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Logic and Databases are inextricably intertwined.

C.J. Date -- 2007
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Logic and Databases

• Extensive interaction between logic and databases during the 
past 45 years.

• Logic provides both a unifying framework and a set of tools for 
formalizing and studying data management tasks.

• The interaction between logic and databases is a prime 
example of 

– Logic in Computer Science

but also

– Logic from Computer Science
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Logic and Databases

Two main uses of logic in databases:

• Logic is used as a database query language to express

questions asked against databases.

• Logic is used as a specification language to express

integrity constraints in databases.

We will discuss both of these uses with emphasis on the first.
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Thematic Roadmap

• Logic and Database Query Languages

– Relational Algebra and Relational Calculus

– Conjunctive queries and their variants

– Datalog

• Query Evaluation, Query Containment, Query Equivalence

– Decidability and Complexity

• Other Aspects of Conjunctive Query Evaluation

• Alternative Semantics of Queries

– Bag Databases: Semantics and Conjunctive Query Containment

– Probabilistic Databases: Semantics and Dichotomy Theorems for 
Conjunctive Query Evaluation

– Inconsistent Databases: Semantics and Dichotomy Theorems

• Guest Lecture on Data Provenance by Val Tannen
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Relational Databases:  How it all got started

• The history of relational databases is  
the history of a scientific and 
technological revolution.

• The scientific revolution started in 1970 
by Edgar (Ted) F. Codd at the IBM San 
Jose Research Laboratory (now the 
IBM Almaden Research Center)

• Codd introduced the relational data 
model and two database query 
languages: relational algebra and 
relational calculus.

– “A relational model for data for large 
shared data banks”, CACM, 1970.

– “Relational completeness of data 
base sublanguages”, in: Database 
Systems, ed. by R. Rustin, 1972.

Edgar F. Codd, 1923-2003
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The Relational Data Model (E.F. Codd – 1970)

• The Relational Data Model uses the mathematical concept of a 
relation as the formalism for describing and representing data.

• Question: What is a relation?

• Answer:

– Formally, a relation is a subset of a cartesian product of sets.

– Informally, a relation is a “table” with rows and columns.

branch-name account-no customer-name balance

Orsay 10991-06284 Abiteboul $13,567.53

Hawthorne 10992-35671 Hull $21,245.75

… … … …
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Relational Database Schemas

• A k-ary relation schema R(A1,A2,…,AK) is a set  {A1,A2,…,Ak} of 

k attributes. 

CHECKING(branch-name, account-no, customer-name, balance)

• Thus, a  k-ary relation schema is a “blueprint” for k-ary
relations. 

• It is a k-ary relation symbol in logic with names for the 
positions.

• An instance of a relation schema is a relation conforming to the 
schema (arities match; also, in DBMS, data types of attributes 
match).

• A relational database schema is a set of relation schemas 
Ri(A1,A2,…,Aki

), for 1≤ i≤ m.

• A relational database instance of a relational schema is a set of 
relations Ri each of which is an instance of the relation schema Ri, 
1≤ i≤ m.
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Relational Structures vs. Relational Databases

• Relational Structure
A = (A, R1,…,Rm)

� A is the universe of A
� R1,…,Rm are the relations of A

• Relational Database
D = (R1,…,Rm)

• Thus, a relational database can be thought of as a 
relational structure without its universe.
– And this causes some problems down the road …
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Query Languages for the Relational Data Model

Codd introduced two different query languages for the relational
data model:

• Relational Algebra, which is a procedural language.
– It is an algebraic formalism in which queries are expressed by

applying a sequence of operations to relations.

• Relational Calculus, which is a declarative language.
– It is a logical formalism in which queries are expressed as

formulas of first-order logic.

Codd’s Theorem:  Relational Algebra and Relational Calculus
are “essentially equivalent” in terms of expressive power. 

(but what does this really mean?)
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The Five Basic Operations of Relational Algebra

• Group I: Three standard set-theoretic binary 
operations:
– Union
– Difference
– Cartesian Product.

