Finite and Algorithmic Model Theory III: Parameterized Satisfaction

Anuj Dawar

University of Cambridge Computer Laboratory

Simons Institute, 31 August 2016

Review

We have seen how to use *model comparison games* and *locality results* to establish limits on the expressive power of *first-order logic*.

We have seen the connection between MSO and *automata* yielding the Büchi-Elgot-Trakhtenbrot theorem; and Courcelle's theorem.

The latter gives an efficient way of evaluating MSO formulas on structures that are *decomposable*.

Complexity of First-Order Logic

The problem of deciding whether $\mathbb{A} \models \varphi$ for a first-order φ is in time $O(ln^m)$ and $O(m \log n)$ space, where l is the *length* of φ , n the *size* of \mathbb{A} and m is the nesting depth of quantifiers in φ

So, it is in PSpace and for a fixed $\varphi,$ the problem of deciding membership in the class

 $\mathrm{Mod}(\varphi) = \{\mathbb{A} \mid \mathbb{A} \models \varphi\}$

is in *logarithmic space* and *polynomial time*.

The problem is, in fact, PSpace-complete, even for fixed \mathbb{A} .

Is FO contained in an initial segment of P?

Question posed in the title of a paper by (Stolboushkin and Taitslin (CSL 1994)).

Is there a fixed c such that for every first-order φ , $Mod(\varphi)$ is decidable in time $O(n^c)$?

If P = PSpace, then the answer is yes, as the satisfaction relation is then itself decidable in time $O(n^c)$ and this bounds the time for all formulas φ .

Thus, though we expect the answer is no, this would be difficult to prove.

A more uniform version of their question is:

Is there a constant c and a computable function f so that the satisfaction relation for first-order logic is decidable in time $O(f(l)n^c)$?

In this case we say that the satisfaction problem is *fixed-parameter tractable* (FPT) with the formula length as parameter.

Parameterized Complexity

FPT—the class of problems of input size n and *parameter* l which can be solved in time $O(f(l)n^c)$ for some computable function f and constanct c.

There is a hierarchy of *intractable* classes.

 $\mathsf{FPT} \subseteq W[1] \subseteq W[2] \subseteq \dots \subseteq \mathsf{AW}[\star]$

The satisfaction relation for first-order logic ($\mathbb{A} \models \varphi$), parameterized by the length of φ is $\mathsf{AW}[\star]$ -complete.

Graph Problems

Vertex cover of size k:

$$\exists x_1 \cdots \exists x_k (\forall y \forall z (E(y, z) \Rightarrow (\bigvee_{1 \le i \le k} y = x_i \lor \bigvee_{1 \le i \le k} z = x_i))$$

Vertex Cover is FPT

Independent Set:

$$\exists x_1 \cdots \exists x_k (\bigwedge_{i < j} \neg E(x_i, x_j))$$

Independent Set is W[1]-complete Dominating Set:

$$\exists x_1 \cdots \exists x_k \forall y (\bigwedge_i x_i \neq y \Rightarrow \bigvee_i E(x_i, y))$$

Dominating Set is W[2]-complete.

Restricted Classes

One way to get a handle on the complexity of first-order satisfaction is to consider restricted classes of structures.

```
Given: a first-order formula \varphi and a structure \mathbb{A} \in \mathcal{C}
Decide: if \mathbb{A} \models \varphi
```

For many interesting classes C, this problem has been shown to be FPT.

The theorem of (Courcelle 1990) shows this for \mathcal{T}_k —the class of graphs of tree-width at most k, even for MSO.

Bounded Degree

 \mathcal{D}_k —the class of structures \mathbb{A} in which every element has at most k neighbours in $G\mathbb{A}$.

Theorem (Seese)

For every sentence φ of FO and every k there is a linear time algorithm which, given a structure $\mathbb{A} \in \mathcal{D}_k$ determines whether $\mathbb{A} \models \varphi$.

Note: this is not true for MSO unless P = NP.

