only at
vertices corresponding to the path from v to w.

e Duplicator plays bijections that are good bar v, where v is the
robber position in G when the cop position is given by the currently
pebbled elements.
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Restricted Graph Classes

If we restrict the class of structures we consider, FPC may be powerful
enough to express all polynomial-time decidable properties.
1. FPC captures P on trees. (Immerman and Lander 1990).

2. FPC captures P on any class of graphs of bounded treewidth.
(Grohe and Mariiio 1999).

3. FPC captures P on the class of planar graphs. (Grohe 1998).

4. FPC captures P on any proper minor-closed class of graphs.
(Grohe 2010).

In each case, the proof proceeds by showing that for any G in the class, a
canonical, ordered representaton of G can be interpreted in G using FPC.
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Beyond FPC

How do we define logics extending FPC while remaining inside P?

FPrk is fixed-point logic with an operator for matrix rank over finite fields.
(D., Grohe, Holm, Laubner, 2009)

Choiceless Polynomial Time with counting (CPT(Card)) is a class of

computational problems defined by (Blass, Gurevich and Shelah 1999).

It is based on a machine model (Gurevich Abstract State Machines) that

works directly on a graph or relational structure (rather than on a string

representation).

CPT(Card) is the polynomial time and space restriction of the machines.

Both of these have expressive power strictly greater than FPC.
Their relationship to each other and to P remains unknown.

We need new tools to analyze the expressive power of these logics.
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