• Group II. Two special unary operations on relations:
– Projection
– Selection.

• Relational Algebra consists of all expressions obtained 
by combining these five basic operations in 
syntactically correct ways.
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More on the Syntax of the Projection Operation

• Projection Operation:
– Syntax: πi1,…,im

(R), where R is of arity k, and i1, ….im are 
distinct integers from 1 up to k.

– Semantics:
πi1,…,im

(R) = 
{(a1,…,am): there is a tuple (b1,…,bk) in R such  that

a1 = bi1
, …, am = bim

}

• Example: If R is R(A,B,C,D), then 
π3,1(R) = {(c,a): there are b,d such that (a,b,c,d) ∈ R} =
πC,A (R) 
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The Selection Operation

• Selection is a family of unary operations of the form 
σΘ (R), 

where R is a relation and Θ is a condition that can be applied
as a  test to each row of R.

• When a selection operation is applied to R, it returns the 
subset of R consisting of all rows that satisfy the condition Θ

• A condition in the selection operation is an expression built up 
from:
– Comparison operators =, <, >, ≠, ≤,  ≥ applied to operands 

that are constants or attribute names or component 
numbers.

• These are the basic (atomic) clauses of the conditions.
– Boolean combinations (Æ, Ç, ¬) of basic clauses.
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Relational Algebra

• Definition: A relational algebra expression is a string obtained from 
relation schemas using union, difference, cartesian product, 
projection, and selection.

• Context-free grammar for relational algebra expressions:

E :=  R, S, … | (E1 ∪ E2) | (E1 – E2) | (E1× E2) | πL (E) | σΘ (E), 

where

� R, S, … are relation schemas

� L is a list of attributes

� Θ is a condition.
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Strength from Unity and Combination

• By itself, each basic relational algebra operation has 
limited expressive power, as it carries out a specific and 
rather simple task.

• When used in combination, however, the five relational 
algebra operations can express interesting and, quite 
often, rather complex queries.

• Derived relational algebra operations are operations on 
relations that are expressible via a relational algebra 
expression (built from the five basic operators).
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Natural Join

• Definition: Let A1, …, Ak be the common attributes of two 
relation schemas R and S.  Then

R ⋈ S = π<list> (σ R.A1=S.A1 Æ … Æ R.A1 = S.Ak (R×S)), 
where <list> contains all attributes of R×S, except for 
S.A1, …, S.Ak (in other words, duplicate columns are 
eliminated).

• Example: Given
TEACHES(fac-name,course,term) and
ENROLLS(stud-name,course,term),
we want to obtain 

TAUGHT-BY(stud-name,course,term,fac-name)
Then

TAUGHT-BY = ENROLLS ⋈ TEACHES
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Independence of the Basic Operations

• Question: Are all five basic relational algebra operations 
really needed?  Can one of them be expressed in terms of the 
other four?

• Theorem: Each of the five basic relational algebra operations 
is independent of the other four, that is, it cannot be 
expressed by a relational algebra expression that involves 
only the other four.

Proof Idea: For each relational algebra operation, we need to 
discover a property that is possessed by that operation, but is 
not possessed by any relational algebra expression that 
involves only the other four operations.
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SQL vs. Relational Algebra

SQL Relational Algebra

SELECT Projection π

FROM Cartesian Product ×

WHERE Selection σ

Semantics of SQL via interpretation to Relational Algebra

SELECT Ri1.A1, …, Rim.A.m

FROM    R1, …,RK                                   =           π Ri1.A1, …, Rim.A.m (σΨ (R1 × … × RK))

WHERE  Ψ 
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Relational Calculus

• In addition to relational algebra, Codd introduced relational 
calculus.

• Relational calculus is a declarative database query language 
based on first-order logic.

• Relational calculus comes into two different flavors:
– Tuple relational calculus
– Domain relational calculus.
We will focus on domain relational calculus. 
There is an easy translation between these two formalisms.