The proof is based on *locality* of first-order logic. Specifically, *Hanf's theorem*.

Hanf Types

For an element a in a structure \mathbb{A} , define

 $N_r^{\mathbb{A}}(a)$ —the substructure of \mathbb{A} generated by the elements whose distance from a (in $G\mathbb{A}$) is at most r.

We say \mathbb{A} and \mathbb{B} are *Hanf equivalent* with radius r and threshold q $(\mathbb{A} \simeq_{r,q} \mathbb{B})$ if, for every $a \in A$ the two sets

 $\{a' \in A \mid N_r^{\mathbb{A}}(a) \cong N_r^{\mathbb{A}}(a')\}$ and $\{b \in B \mid N_r^{\mathbb{A}}(a) \cong N_r^{\mathbb{B}}(b)\}$

either have the same size or both have size greater than q; and, similarly for every $b \in B$.

Hanf Locality Theorem

Theorem (Hanf)

For every vocabulary σ and every p there qre r and q such that for any σ -structures \mathbb{A} and \mathbb{B} : if $\mathbb{A} \simeq_{r,q} \mathbb{B}$ then $\mathbb{A} \equiv_p \mathbb{B}$.

For $\mathbb{A} \in \mathcal{D}_k$: $N_r^{\mathbb{A}}(a)$ has at most $k^r + 1$ elements each $\simeq_{r,q}$ has finite index.

Each $\simeq_{r,q}$ -class t can be characterised by a finite table, I_t , giving isomorphism types of neighbourhoods and numbers of their occurrences up to threshold q.

Satisfaction on \mathcal{D}_k

For a sentence φ of FO, we can compute a set of tables $\{I_1, \ldots, I_s\}$ describing $\simeq_{r,q}$ -classes consistent with it. This computation is independent of any structure A.

```
Given a structure \mathbb{A} \in \mathcal{D}_k,
```

for each a, determine the isomorphism type of $N_r^{\mathbb{A}}(a)$ construct the table describing the $\simeq_{r,q}$ -class of \mathbb{A} . compare against $\{I_1, \ldots, I_s\}$ to determine whether $\mathbb{A} \models \varphi$. For fixed k, r, q, this requires time *linear* in the size of \mathbb{A} .

Note: evaluation for FO is in O(f(l, k)n).

Local Tree-Width

Let $t : \mathbb{N} \to \mathbb{N}$ be a non-decreasing function. LTW_t—the class of structures \mathbb{A} such that for every $a \in A$: $GN_r^{\mathbb{A}}(a)$ has tree-width at most t(r). (Eppstein; Frick-Grohe).

We say that C has *bounded local tree-width* if there is some function t such that $C \subseteq LTW_t$.

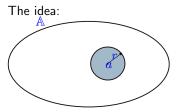
Examples:

- 1. \mathcal{T}_k has local tree-width bounded by the constant function t(r) = k.
- 2. \mathcal{D}_k has local tree-width bounded by $t(r) = k^r + 1$.
- 3. Planar graphs have local tree-width bounded by t(r) = 3r.

Bounded Local Tree-Width

Theorem (Frick-Grohe)

For any class C of bounded local tree-width and any $\varphi \in FO$, there is a *quadratic* time algorithm that decides, given $\mathbb{A} \in C$, whether $\mathbb{A} \models \varphi$.



For each a, the structure $N_r^{\mathbb{A}}(a)$ has tree-width bounded by t(r). Use the linear time algorithm on $T_{t(r)}$ to determine \equiv_p -type of $N_r^{\mathbb{A}}(a)$.

Hanf's theorem uses *isomorphism types* of $N_r^{\mathbb{A}}(a)$. We use *Gaifman's locality theorem* instead.

Gaifman's Theorem

We write $\delta(x, y) > d$ for the formula of FO that says that the distance between x and y is greater than d. We write $\psi^N(x)$ to denote the formula obtained from $\psi(x)$ by relativising all quantifiers to the set N.

