
Logic and Databases

Phokion G. Kolaitis

UC Santa Cruz & IBM Research - Almaden

1

Logic and Databases are inextricably intertwined.

C.J. Date -- 2007

2

Logic and Databases

• Extensive interaction between logic and databases during the
past 45 years.

• Logic provides both a unifying framework and a set of tools for
formalizing and studying data management tasks.

• The interaction between logic and databases is a prime
example of

– Logic in Computer Science

but also

– Logic from Computer Science

3

Logic and Databases

Two main uses of logic in databases:

• Logic is used as a database query language to express

questions asked against databases.

• Logic is used as a specification language to express

integrity constraints in databases.

We will discuss both of these uses with emphasis on the first.

4

Thematic Roadmap

• Logic and Database Query Languages

– Relational Algebra and Relational Calculus

– Conjunctive queries and their variants

– Datalog

• Query Evaluation, Query Containment, Query Equivalence

– Decidability and Complexity

• Other Aspects of Conjunctive Query Evaluation

• Alternative Semantics of Queries

– Bag Databases: Semantics and Conjunctive Query Containment

– Probabilistic Databases: Semantics and Dichotomy Theorems for
Conjunctive Query Evaluation

– Inconsistent Databases: Semantics and Dichotomy Theorems

• Guest Lecture on Data Provenance by Val Tannen

5

Relational Databases: How it all got started

• The history of relational databases is
the history of a scientific and
technological revolution.

• The scientific revolution started in 1970
by Edgar (Ted) F. Codd at the IBM San
Jose Research Laboratory (now the
IBM Almaden Research Center)

• Codd introduced the relational data
model and two database query
languages: relational algebra and
relational calculus.

– “A relational model for data for large
shared data banks”, CACM, 1970.

– “Relational completeness of data
base sublanguages”, in: Database
Systems, ed. by R. Rustin, 1972.

Edgar F. Codd, 1923-2003

6

The Relational Data Model (E.F. Codd – 1970)

• The Relational Data Model uses the mathematical concept of a
relation as the formalism for describing and representing data.

• Question: What is a relation?

• Answer:

– Formally, a relation is a subset of a cartesian product of sets.

– Informally, a relation is a “table” with rows and columns.

branch-name account-no customer-name balance

Orsay 10991-06284 Abiteboul $13,567.53

Hawthorne 10992-35671 Hull $21,245.75

… … … …

7

CHECKING Table

Relational Database Schemas

• A k-ary relation schema R(A1,A2,…,AK) is a set {A1,A2,…,Ak} of

k attributes.

CHECKING(branch-name, account-no, customer-name, balance)

• Thus, a k-ary relation schema is a “blueprint” for k-ary
relations.

• It is a k-ary relation symbol in logic with names for the
positions.

• An instance of a relation schema is a relation conforming to the
schema (arities match; also, in DBMS, data types of attributes
match).

• A relational database schema is a set of relation schemas
Ri(A1,A2,…,Aki

), for 1≤ i≤ m.

• A relational database instance of a relational schema is a set of
relations Ri each of which is an instance of the relation schema Ri,
1≤ i≤ m.

8

Relational Structures vs. Relational Databases

• Relational Structure
A = (A, R1,…,Rm)

� A is the universe of A
� R1,…,Rm are the relations of A

• Relational Database
D = (R1,…,Rm)

• Thus, a relational database can be thought of as a
relational structure without its universe.
– And this causes some problems down the road …

9

Query Languages for the Relational Data Model

Codd introduced two different query languages for the relational
data model:

• Relational Algebra, which is a procedural language.
– It is an algebraic formalism in which queries are expressed by

applying a sequence of operations to relations.

• Relational Calculus, which is a declarative language.
– It is a logical formalism in which queries are expressed as

formulas of first-order logic.

Codd’s Theorem: Relational Algebra and Relational Calculus
are “essentially equivalent” in terms of expressive power.

(but what does this really mean?)