• Codd’s main technical result is that relational algebra and 
relational calculus have “essentially” the same expressive
power. 
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Relational Calculus (FO Logic for Databases)

• First-order variables: x, y, z, …, x1, …,xk,…

– They range over values that may occur in tables. 

• Relation symbols: R, S, T, …  of specified arities (names of relations)

• Atomic (Basic) Formulas:

– R(x1,…,xk), where R is a k-ary relation symbol 

(alternatively, (x1,…,xk) ∈ R; the variables need not be distinct)

– (x op y), where op is one of =, ≠, <, >, ≤, ≥

– (x op c), where c is a constant and op is one of =, ≠, <, >, ≤, ≥.

• Relational Calculus Formulas: 

– Every atomic formula is a relational calculus formula.

– If ϕ and ψ are relational calculus formulas, then so are:

• (ϕ Æ ψ), (ϕ Ç ψ), ¬ ψ, (ϕ → ψ)  (propositional connectives)

• (∃ x ϕ)   (existential quantification)

• (∀ x ϕ)   (universal quantification).
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Relational Calculus as a Query Language

Definition: 
• A relational calculus expression is an expression of the form 

{ (x1,…,xk):  ϕ(x1,…xk) },
where ϕ(x1,…,xk) is a relational calculus formula with x1,…,xk

as its free variables.
• When applied to a relational database D, this relational 

calculus expression returns the k-ary relation that consists of 
all k-tuples (a1,…,ak) that make the formula “true” on D.

Example: The relational calculus expression
{ (x,y):  ∃z(E(x,z) Æ E(z,y)) } 

returns the set P of all pairs of nodes (a,b) that are connected via
a path of length 2.
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Relational Algebra vs. Relational Calculus

Codd’s Theorem (informal statement):
Relational Algebra and Relational Calculus have “essentially” the same 
expressive power, i.e., they can express the same queries.

Note: It is not true that for every relational calculus expression ϕ,
there is an equivalent relational algebra expression E.

Examples:

� { (x1,…,xk):   ¬ R(x1,…,xk) }

� { x:   ∀y,z ENROLLS(x,y,z) }, 
where ENROLLS(s-name,course,term)
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From Relational Calculus to Relational Algebra

Note: The previous relational calculus expression may produce 
different answers when we consider different domains over which
the variables are interpreted.

Example: If the variables x1,…,xk range over a domain D, then  
{(x1,…,xk): ¬ R(x1,…,xk)} = Dk – R.

Fact:
� The relational calculus expression { (x1,…,xk): ¬ R(x1,…,xk) } 

is not “domain independent”.
� The relational calculus expression

{(x1,…,xk):  S(x1,..,xk) Æ ¬ R(x1,…,xk)} is “domain independent”.
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Active Domain and Active Domain Interpretation

Definition:

� The active domain adom(D) of a relational database instance D is 
the set of all values that occur in the relations of D.

� Let ϕ(x1,…,xk) be a relational calculus formula and let D be a

relational database instance. Then

ϕadom(D) 

is the result of evaluating ϕ(x1,…,xk) over adom(D) and D, i.e.,

� all variables and quantifiers are assumed to range over 
adom(D); 

� the relation symbols in ϕ are interpreted by the relations in D.
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Equivalence of Relational Algebra and Calculus

Theorem: If q is a k-ary query, then the following

statements are equivalent:

1. There is a relational algebra expression E such that 

q(D) = E(D), for every database instance D

(in other words, q is expressible in relational algebra).

2. There is a relational calculus formula ψ such that 

q(D) = ψadom (D)

(in other words, q is expressible in relational calculus 

under the active domain interpretation).
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Equivalence of Relational Algebra and Calculus

Proof (Sketch):

1. ⇒ 2. By a straightforward induction on the construction of
relational algebra expressions.

Note: Projection π is simulated using ∃

2. ⇒ 1.  
� Show first that for every relational database schema S, there is a
relational algebra expression E such that for every database
instance D, we have that adom(D) = E(D).

