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Finite and Algorithmic Model Theory

In the 1980s, the term finite model theory came to be used to describe
the study of the expressive power of logics (from first-order to
second-order logic and in between), on the class of all finite structures.

The motivation for the study is that problems in computer science
(especially in complexity theory and database theory) are naturally
expressed as questions about the expressive power of logics.
And, the structures involved in computation are finite.

A wide range of techniques, many of them algorithmic, for studying
expressive power were developed.

Many of these techniques have been extended to the study of structures
that are not necessarily finite but admit a finite, alogrithmic description.
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Model Theoretic Questions

The kind of questions we are interested in are about the expressive power
of logics. Given a formula ϕ, its class of models is the collection of finite
relational structures A in which it is true.

Mod(ϕ) = {A | A |= ϕ}

What classes of structures are definable in a given logic L?

How do syntactic restrictions on ϕ relate to semantic
restrictions on Mod(ϕ)?

How does the computational complexity of Mod(ϕ) relate to
the syntactic complexity of ϕ?
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Expressive Power of Logics

We are interested in the expressive power of logics on finite structures.

We consider finite structures in a relational vocabulary.

A finite set A, with relations R1, . . . , Rm and constants
c1, . . . , cn.

A property of finite structures is any isomorphism-closed class of
structures.

For a logic L, we ask for which properties P , there is a sentence ϕ of the
language such that

A ∈ P if, and only if, A |= ϕ.
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First-Order Logic

As an example, consider coloured graphs, i.e. structures in a vocabulary
with one binary relation E, some number of unary relations C1, . . . , Cn,
and possibly some constant symbols.

Formulas of first-order logic are given by the following rules

terms – c, x

atomic formulae – E(t1, t2), t1 = t2, Ci(t)

boolean operations – ϕ ∧ ψ, ϕ ∨ ψ, ¬ϕ

first-order quantifiers – ∃xϕ, ∀xϕ
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Example - Vertex Cover

For each k, we can write a first-order formula in the language of graphs
which says that there is a vertex cover of size at most k.

∃x1 · · · ∃xk(∀y∀z(E(y, z)⇒ (
∨

1≤i≤k

y = xi ∨
∨

1≤i≤k

z = xi)

Here, quantifiers range over vertices of the graph.
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Example - 3-Colourability

3-colourability of graphs can be expressed by a formula when we allow
quantification over sets of vertices.

∃R ⊆ V ∃B ⊆ V ∃G ⊆ V
∀x(Rx ∨Bx ∨Gx)∧
∀x(¬(Rx ∧Bx) ∧ ¬(Bx ∧Gx) ∧ ¬(Rx ∧Gx))∧
∀x∀y(Exy → (¬(Rx ∧Ry)∧

¬(Bx ∧By)∧
¬(Gx ∧Gy)))
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Compactness and Completeness

The Compactness Theorem fails if we restrict ourselves to finite
structures.

The Completeness Theorem also fails:

Theorem (Trakhtenbrot 1950)

The set of finitely valid sentences is not recursively enumerable.

Various preservation theorems ( Loś-Tarski, Lyndon) fail when restricted
to finite structures.

The finitary analogues of Craig Interpolation Theorem and the Beth
Definability Theorem also fail.
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Tools for Finite Model Theory

It seems that the class of finite structures is not well-behaved for the
study of definability.

What tools and methods are available to study the expressive power of
logic in the finite?

• Ehrenfeucht-Fräıssé Games and related model-comparison games;

• Locality Theorems (reviewed in this lecture);

• Automata-based methods (in the next lecture);

• Complexity (in later lectures);

• Asymptotic Combinatorics (in the guest lecture by Albert Atserias).
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Elementary Equivalence

On finite structures, the elementary equivalence relation is trivial:

A ≡ B if, and only if, A ∼= B

Given a structure A with n elements, we construct a sentence

ϕA = ∃x1 . . . ∃xnψ ∧ ∀y
∨

1≤i≤n

y = xi

where, ψ(x1, . . . , xn) is the conjunction of all atomic and negated
atomic formulas that hold in A.

Then, if B |= ϕA, A ∼= B.
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Theories vs. Sentences

First order logic can make all the distinctions that are there to be made
between finite structures.

Any isomorphism closed class of finite structures S can be defined by a
first-order theory:

{¬ϕA | A 6∈ S}.

To understand the limits on the expressive power of first-order sentences,
we need to consider coarser equivalence relations than ≡.

