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Review

We have seen how to use model comparison games and locality results to
establish limits on the expressive power of first-order logic.

We have seen the connection between MSO and automata yielding

the Büchi-Elgot-Trakhtenbrot theorem; and

Courcelle’s theorem.

The latter gives an efficient way of evaluating MSO formulas on
structures that are decomposable.
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Complexity of First-Order Logic

The problem of deciding whether A |= ϕ for a first-order ϕ is in time
O(lnm) and O(m log n) space, where l is the length of ϕ, n the size of A
and m is the nesting depth of quantifiers in ϕ

So, it is in PSpace and for a fixed ϕ, the problem of deciding membership
in the class

Mod(ϕ) = {A | A |= ϕ}

is in logarithmic space and polynomial time.

The problem is, in fact, PSpace-complete, even for fixed A.
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Is FO contained in an initial segment of P?
Question posed in the title of a paper by (Stolboushkin and Taitslin (CSL

1994)).

Is there a fixed c such that for every first-order ϕ, Mod(ϕ) is
decidable in time O(nc)?

If P = PSpace, then the answer is yes, as the satisfaction relation is then
itself decidable in time O(nc) and this bounds the time for all formulas ϕ.

Thus, though we expect the answer is no, this would be difficult
to prove.

A more uniform version of their question is:

Is there a constant c and a computable function f so that the
satisfaction relation for first-order logic is decidable in time
O(f(l)nc)?

In this case we say that the satisfaction problem is fixed-parameter
tractable (FPT) with the formula length as parameter.
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Parameterized Complexity

FPT—the class of problems of input size n and parameter l which can be
solved in time O(f(l)nc) for some computable function f and constanct
c.

There is a hierarchy of intractable classes.

FPT ⊆W [1] ⊆W [2] ⊆ · · · ⊆ AW[?]

The satisfaction relation for first-order logic (A |= ϕ), parameterized by
the length of ϕ is AW[?]-complete.
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Graph Problems

Vertex cover of size k:

∃x1 · · · ∃xk(∀y∀z(E(y, z)⇒ (
∨

1≤i≤k

y = xi ∨
∨

1≤i≤k

z = xi)

Vertex Cover is FPT

Independent Set:

∃x1 · · · ∃xk(
∧
i<j

¬E(xi, xj))

Independent Set is W [1]-complete

Dominating Set:

∃x1 · · · ∃xk∀y(
∧
i

xi 6= y ⇒
∨
i

E(xi, y))

Dominating Set is W [2]-complete.
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Restricted Classes

One way to get a handle on the complexity of first-order satisfaction is to
consider restricted classes of structures.

Given: a first-order formula ϕ and a structure A ∈ C
Decide: if A |= ϕ

For many interesting classes C, this problem has been shown to be FPT.

The theorem of (Courcelle 1990) shows this for Tk—the class of graphs
of tree-width at most k, even for MSO.
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Bounded Degree

Dk—the class of structures A in which every element has at most k
neighbours in GA.
Theorem (Seese)

For every sentence ϕ of FO and every k there is a linear time algorithm
which, given a structure A ∈ Dk determines whether A |= ϕ.

Note: this is not true for MSO unless P = NP.

The proof is based on locality of first-order logic. Specifically, Hanf’s
theorem.
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Hanf Types

For an element a in a structure A, define

NA
r (a)—the substructure of A generated by the elements

whose distance from a (in GA) is at most r.

We say A and B are Hanf equivalent with radius r and threshold q
(A 'r,q B) if, for every a ∈ A the two sets

{a′ ∈ A | NA
r (a)

∼= NA
r (a
′)} and {b ∈ B | NA

r (a)
∼= NB

r (b)}

either have the same size or both have size greater than q;
and, similarly for every b ∈ B.
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Hanf Locality Theorem

Theorem (Hanf)

For every vocabulary σ and every p there qre r and q such that for any
σ-structures A and B: if A 'r,q B then A ≡p B.

For A ∈ Dk:

NA
r (a) has at most kr + 1 elements

each 'r,q has finite index.

Each 'r,q-class t can be characterised by a finite table, It, giving
isomorphism types of neighbourhoods and numbers of their occurrences
up to threshold q.
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Satisfaction on Dk

For a sentence ϕ of FO, we can compute a set of tables {I1, . . . , Is}
describing 'r,q-classes consistent with it.
This computation is independent of any structure A.