10

The Five Basic Operations of Relational Algebra

• Group I: Three standard set-theoretic binary
operations:
– Union
– Difference
– Cartesian Product.

• Group II. Two special unary operations on relations:
– Projection
– Selection.

• Relational Algebra consists of all expressions obtained
by combining these five basic operations in
syntactically correct ways.

11

More on the Syntax of the Projection Operation

• Projection Operation:
– Syntax: πi1,…,im

(R), where R is of arity k, and i1, ….im are
distinct integers from 1 up to k.

– Semantics:
πi1,…,im

(R) =
{(a1,…,am): there is a tuple (b1,…,bk) in R such that

a1 = bi1
, …, am = bim

}

• Example: If R is R(A,B,C,D), then
π3,1(R) = {(c,a): there are b,d such that (a,b,c,d) ∈ R} =
πC,A (R)

12

The Selection Operation

• Selection is a family of unary operations of the form
σΘ (R),

where R is a relation and Θ is a condition that can be applied
as a test to each row of R.

• When a selection operation is applied to R, it returns the
subset of R consisting of all rows that satisfy the condition Θ

• A condition in the selection operation is an expression built up
from:
– Comparison operators =, <, >, ≠, ≤, ≥ applied to operands

that are constants or attribute names or component
numbers.

• These are the basic (atomic) clauses of the conditions.
– Boolean combinations (Æ, Ç, ¬) of basic clauses.

13

Relational Algebra

• Definition: A relational algebra expression is a string obtained from
relation schemas using union, difference, cartesian product,
projection, and selection.

• Context-free grammar for relational algebra expressions:

E := R, S, … | (E1 ∪ E2) | (E1 – E2) | (E1× E2) | πL (E) | σΘ (E),

where

� R, S, … are relation schemas

� L is a list of attributes

� Θ is a condition.

14

Strength from Unity and Combination

• By itself, each basic relational algebra operation has
limited expressive power, as it carries out a specific and
rather simple task.

• When used in combination, however, the five relational
algebra operations can express interesting and, quite
often, rather complex queries.

• Derived relational algebra operations are operations on
relations that are expressible via a relational algebra
expression (built from the five basic operators).

15

Natural Join

• Definition: Let A1, …, Ak be the common attributes of two
relation schemas R and S. Then

R ⋈ S = π<list> (σ R.A1=S.A1 Æ … Æ R.A1 = S.Ak (R×S)),
where <list> contains all attributes of R×S, except for
S.A1, …, S.Ak (in other words, duplicate columns are
eliminated).

• Example: Given
TEACHES(fac-name,course,term) and
ENROLLS(stud-name,course,term),
we want to obtain

TAUGHT-BY(stud-name,course,term,fac-name)
Then

TAUGHT-BY = ENROLLS ⋈ TEACHES

16

Independence of the Basic Operations

• Question: Are all five basic relational algebra operations
really needed? Can one of them be expressed in terms of the
other four?

• Theorem: Each of the five basic relational algebra operations
is independent of the other four, that is, it cannot be
expressed by a relational algebra expression that involves
only the other four.

Proof Idea: For each relational algebra operation, we need to
discover a property that is possessed by that operation, but is
not possessed by any relational algebra expression that
involves only the other four operations.

17

SQL vs. Relational Algebra

SQL Relational Algebra

SELECT Projection π

FROM Cartesian Product ×

WHERE Selection σ

Semantics of SQL via interpretation to Relational Algebra

SELECT Ri1.A1, …, Rim.A.m

FROM R1, …,RK = π Ri1.A1, …, Rim.A.m (σΨ (R1 × … × RK))

WHERE Ψ

18

Relational Calculus

• In addition to relational algebra, Codd introduced relational
calculus.

• Relational calculus is a declarative database query language
based on first-order logic.

• Relational calculus comes into two different flavors:
– Tuple relational calculus
– Domain relational calculus.
We will focus on domain relational calculus.
There is an easy translation between these two formalisms.