A basic local sentence is a sentence of the form

$$\exists x_1 \cdots \exists x_s \left(\bigwedge_{i \neq j} \delta(x_i, x_j) > 2r \land \bigwedge_i \psi^{N_r(x_i)}(x_i) \right)$$

Theorem (Gaifman)

Every first-order sentence is equivalent to a Boolean combination of basic local sentences.

Using Gaifman's Theorem

How do we evaluate a basic local sentence $\exists x_1 \cdots \exists x_s \left(\bigwedge_{i \neq j} \delta(x_i, x_j) > 2r \land \bigwedge_i \psi^{N_r(x_i)}(x_i) \right)$ in a structure \mathbb{A} ?

For each $a \in A$, determine whether

 $N_r^{\mathbb{A}}(a) \models \psi[a]$

using the linear time model-checking algorithm on $\mathcal{T}_{t(r)}$. Label *a* red if so.

We now want to know whether there exists a r-scattered set of red vertices of size s.

Finding a Scattered Set

Choose red vertices from \mathbb{A} in some order, removing the *r*-neighbourhood of each chosen vertex.

```
 \begin{aligned} &a_1 \in \mathbb{A}, \\ &a_2 \in \mathbb{A} \setminus N_r^{\mathbb{A}}(a_1), \\ &a_3 \in \mathbb{A} \setminus (N_r^{\mathbb{A}}(a_1) \cup N_r^{\mathbb{A}}(a_2)), \dots \end{aligned}
```

If the process continues for s steps, we have found a r-scattered set of size s.

Otherwise, for some u < s we have found a_1, \ldots, a_u such that all red vertices and their *r*-neighbourhoods are contained in

 $N_{2r}^{\mathbb{A}}(a_1,\ldots,a_u).$

This is a structure of tree-width at most t(2rs) and the property of containing an *r*-scattered set of *red* vertices of size *s* can be stated in FO.

Graph Minors

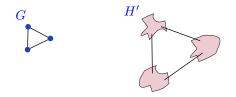
We say that a graph G is a minor of graph H (written $G \leq H$) if G can be obtained from H by repeated applications of the operations:

- delete an edge;
- delete a vertex (and all incident edges); and
- contract an edge

Graph Minors

Alternatively, G = (V, E) is a minor of H = (U, F), if there is a graph H' = (U', F') with $U' \subseteq U$ and $F' \subseteq F$ and a surjective map $M : U' \to V$ such that

- for each $v \in V$, $M^{-1}(v)$ is a connected subgraph of H'; and
- for each edge $(u, v) \in E$, there is an edge in F' between some $x \in M^{-1}(u)$ and some $y \in M^{-1}(v)$.



Facts about Graph Minors

- G is planar if, and only if, $K_5 \not\preceq G$ and $K_{3,3} \not\preceq G$.
- If $G \subset H$ then $G \preceq H$.
- The relation <u>≺</u> is transitive.
- If $G \preceq H$, then $\operatorname{tw}(G) \leq \operatorname{tw}(H)$.
- If $\operatorname{tw}(G) < k 1$, then $K_k \not\preceq G$.

Say that a class of graphs C excludes H as a minor if $H \not\preceq G$ for all $G \in C$.

C has excluded minors if it excludes some H as a minor (equivalently, it excludes some K_k as a minor).

• \mathcal{T}_k excludes K_{k+2} as a minor.

More Facts about Graph Minors

Theorem (Robertson-Seymour)

In any infinite collection $\{G_i \mid i \in \omega\}$ of graphs, there are i,j with $G_i \preceq G_j.$

Corollary

For any class C closed under minors, there is a finite collection \mathcal{F} of graphs such that $G \in C$ if, and only if, $F \not\preceq G$ for all $F \in \mathcal{F}$.

Theorem (Robertson-Seymour)

For any G there is an $O(n^3)$ algorithm for deciding, given H, whether $G \preceq H$.

Corollary

Any class C closed under minors is decidable in *cubic time*.