� Use the above fact and induction on the construction of relational
calculus formulas to obtain a translation of relational calculus under
the active domain interpretation to relational algebra.
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Equivalence of Relational Algebra and Calculus

� In this translation, the most interesting part is the simulation of the 
universal quantifier ∀ in relational algebra.

� It uses the logical equivalence ∀yψ ≡ ¬∃y¬ψ

� As an illustration, consider ∀yR(x,y).

� ∀yR(x,y)  ≡ ¬∃y¬R(x,y)

� adom(D) = π(R) ∪ π(R)

Rel.Calc. formula ϕ Relational Algebra Expression for ϕadom

¬ R(x,y) (π(R) ∪ π(R))×(π(R) ∪ π(R)) – R

∃y¬R(x,y) π((π(R) ∪ π(R))×(π(R) ∪ π(R)) - R)

¬∃y¬R(x,y) (π(R) ∪ π(R)) – (π((π(R) ∪ π(R))×(π(R) ∪ π(R)) - R))
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Queries 

Definition: Let S be a relational database schema. 

� A k-ary query on S is a function q defined on database instances
over S such that if D is a database instance over S, then q(D) is a 
k-ary relation on adom(D) that is invariant under isomorphisms
(i.e., if h: D → F is an isomorphism, then q(F) = h(q(D)).

� A Boolean query on S is  a function q defined on database instances 
over S such that if D is a database instance over S, then 
q(D) = 0 or q(D) = 1, and q(D) is invariant under isomorphisms. 

Example: The following are Boolean queries on graphs:
� Given a graph E (binary relation), is the diameter of E at most 3?
� Given a graph E (binary relation), is E connected?
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Fundamental Algorithmic Problems about Queries

• The Query Evaluation Problem: Given a query q and a 
database instance D, find q(D).

• The Query Equivalence Problem: Given two queries q 
and q’ of the same arity, is it the case that q ≡ q’ ?

(i.e., is it the case that, for every database instance D,
we have that q(D) = q’(D)?)

• The Query Containment Problem: Given two queries q 
and q’ of the same arity, is it the case that q ⊆ q’ ? 
(i.e., is it the case that, for every database instance D, we 
have that q(D) ⊆ q’(D)?)
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Fundamental Algorithmic Problems about Queries

• The Query Evaluation Problem is the main problem in query 
processing.

• The Query Equivalence Problem underlies query processing 
and optimization, as we often need to transform a given query 
to an equivalent one.

• The Query Containment Problem and Query Equivalence 
Problem are closely related to each other:

– q ≡ q’ if and only if q ⊆ q’ and q’ ⊆ q.

– q ⊆ q’ if and only if  q ≡ q Æ q’.
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Undecidability of Equivalence and Containment

Theorem: The Query Equivalence Problem for relational calculus
queries is undecidable.
Proof: Use Trakhtenbrot’s Theorem (1949):

The Finite Validity Problem is undecidable.
– Finite Validity Problem ≼ Query Equivalence Problem

• If ψ* is a fixed finitely valid relational calculus sentence, 
then for every relational calculus sentence ϕ, we have 
that

ϕ is finitely valid ⇔  ϕ ≡ ψ*.

Corollary: The Query Containment Problem for relational calculus 
queries in undecidable.
Proof:   Query Equivalence ≼ Query Containment, since

q ≡ q’  ⇔ q ⊆ q’ and q’ ⊆ q.
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Complexity of the Query Evaluation Problem

The Query Evaluation Problem for Relational Calculus:

Given a relational calculus formula ϕ and a database

instance D, find ϕadom(D).

Theorem: The Query Evaluation Problem for Relational

Calculus is PSPACE-complete.

Proof: We need to show that

� This problem is in PSPACE.

� This problem is PSPACE-hard.

We start with the second task.
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Complexity of the Query Evaluation Problem

Theorem: The Query Evaluation Problem for Relational 

Calculus is PSPACE-hard.