• Codd’s main technical result is that relational algebra and
relational calculus have “essentially” the same expressive
power.

19

Relational Calculus (FO Logic for Databases)

• First-order variables: x, y, z, …, x1, …,xk,…

– They range over values that may occur in tables.

• Relation symbols: R, S, T, … of specified arities (names of relations)

• Atomic (Basic) Formulas:

– R(x1,…,xk), where R is a k-ary relation symbol

(alternatively, (x1,…,xk) ∈ R; the variables need not be distinct)

– (x op y), where op is one of =, ≠, <, >, ≤, ≥

– (x op c), where c is a constant and op is one of =, ≠, <, >, ≤, ≥.

• Relational Calculus Formulas:

– Every atomic formula is a relational calculus formula.

– If ϕ and ψ are relational calculus formulas, then so are:

• (ϕ Æ ψ), (ϕ Ç ψ), ¬ ψ, (ϕ → ψ) (propositional connectives)

• (∃ x ϕ) (existential quantification)

• (∀ x ϕ) (universal quantification).

20

Relational Calculus as a Query Language

Definition:
• A relational calculus expression is an expression of the form

{ (x1,…,xk): ϕ(x1,…xk) },
where ϕ(x1,…,xk) is a relational calculus formula with x1,…,xk

as its free variables.
• When applied to a relational database D, this relational

calculus expression returns the k-ary relation that consists of
all k-tuples (a1,…,ak) that make the formula “true” on D.

Example: The relational calculus expression
{ (x,y): ∃z(E(x,z) Æ E(z,y)) }

returns the set P of all pairs of nodes (a,b) that are connected via
a path of length 2.

21

Relational Algebra vs. Relational Calculus

Codd’s Theorem (informal statement):
Relational Algebra and Relational Calculus have “essentially” the same
expressive power, i.e., they can express the same queries.

Note: It is not true that for every relational calculus expression ϕ,
there is an equivalent relational algebra expression E.

Examples:

� { (x1,…,xk): ¬ R(x1,…,xk) }

� { x: ∀y,z ENROLLS(x,y,z) },
where ENROLLS(s-name,course,term)

22

From Relational Calculus to Relational Algebra

Note: The previous relational calculus expression may produce
different answers when we consider different domains over which
the variables are interpreted.

Example: If the variables x1,…,xk range over a domain D, then
{(x1,…,xk): ¬ R(x1,…,xk)} = Dk – R.

Fact:
� The relational calculus expression { (x1,…,xk): ¬ R(x1,…,xk) }

is not “domain independent”.
� The relational calculus expression

{(x1,…,xk): S(x1,..,xk) Æ ¬ R(x1,…,xk)} is “domain independent”.

23

Active Domain and Active Domain Interpretation

Definition:

� The active domain adom(D) of a relational database instance D is
the set of all values that occur in the relations of D.

� Let ϕ(x1,…,xk) be a relational calculus formula and let D be a

relational database instance. Then

ϕadom(D)

is the result of evaluating ϕ(x1,…,xk) over adom(D) and D, i.e.,

� all variables and quantifiers are assumed to range over
adom(D);

� the relation symbols in ϕ are interpreted by the relations in D.

24

Equivalence of Relational Algebra and Calculus

Theorem: If q is a k-ary query, then the following

statements are equivalent:

1. There is a relational algebra expression E such that

q(D) = E(D), for every database instance D

(in other words, q is expressible in relational algebra).

2. There is a relational calculus formula ψ such that

q(D) = ψadom (D)

(in other words, q is expressible in relational calculus

under the active domain interpretation).

25

Equivalence of Relational Algebra and Calculus

Proof (Sketch):

1. ⇒ 2. By a straightforward induction on the construction of
relational algebra expressions.

Note: Projection π is simulated using ∃

2. ⇒ 1.
� Show first that for every relational database schema S, there is a
relational algebra expression E such that for every database
instance D, we have that adom(D) = E(D).