Given a structure A ∈ Dk,

for each a, determine the isomorphism type of NA
r (a)

construct the table describing the 'r,q-class of A.

compare against {I1, . . . , Is} to determine whether A |= ϕ.

For fixed k, r, q, this requires time linear in the size of A.

Note: evaluation for FO is in O(f(l, k)n).
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Local Tree-Width

Let t : N→ N be a non-decreasing function.
LTWt—the class of structures A such that for every a ∈ A:

GNA
r (a) has tree-width at most t(r). (Eppstein; Frick-Grohe).

We say that C has bounded local tree-width if there is some function t
such that C ⊆ LTWt.
Examples:

1. Tk has local tree-width bounded by the constant function t(r) = k.

2. Dk has local tree-width bounded by t(r) = kr + 1.

3. Planar graphs have local tree-width bounded by t(r) = 3r.
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Bounded Local Tree-Width

Theorem (Frick-Grohe)

For any class C of bounded local tree-width and any ϕ ∈ FO, there is a
quadratic time algorithm that decides, given A ∈ C, whether A |= ϕ.

The idea:

r
a

A For each a, the structure NA
r (a)

has tree-width bounded by t(r).
Use the linear time algorithm on
Tt(r) to determine ≡p-type of

NA
r (a).

Hanf’s theorem uses isomorphism types of NA
r (a). We use Gaifman’s

locality theorem instead.
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Gaifman’s Theorem

We write δ(x, y) > d for the formula of FO that says that the distance
between x and y is greater than d.
We write ψN (x) to denote the formula obtained from ψ(x) by
relativising all quantifiers to the set N .

A basic local sentence is a sentence of the form

∃x1 · · · ∃xs

∧
i 6=j

δ(xi, xj) > 2r ∧
∧
i

ψNr(xi)(xi)


Theorem (Gaifman)

Every first-order sentence is equivalent to a Boolean combination of basic
local sentences.
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Using Gaifman’s Theorem

How do we evaluate a basic local sentence
∃x1 · · · ∃xs

(∧
i 6=j δ(xi, xj) > 2r ∧

∧
i ψ

Nr(xi)(xi)
)

in a structure A?

For each a ∈ A, determine whether

NA
r (a) |= ψ[a]

using the linear time model-checking algorithm on Tt(r).
Label a red if so.

We now want to know whether there exists a r-scattered set of red
vertices of size s.
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Finding a Scattered Set

Choose red vertices from A in some order, removing the r-neighbourhood
of each chosen vertex.
a1 ∈ A,
a2 ∈ A \NA

r (a1),
a3 ∈ A \ (NA

r (a1) ∪NA
r (a2)), . . .

If the process continues for s steps, we have found a r-scattered set of
size s.
Otherwise, for some u < s we have found a1, . . . , au such that all red
vertices and their r-neighbourhoods are contained in

NA
2r(a1, . . . , au).

This is a structure of tree-width at most t(2rs) and the property of
containing an r-scattered set of red vertices of size s can be stated in FO.
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Graph Minors

We say that a graph G is a minor of graph H (written G � H) if G can
be obtained from H by repeated applications of the operations:

• delete an edge;

• delete a vertex (and all incident edges); and

• contract an edge

⇒
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Graph Minors

Alternatively, G = (V,E) is a minor of H = (U,F ), if there is a graph
H ′ = (U ′, F ′) with U ′ ⊆ U and F ′ ⊆ F and a surjective map
M : U ′ → V such that

• for each v ∈ V , M−1(v) is a connected subgraph of H ′; and

• for each edge (u, v) ∈ E, there is an edge in F ′ between some
x ∈M−1(u) and some y ∈M−1(v).

G H ′
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Facts about Graph Minors

• G is planar if, and only if, K5 6� G and K3,3 6� G.

• If G ⊂ H then G � H.

• The relation � is transitive.

• If G � H, then tw(G) ≤ tw(H).

• If tw(G) < k − 1, then Kk 6� G.

Say that a class of graphs C excludes H as a minor if H 6� G for all
G ∈ C.
C has excluded minors if it excludes some H as a minor (equivalently, it
excludes some Kk as a minor).