Excluded Minor Classes

Write \mathcal{M}_k for the class of graphs G such that $K_k \not\preceq G$.

First-order logic is fixed-parameter tractable on \mathcal{M}_k .

(Flum-Grohe)

Shallow Minors

H = (U, F) is a minor of G = (V, E), if we can find a collection of *disjoint, connected* subgraphs of G: $(B_u \mid u \in U)$ such that whenever $(u_1, u_2) \in F$, there is an edge between some vertex in B_{u_1} and some vertex in B_{u_2} .

The graphs B_u are called branch sets witnessing that $H \preceq G$.

If the branch sets can be chosen so that for each u there is $b \in B_u$ and $B_u \subseteq N_r^G(b)$, we say that H is a minor *at depth* r of G and write $H \preceq_r G$

Nowhere-Dense Classes

Definition:

A class of graphs C is said to be *nowhere dense* if, for each $r \ge 0$ there is a graph H_r such that $H_r \not\preceq_r G$ for any graph $G \in C$.

This was introduced by **Nešetřil and Ossona de Mendez** as a formalisation of classes of *sparse* graphs.

We say \mathcal{C} is *effectively nowhere dense* if the function $r \mapsto H_r$ is computable.

Trichotomy Theorem

Associate with any infinite class \mathcal{C} of graphs the following parameter:

 $d_{\mathcal{C}} = \lim_{r \to \infty} \limsup_{G \in \mathcal{C}_r} \frac{\log |\mathsf{edg}(G)|}{\log |\mathsf{vert}(G)|},$

where C_r is the collection of graphs obtained as minors of a graph in C by contracting neighbourhoods of radius at most r.

The *trichotomy theorem* of Nešetřil and Ossona de Mendez states that d_c can only take values 0, 1 and 2.

The nowhere-dense classes are exactly the ones where $d_{\mathcal{C}} \neq 2$.

This shows that these classes are a *natural limit* to one notion of sparseness.

FO on Nowhere Dense Classes

(Grohe, Kreutzer, Siebertz 2014) have shown that FO satisfaction is fixed-parameter tractable on nowhere-dense classes.

The proof is based on:

- An adaptation of *Gaifman's locality theorem*.
- An algorithmic result about *sparse neighbourhood covers*.
- The *quasi-wideness* of nowhere-dense classes.

Wide Classes

A set of vertices A in a graph G is said to be r-scattered if for any $u, v \in A$, dist(u, v) > 2r.

Definition

A class of graphs C is said to be *wide* if for every r and m there is an N such that any graph in C with more than N vertices contains a r-scattered set of size m.

Example: Classes of graphs of bounded degree. *Non-Example:* Trees

Almost Wide Classes

Definition

A class of graphs C is *almost wide* if there is an s such that for every r and m there is an N such that any graph in C with more than N vertices contains s elements whose removal leaves a r-scattered set of size m.

Example: Trees.

Examples: planar graphs; any class with excluded minors

Quasi-Wide Classes

Let $s: \mathbb{N} \to \mathbb{N}$ be a function. A class \mathcal{C} of graphs is *quasi-wide with* margin s if for all $r \ge 0$ and $m \ge 0$ there exists an $N \ge 0$ such that if $G \in \mathcal{C}$ and |G| > N then there is a set S of vertices with |S| < s(r) such that that G - S contains an r-scattered set of size at least m.

We show that any class of nowhere-dense graphs is quasi-wide.

The nowhere-dense classes are the *only* quasi-wide classes closed under taking subgraphs.

(Nešetřil and Ossona de Mendez)

FO on Nowhere Dense Classes

Key idea: to evaluate φ in $G \in \mathcal{C}$:

- identify a bottleneck set S;
- construct the graph G \ S with colours on the vertices to indicate their adjacence to elements of S;
- determine *recursively* the types of neighbourhoods of elements in the scattered set;
- remove redundant neighbourhoods and recurse

To establish the running time is FPT uses an *amortized quantifier rank* and *sparse neighbourhood covers*.