� Use the above fact and induction on the construction of relational
calculus formulas to obtain a translation of relational calculus under
the active domain interpretation to relational algebra.

26

Equivalence of Relational Algebra and Calculus

� In this translation, the most interesting part is the simulation of the
universal quantifier ∀ in relational algebra.

� It uses the logical equivalence ∀yψ ≡ ¬∃y¬ψ

� As an illustration, consider ∀yR(x,y).

� ∀yR(x,y) ≡ ¬∃y¬R(x,y)

� adom(D) = π(R) ∪ π(R)

Rel.Calc. formula ϕ Relational Algebra Expression for ϕadom

¬ R(x,y) (π(R) ∪ π(R))×(π(R) ∪ π(R)) – R

∃y¬R(x,y) π((π(R) ∪ π(R))×(π(R) ∪ π(R)) - R)

¬∃y¬R(x,y) (π(R) ∪ π(R)) – (π((π(R) ∪ π(R))×(π(R) ∪ π(R)) - R))

27

Queries

Definition: Let S be a relational database schema.

� A k-ary query on S is a function q defined on database instances
over S such that if D is a database instance over S, then q(D) is a
k-ary relation on adom(D) that is invariant under isomorphisms
(i.e., if h: D → F is an isomorphism, then q(F) = h(q(D)).

� A Boolean query on S is a function q defined on database instances
over S such that if D is a database instance over S, then
q(D) = 0 or q(D) = 1, and q(D) is invariant under isomorphisms.

Example: The following are Boolean queries on graphs:
� Given a graph E (binary relation), is the diameter of E at most 3?
� Given a graph E (binary relation), is E connected?

28

Fundamental Algorithmic Problems about Queries

• The Query Evaluation Problem: Given a query q and a
database instance D, find q(D).

• The Query Equivalence Problem: Given two queries q
and q’ of the same arity, is it the case that q ≡ q’ ?

(i.e., is it the case that, for every database instance D,
we have that q(D) = q’(D)?)

• The Query Containment Problem: Given two queries q
and q’ of the same arity, is it the case that q ⊆ q’ ?
(i.e., is it the case that, for every database instance D, we
have that q(D) ⊆ q’(D)?)

29

Fundamental Algorithmic Problems about Queries

• The Query Evaluation Problem is the main problem in query
processing.

• The Query Equivalence Problem underlies query processing
and optimization, as we often need to transform a given query
to an equivalent one.

• The Query Containment Problem and Query Equivalence
Problem are closely related to each other:

– q ≡ q’ if and only if q ⊆ q’ and q’ ⊆ q.

– q ⊆ q’ if and only if q ≡ q Æ q’.

30

Undecidability of Equivalence and Containment

Theorem: The Query Equivalence Problem for relational calculus
queries is undecidable.
Proof: Use Trakhtenbrot’s Theorem (1949):

The Finite Validity Problem is undecidable.
– Finite Validity Problem ≼ Query Equivalence Problem

• If ψ* is a fixed finitely valid relational calculus sentence,
then for every relational calculus sentence ϕ, we have
that

ϕ is finitely valid ⇔ ϕ ≡ ψ*.

Corollary: The Query Containment Problem for relational calculus
queries in undecidable.
Proof: Query Equivalence ≼ Query Containment, since

q ≡ q’ ⇔ q ⊆ q’ and q’ ⊆ q.

31

Complexity of the Query Evaluation Problem

The Query Evaluation Problem for Relational Calculus:

Given a relational calculus formula ϕ and a database

instance D, find ϕadom(D).

Theorem: The Query Evaluation Problem for Relational

Calculus is PSPACE-complete.

Proof: We need to show that

� This problem is in PSPACE.

� This problem is PSPACE-hard.

We start with the second task.

32

Complexity of the Query Evaluation Problem

Theorem: The Query Evaluation Problem for Relational

Calculus is PSPACE-hard.