• Tk excludes Kk+2 as a minor.
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More Facts about Graph Minors

Theorem (Robertson-Seymour)

In any infinite collection {Gi | i ∈ ω} of graphs, there are i, j with
Gi � Gj .
Corollary

For any class C closed under minors, there is a finite collection F of
graphs such that G ∈ C if, and only if, F 6� G for all F ∈ F .

Theorem (Robertson-Seymour)

For any G there is an O(n3) algorithm for deciding, given H, whether
G � H.
Corollary

Any class C closed under minors is decidable in cubic time.
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Excluded Minor Classes

Write Mk for the class of graphs G such that Kk 6� G.

First-order logic is fixed-parameter tractable on Mk.
(Flum-Grohe)
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Shallow Minors

H = (U,F ) is a minor of G = (V,E), if we can find a collection of
disjoint, connected subgraphs of G: (Bu | u ∈ U) such that whenever
(u1, u2) ∈ F , there is an edge between some vertex in Bu1 and some
vertex in Bu2 .

The graphs Bu are called branch sets witnessing that H � G.

If the branch sets can be chosen so that for each u there is b ∈ Bu and
Bu ⊆ NG

r (b), we say that H is a minor at depth r of G and write
H �r G
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Nowhere-Dense Classes

Definition:
A class of graphs C is said to be nowhere dense if, for each r ≥ 0 there is
a graph Hr such that Hr 6�r G for any graph G ∈ C.

This was introduced by Nešeťril and Ossona de Mendez as a formalisation
of classes of sparse graphs.

We say C is effectively nowhere dense if the function r 7→ Hr is
computable.
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Trichotomy Theorem

Associate with any infinite class C of graphs the following parameter:

dC = lim
r→∞

lim sup
G∈Cr

log |edg(G)|
log |vert(G)|

,

where Cr is the collection of graphs obtained as minors of a graph in C
by contracting neighbourhoods of radius at most r.

The trichotomy theorem of Nešeťril and Ossona de Mendez states that
dC can only take values 0, 1 and 2.

The nowhere-dense classes are exactly the ones where dC 6= 2.

This shows that these classes are a natural limit to one notion of
sparseness.
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FO on Nowhere Dense Classes

(Grohe, Kreutzer, Siebertz 2014) have shown that FO satisfaction is
fixed-parameter tractable on nowhere-dense classes.

The proof is based on:

• An adaptation of Gaifman’s locality theorem.

• An algorithmic result about sparse neighbourhood covers.

• The quasi-wideness of nowhere-dense classes.
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Wide Classes

A set of vertices A in a graph G is said to be r-scattered if for any
u, v ∈ A, dist(u, v) > 2r.

Definition
A class of graphs C is said to be wide if for every r and m there is an N
such that any graph in C with more than N vertices contains a
r-scattered set of size m.

Example: Classes of graphs of bounded degree.

Non-Example: Trees
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Almost Wide Classes

Definition
A class of graphs C is almost wide if there is an s such that for every r
and m there is an N such that any graph in C with more than N vertices
contains s elements whose removal leaves a r-scattered set of size m.

Example: Trees.

Examples: planar graphs; any class with excluded minors
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Quasi-Wide Classes

Let s : N→ N be a function. A class C of graphs is quasi-wide with
margin s if for all r ≥ 0 and m ≥ 0 there exists an N ≥ 0 such that if
G ∈ C and |G| > N then there is a set S of vertices with |S| < s(r) such
that G− S contains an r-scattered set of size at least m.

We show that any class of nowhere-dense graphs is quasi-wide.

The nowhere-dense classes are the only quasi-wide classes closed under
taking subgraphs.

(Nešeťril and Ossona de Mendez )

Anuj Dawar August 2016



FO on Nowhere Dense Classes

Key idea: to evaluate ϕ in G ∈ C:

• identify a bottleneck set S;

• construct the graph G \ S with colours on the vertices to indicate
their adjacence to elements of S;

• determine recursively the types of neighbourhoods of elements in the
scattered set;

• remove redundant neighbourhoods and recurse

To establish the running time is FPT uses an amortized quantifier rank
and sparse neighbourhood covers.
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