Proof: QBF – Quantified Boolean Formulas

Show that 

QBF ≼p Query Evaluation for Relational Calculus

Given QBF ∀ x1∃ x2 …. ∀ xk ψ

� Let V and P be two unary relation symbols

� Obtain ψ*  from ψ by replacing xi by P(xi),  and ¬xi by ¬P(xi)

� Let D be the database instance with V = {0,1}, P={1}.

� Then the following statements are equivalent:

� ∀ x1∃ x2 …. ∀ xk ψ is true

� ∀ x1 (V(x1) → ∃ x2 (V(x2)Æ(… ∀ xk(V(xk) → ψ*))…)   is true on D.
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Complexity of the Query Evaluation Problem

• Theorem: The Query Evaluation Problem for Relational Calculus is in 
PSPACE.

Proof (Hint): Let ϕ be a relational calculus formula ∀x1∃x2 … ∀xmψ and let I be 
a database instance.

– Exponential Time Algorithm: We can find ϕadom(D), by exhaustively cycling 
over all possible interpretations of the xi’s.

This runs in time O(nm), where n = |D| (size of D).

– A more careful analysis shows that this algorithm can be implemented in 
O(m·logn)-space.

• Use m blocks of memory, each holding one of the n elements of 
adom(I) written in binary (so O(logn) space is used in each block).

• Maintain also m counters in binary to keep track of the number of 
elements examined.

∀ x1 ∃ x2 … ∀ xm

a1 in adom(I) 
written in binary

a2 in adom(I) 
written in binary

… am in adom(I) 
written in binary
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Complexity of the Query Evaluation Problem

• Corollary: The Query Evaluation Problem for Relational 
Algebra is PSPACE-complete.

Proof:

The translation of relational calculus to relational algebra

yields a polynomial-time reduction of the 

Query Evaluation Problem for Relational Calculus to the 

Query Evaluation Problem for Relational Algebra.
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Summary

• The Query Evaluation Problem for Relational Calculus is 
PSPACE-complete.

• The Query Equivalence Problem for Relational Calculus is 
undecidable.

• The Query Containment Problem for Relational Calculus is 
undecidable.
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The Query Evaluation Problem Revisited

• Since the Query Evaluation Problem for Relational Calculus is 
PSPACE-hard, there are no polynomial-time algorithms for this 
problem, unless PSPACE = P (which is considered highly unlikely).

• Let’s take another look at the exponential-time algorithm for this 
problem:

– Let ϕ be a relational calculus formula ∀x1∃x2 … ∀xmψ and let D 

be a database instance.

– Exponential Time Algorithm: We can find ϕadom(D), by 
exhaustively cycling over all possible interpretations of the xi’s.

This runs in time O(nm), where n = |D|).

– So, the running time is O(|D||ϕ|), where |D| is the size of D and 
|ϕ| is the size of the relational calculus formula ϕ.

– This tells that the source of exponentiality is the formula size.
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The Query Evaluation Problem Revisited

• Theorem: Let ϕ be a fixed relational calculus formula. Then the 
following problem is solvable in polynomial time: given a database 
instance D, find ϕadom(D). In fact, this problem is in LOGSPACE.
Proof:  
Let ϕ be a fixed relational calculus formula ∀x1∃x2 … ∀xmψ

– The previous algorithm has running time O(|D||ϕ|), which is a polynomial,
since now |ϕ| is a constant.

– Moreover, the algorithm can now be implemented using logarithmic-
space only, since we need only maintain a constant number of memory
blocks, each of logarithmic size

∀ x1 ∃ x2 … ∀ xm

a1 in adom(I) 
written in binary

a2 in adom(I) 
written in binary

… am in adom(I) 
written in binary

38



Vardi’s Taxonomy of the Query Evaluation Problem

M.Y Vardi, “The Complexity of Relational Query Languages”,
1982

• Definition: Let L be a database query language.
– The combined complexity of L is the decision problem: 

given an L-sentence  and a database instance D, is ϕ true 
on D? (does D satisfy ϕ?) (in symbols,  does D � ϕ?)