Proof: QBF – Quantified Boolean Formulas

Show that

QBF ≼p Query Evaluation for Relational Calculus

Given QBF ∀ x1∃ x2 …. ∀ xk ψ

� Let V and P be two unary relation symbols

� Obtain ψ* from ψ by replacing xi by P(xi), and ¬xi by ¬P(xi)

� Let D be the database instance with V = {0,1}, P={1}.

� Then the following statements are equivalent:

� ∀ x1∃ x2 …. ∀ xk ψ is true

� ∀ x1 (V(x1) → ∃ x2 (V(x2)Æ(… ∀ xk(V(xk) → ψ*))…) is true on D.

33

Complexity of the Query Evaluation Problem

• Theorem: The Query Evaluation Problem for Relational Calculus is in
PSPACE.

Proof (Hint): Let ϕ be a relational calculus formula ∀x1∃x2 … ∀xmψ and let I be
a database instance.

– Exponential Time Algorithm: We can find ϕadom(D), by exhaustively cycling
over all possible interpretations of the xi’s.

This runs in time O(nm), where n = |D| (size of D).

– A more careful analysis shows that this algorithm can be implemented in
O(m·logn)-space.

• Use m blocks of memory, each holding one of the n elements of
adom(I) written in binary (so O(logn) space is used in each block).

• Maintain also m counters in binary to keep track of the number of
elements examined.

∀ x1 ∃ x2 … ∀ xm

a1 in adom(I)
written in binary

a2 in adom(I)
written in binary

… am in adom(I)
written in binary

34

Complexity of the Query Evaluation Problem

• Corollary: The Query Evaluation Problem for Relational
Algebra is PSPACE-complete.

Proof:

The translation of relational calculus to relational algebra

yields a polynomial-time reduction of the

Query Evaluation Problem for Relational Calculus to the

Query Evaluation Problem for Relational Algebra.

35

Summary

• The Query Evaluation Problem for Relational Calculus is
PSPACE-complete.

• The Query Equivalence Problem for Relational Calculus is
undecidable.

• The Query Containment Problem for Relational Calculus is
undecidable.

36

The Query Evaluation Problem Revisited

• Since the Query Evaluation Problem for Relational Calculus is
PSPACE-hard, there are no polynomial-time algorithms for this
problem, unless PSPACE = P (which is considered highly unlikely).

• Let’s take another look at the exponential-time algorithm for this
problem:

– Let ϕ be a relational calculus formula ∀x1∃x2 … ∀xmψ and let D

be a database instance.

– Exponential Time Algorithm: We can find ϕadom(D), by
exhaustively cycling over all possible interpretations of the xi’s.

This runs in time O(nm), where n = |D|).

– So, the running time is O(|D||ϕ|), where |D| is the size of D and
|ϕ| is the size of the relational calculus formula ϕ.

– This tells that the source of exponentiality is the formula size.

37

The Query Evaluation Problem Revisited

• Theorem: Let ϕ be a fixed relational calculus formula. Then the
following problem is solvable in polynomial time: given a database
instance D, find ϕadom(D). In fact, this problem is in LOGSPACE.
Proof:
Let ϕ be a fixed relational calculus formula ∀x1∃x2 … ∀xmψ

– The previous algorithm has running time O(|D||ϕ|), which is a polynomial,
since now |ϕ| is a constant.

– Moreover, the algorithm can now be implemented using logarithmic-
space only, since we need only maintain a constant number of memory
blocks, each of logarithmic size

∀ x1 ∃ x2 … ∀ xm

a1 in adom(I)
written in binary

a2 in adom(I)
written in binary

… am in adom(I)
written in binary

38

Vardi’s Taxonomy of the Query Evaluation Problem

M.Y Vardi, “The Complexity of Relational Query Languages”,
1982

• Definition: Let L be a database query language.
– The combined complexity of L is the decision problem:

given an L-sentence and a database instance D, is ϕ true
on D? (does D satisfy ϕ?) (in symbols, does D � ϕ?)

– The data complexity of L is the family of the following
decision problems Pϕ, where ϕ is an L-sentence:
given a database instance D, does D � ϕ?

– The query complexity of L is the family of the following
decision problems PD, where D is a database instance:
given an L-sentence ϕ, does D � ϕ?

39

Vardi’s Taxonomy of the Query Evaluation Problem

Definition: Let L be a database query language and let C be a
computational complexity class.
• The data complexity of L is in C if for each L-sentence ϕ, the

decision problem Pϕ is in C.

• The data complexity of L is C-complete if it is in C and there is
an L-sentence ϕ such that the decision problem Pϕ is
C-complete.

• The query complexity of L is in C if for every database D, the
decision problem PD is in C.

• The query complexity of L is C-complete if it is in C and there is
a database D such that the decision problem PD is C-complete.

40

Vardi’s Taxonomy of the Query Evaluation Problem

Vardi’s “empirical” discovery:

For most query languages L:
– The data complexity of L is of lower complexity than

both the combined complexity of L and the query
complexity of L.

– The query complexity of L can be as hard as the
combined complexity of L.

41

Taxonomy of the Query Evaluation Problem for Relational Calculus

Complexity Classes

Problem Complexity

Combined
Complexity

PSPACE-complete

Query Complexity � Is in PSPACE

� It can be
PSPACE-complete

Data Complexity In LOGSPACE

42

LOGSPACE

NLOGSPACE

P

NP

PSPACE

.

.

.

The Query Evaluation Problem
for Relational Calculus

Summary

• Relational Algebra and Relational Calculus have
“essentially” the same expressive power.

• The Query Equivalence Problem for Relational Calculus
in undecidable.

• The Query Containment Problem for Relational Calculus
is undecidable.

• The Query Evaluation Problem for Relational Calculus is
PSPACE-complete (combined / query complexity).

43

Sublanguages of Relational Calculus

• Question: Are there interesting sublanguages of relational
calculus for which the Query Containment Problem and the
Query Evaluation Problem are “easier” than the full relational
calculus?

• Answer:

– Yes, the language of conjunctive queries is such a
sublanguage.

– Moreover, conjunctive queries are the most frequently
asked queries against relational databases.

44

Conjunctive Queries

• Definition: A conjunctive query is a query expressible by a
relational calculus formula in prenex normal form built from
atomic formulas R(y1,…,yn), and Æ and ∃ only.

{ (x1,…,xk): ∃ z1 …∃ zm χ(x1, …,xk, z1,…,zk) },

where χ(x1, …,xk, z1,…,zk) is a conjunction of atomic formulas of the
form R(y1,…,ym).
� Equivalently, a conjunctive query is a query expressible by a

relational algebra expression of the form
πX(σΘ(R1×…× Rn)), where

Θ is a conjunction of equality atomic formulas (equijoin).
� Equivalently, a conjunctive query is a query expressible by an

SQL expression of the form
SELECT <list of attributes>
FROM <list of relation names>
WHERE <conjunction of equalities>

45

Conjunctive Queries

• Definition: A conjunctive query is a query expressible by a

relational calculus formula in prenex normal form built from

atomic formulas R(y1,…,yn), and Æ and ∃ only.

{(x1,…,xk): ∃ z1 …∃ zm χ(x1, …,xk, z1,…,zk)}

� A conjunctive query can be written as a logic-programming rule:

Q(x1,…,xk) :-- R1(u1), …, Rn(un), where

� Each variable xi occurs in the right-hand side of the rule.

� Each ui is a tuple of variables (not necessarily distinct)

� The variables occurring in the right-hand side (the body), but
not in the left-hand side (the head) of the rule are existentially
quantified (but the quantifiers are not displayed).

� “,” stands for conjunction.