– The data complexity of L is the family of the following
decision problems Pϕ, where ϕ is an L-sentence: 
given a database instance D,  does D � ϕ?

– The query complexity of L is the family of the following 
decision problems PD, where D is a database instance: 
given an L-sentence ϕ, does D � ϕ?
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Vardi’s Taxonomy of the Query Evaluation Problem

Definition: Let L be a database query language and let C be a 
computational complexity class.
• The data complexity of L is in C if for each L-sentence ϕ, the

decision problem Pϕ is in C.

• The data complexity of L is C-complete if it is in C and there is 
an L-sentence ϕ such that the decision problem Pϕ is 
C-complete.

• The query complexity of L is in C if for every database D, the
decision problem PD is in C.

• The query complexity of L is C-complete if it is in C and there is
a database D such that the decision problem PD is C-complete.
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Vardi’s Taxonomy of the Query Evaluation Problem

Vardi’s “empirical” discovery:

For most query languages L:
– The data complexity of L is of lower complexity than

both the combined complexity of L and the query
complexity of L.

– The query complexity of L can be as hard as the
combined complexity of L.
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Taxonomy of the Query Evaluation Problem for Relational Calculus

Complexity Classes

Problem Complexity

Combined 
Complexity

PSPACE-complete

Query Complexity � Is in PSPACE

� It can be 
PSPACE-complete

Data Complexity In LOGSPACE

42
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NP

PSPACE

.

.

.

The Query Evaluation Problem  
for Relational Calculus



Summary

• Relational Algebra and Relational Calculus have 
“essentially” the same expressive power.

• The Query Equivalence Problem for Relational Calculus 
in undecidable.

• The Query Containment Problem for Relational Calculus 
is undecidable.

• The Query Evaluation Problem for Relational Calculus is 
PSPACE-complete (combined / query complexity).
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Sublanguages of Relational Calculus

• Question: Are there interesting sublanguages of relational 
calculus for which the Query Containment Problem and the 
Query Evaluation Problem are “easier” than the full relational 
calculus?

• Answer:

– Yes, the language of conjunctive queries is such a 
sublanguage.

– Moreover, conjunctive queries are the most frequently 
asked queries against relational databases.
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Conjunctive Queries

• Definition: A conjunctive query is a query expressible by a 
relational calculus formula in prenex normal form built from 
atomic formulas R(y1,…,yn),  and  Æ and ∃ only.

{ (x1,…,xk):  ∃ z1 …∃ zm χ(x1, …,xk, z1,…,zk) },

where χ(x1, …,xk, z1,…,zk) is a conjunction of atomic formulas of the 
form R(y1,…,ym).
� Equivalently, a conjunctive query is a query expressible by a 

relational algebra expression of the form
πX(σΘ(R1×…× Rn)), where

Θ is a conjunction of equality atomic formulas (equijoin).
� Equivalently, a conjunctive query is a query expressible by an

SQL expression of the form
SELECT <list of attributes>
FROM    <list of relation names>
WHERE  <conjunction of equalities>
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Conjunctive Queries

• Definition: A conjunctive query is a query expressible by a 

relational calculus formula in prenex normal form built from 

atomic formulas R(y1,…,yn),  and  Æ and ∃ only.

{(x1,…,xk):  ∃ z1 …∃ zm χ(x1, …,xk, z1,…,zk)}

� A conjunctive query can be written as a logic-programming rule:

Q(x1,…,xk) :-- R1(u1), …, Rn(un), where

� Each variable xi occurs in the right-hand side of the rule.

� Each ui is a tuple of variables (not necessarily distinct)

� The variables occurring in the right-hand side (the body), but 
not in the left-hand side (the head) of the rule are existentially 
quantified (but the quantifiers are not displayed).