46

Examples of Conjunctive Queries

– Path of Length 2: (Binary query)
{(x,y): ∃ z (E(x,z) Æ E(z,y))}

• As a relational algebra expression,
π1,4(σ$2 = $3 (E×E))

• As a rule:
q(x,y) :-- E(x,z), E(z,y)

– Cycle of Length 3: (Boolean query)
∃ x ∃ y ∃ z(E(x,y) Æ E(y,z) Æ E(z,x))

• As a rule (the head has no variables)
– Q :-- E(x,z), E(z,y), E(z,x)

47

Conjunctive Queries

• Every natural join is a conjunctive query with no

existentially quantified variables

P(A,B,C), R(B,C,D) two relation symbols

� P ⋈ R = {(x,y,z,w): P(x,y,z) Æ R(y,z,w)}

� q(x,y,z,w) :-- P(x,y,z), R(y,z,w)

(no variables are existentially quantified)

� SELECT P.A, P.B, P.C, R.D

FROM P, R

WHERE P.B = R.B AND P.C = R.C

• Conjunctive queries are also known as SPJ-queries

(SELECT-PROJECT-JOIN queries)

48

Conjunctive Query Evaluation and Containment

• Definition: Two fundamental problems about CQs
– Conjunctive Query Evaluation (CQE):

Given a conjunctive query q and an instance D, find q(D).

– Conjunctive Query Containment (CQC):
• Given two k-ary conjunctive queries q1 and q2,

is it true that q1 ⊆ q2?
(i.e., for every instance D, we have that q1(D) ⊆ q2(D))

• Given two Boolean conjunctive queries q1 and q2,
is it true that
q1 � q2? (that is, for all D, if D � q1, then D � q2)?

CQC is logical implication.

49

CQE vs. CQC

� Recall that for relational calculus queries:

� The Query Evaluation Problem is PSPACE-complete

(combined complexity).

� The Query Containment Problem is undecidable.

� Theorem: Chandra & Merlin, 1977

� CQE and CQC are the “same” problem.

� Moreover, each is an NP-complete problem.

� Question: What is the common link?

� Answer: The Homomorphism Problem

50

Homomorphisms

• Definition: Let D and F be two database instances over the
same relational schema S.
A homomorphism h: D → F is a function h: adom(D) → adom(F)
such that for every relational symbol P of S and every
(a1,…,am), we have that

if (a1,…,am) ∈ PD , then (h(a1), .., h(am)) ∈ PF.

� Note: The concept of homomorphism is a relaxation of the concept
of isomorphism, since every isomorphism is also a homomorphism,
but not vice versa.

� Example:

A graph G = (V,E) is 3-colorable
if and only if

there is a homomorphism h: G → K3

51

The Homomorphism Problem

� Definition: The Homomorphism Problem
Given two database instances D and F, is there a
homomorphism h: D → F?

� Notation: D → F denotes that a homomorphism from D to F
exists.

� Theorem: The Homomorphism Problem is NP-complete.

Proof: Easy reduction from 3-Colorabilty

G is 3-colorable if and only if G → K3.

� Exercise:
Formulate 3SAT as a special case of the Homomorphism Problem.

52

The Homomorphism Problem

• Note: The Homomorphism Problem is a fundamental
algorithmic problem:

– Satisfiability can be viewed as a special case of it.

– k-Colorability can be viewed as a special case of it.

– Many AI problems, such as planning, can be viewed as a
special case of it.

– In fact, every constraint satisfaction problem can be
viewed as a special case of the Homomorphism Problem

(Feder and Vardi – 1993).

53

Homomorphism Problem & Conjunctive Queries

� Theorem: Chandra & Merlin, 1977

� CQE and CQC are the “same” problem.

� Moreover, each is an NP-complete problem.

� Question: What is the common link?

� Answer:

� Both CQE and CQC are “equivalent” to the
Homomorphism Problem.

� The link is established by bringing into the picture

� Canonical conjunctive queries and

� Canonical database instances.

54