� “,” stands for conjunction.  
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Examples of Conjunctive Queries

– Path of Length 2: (Binary query)
{(x,y): ∃ z (E(x,z) Æ E(z,y))}

• As a relational algebra expression, 
π1,4(σ$2 = $3 (E×E)) 

• As a rule:
q(x,y) :-- E(x,z), E(z,y)

– Cycle of Length 3: (Boolean query)
∃ x ∃ y ∃ z(E(x,y) Æ E(y,z) Æ E(z,x))

• As a rule (the head has no variables)
– Q :-- E(x,z), E(z,y), E(z,x) 
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Conjunctive Queries

• Every natural join is a conjunctive query with no

existentially quantified variables

P(A,B,C), R(B,C,D) two relation symbols

� P ⋈ R =  {(x,y,z,w):  P(x,y,z) Æ R(y,z,w)}

� q(x,y,z,w)  :-- P(x,y,z), R(y,z,w) 

(no variables are existentially quantified)

� SELECT P.A, P.B, P.C, R.D

FROM    P, R

WHERE P.B = R.B  AND  P.C = R.C 

• Conjunctive queries are also known as SPJ-queries

(SELECT-PROJECT-JOIN queries)
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Conjunctive Query Evaluation and Containment

• Definition: Two fundamental problems about CQs
– Conjunctive Query Evaluation (CQE):

Given a conjunctive query q and an instance D, find q(D).

– Conjunctive Query Containment (CQC):
• Given two k-ary conjunctive queries q1 and q2, 

is it true that  q1 ⊆ q2? 
(i.e., for every instance D, we have that q1(D) ⊆ q2(D))

• Given two Boolean conjunctive queries q1 and q2,         
is it true that 
q1 � q2? (that is, for all D, if D � q1, then D � q2)?

CQC is logical implication.
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CQE  vs.  CQC

� Recall that for relational calculus queries:

� The Query Evaluation Problem is PSPACE-complete

(combined complexity).

� The Query Containment Problem is undecidable.

� Theorem: Chandra & Merlin, 1977

� CQE and CQC are the “same” problem.

� Moreover, each is an NP-complete problem.

� Question: What is the common link?

� Answer: The Homomorphism Problem
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Homomorphisms

• Definition: Let D and F be two database instances over the
same relational schema S.  
A homomorphism h: D → F is a function h: adom(D) → adom(F)
such that for every relational symbol P of S and every 
(a1,…,am), we have that 

if (a1,…,am) ∈ PD , then  (h(a1), .., h(am)) ∈ PF.

� Note: The concept of homomorphism is a relaxation of the concept 
of isomorphism, since every isomorphism is also a homomorphism,
but not vice versa.

� Example:

A graph G = (V,E) is 3-colorable 
if and only if

there is a homomorphism h: G → K3
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The Homomorphism Problem

� Definition: The Homomorphism Problem
Given two database instances D and F, is there a 
homomorphism h: D → F?

� Notation: D → F denotes that a homomorphism from D to F
exists.

� Theorem: The Homomorphism Problem is NP-complete.

Proof: Easy reduction from 3-Colorabilty

G is 3-colorable if and only if  G → K3.

� Exercise:
Formulate 3SAT as a special case of the Homomorphism Problem.
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The Homomorphism Problem

• Note: The Homomorphism Problem is a fundamental 
algorithmic problem:

– Satisfiability can be viewed as a special case of it.

– k-Colorability can be viewed as a special case of it.

– Many AI problems, such as planning, can be viewed as a 
special case of it.

– In fact, every constraint satisfaction problem can be 
viewed as a special case of the Homomorphism Problem 

(Feder and Vardi – 1993).
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Homomorphism Problem & Conjunctive Queries

� Theorem: Chandra & Merlin, 1977

� CQE and CQC are the “same” problem.

� Moreover, each is an NP-complete problem.

� Question: What is the common link?

� Answer:

� Both CQE and CQC are “equivalent” to the 
Homomorphism Problem.

� The link is established by bringing into the picture 

� Canonical conjunctive queries and

� Canonical database instances.
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