We will also be interested in the expressive power of logics extending
first-order logic. This amounts to studying theories satisfying a weaker
axiomatisibality requirement than finite axiomatisability.
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Quantifier Rank

The quantifier rank of a formula ϕ, written qr(ϕ) is defined inductively
as follows:

1. if ϕ is atomic then qr(ϕ) = 0,

2. if ϕ = ¬ψ then qr(ϕ) = qr(ψ),

3. if ϕ = ψ1 ∨ ψ2 or ϕ = ψ1 ∧ ψ2 then
qr(ϕ) = max(qr(ψ1), qr(ψ2)).

4. if ϕ = ∃xψ or ϕ = ∀xψ then qr(ϕ) = qr(ψ) + 1

Note: For the rest of this lecture, we assume that our signature consists
only of relation and constant symbols.
With this proviso, it is easily proved that in a finite vocabulary, for each
q, there are (up to logical equivalence) only finitely many sentences ϕ
with qr(ϕ) ≤ q.
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Finitary Elementary Equivalence

For two structures A and B, we say A ≡p B if for any sentence ϕ with
qr(ϕ) ≤ p,

A |= ϕ if, and only if, B |= ϕ.

Key fact:

a class of structures S is definable by a first order sentence if,
and only if, S is closed under the relation ≡p for some p.

In a finite relational vocabulary, for any structure A there is a sentence
θpA such that

B |= θpA if, and only if, A ≡p B
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Partial Isomorphisms

The equivalence relations ≡p can be characterised in terms of sequences
of partial isomorphisms

(Fräıssé 1954)

or two player games.
(Ehrenfeucht 1961)

A partial isomorphism is an injective partial function f from A to B such
that:

• for any constant c: f(cA) = cB; and

• for any tuple a of elements of A such that all elements of a are in
dom(f) and any relation R we have

RA(a) ⇔ RB(f(a))
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Ehrenfeucht-Fräıssé Game

The p-round Ehrenfeucht game on structures A and B proceeds as
follows:

• There are two players called Spoiler and Duplicator

• At the ith round, Spoiler chooses one of the structures (say B) and
one of the elements of that structure (say bi).

• Duplicator must respond with an element of the other structure (say
ai).

• If, after p rounds, the map ai 7→ bi is a partial isomorphism, then
Duplicator has won the game, otherwise Spoiler has won.

Theorem (Fräıssé 1954; Ehrenfeucht 1961)

Duplicator has a strategy for winning the p-round Ehrenfeucht game on
A and B if, and only if, A ≡p B.
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Proof by Example

Suppose A 6≡3 B, in particular, suppose θ(x, y, z) is quantifier free, such
that:

A |= ∃x∀y∃zθ and B |= ∀x∃y∀z¬θ

round 1: Spoiler chooses a1 ∈ A such that A |= ∀y∃zθ[a1].
Duplicator responds with b1 ∈ B.

round 2: Spoiler chooses b2 ∈ B such that B |= ∀z¬θ[b1, b2].
Duplicator responds with a2 ∈ A.

round 3: Spoiler chooses a3 ∈ A such that A |= θ[a1, a2, a3].
Duplicator responds with b3 ∈ B.

Spoiler wins, since B 6|= θ[b1, b2, b3].
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Using Games

To show that a class of structures S is not definable in FO, we find, for
every p, a pair of structures Ap and Bp such that

• Ap ∈ S, Bp ∈ S; and

• Duplicator wins a p-round game on Ap and Bp.

Example:
Cn—a cycle of length n.
Duplicator wins the p-round game on C2p ⊕ C2p and C2p+1.

• 2-Colourability is not definable in FO.

• Even cardinality is not definable in FO.

• Connectivity is not definable in FO.
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Using Games

An illustration of the game for undefinability of connectivity and
2-colourability.

Duplicator’s strategy is to ensure that after r moves, the distance
between corresponding pairs of pebbles is either equal or ≥ 2p−r.
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Stratifying Elementary Equivalence

In order to study the expressive power of first-order logic on finite
structures, we consider one stratification of elementary equivalence:

A ≡p B

if A and B cannot be distinguished by any sentence with quantifier rank
at most p.

An alternative stratification that is useful in studying fixed-point logics is
based on the number of variables.

A ≡k B

if A and B cannot be distinguished by any sentence with at most k
distinct variables.
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Finite Variable Logic

We write Lk for the first order formulas using only the variables
x1, . . . , xk.

A first order formula ϕ is equivalent to one of Lk if no sub-formula of ϕ
contains more than k free variables.

A ≡k B

denotes that A and B agree on all sentences of Lk.

For any k, A ≡k B ⇒ A ≡k B

However, for any p, there are A and B such that

A ≡p B and A 6≡2 B.
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Examples

Connectivity and 2-colourability are axiomatizable in Lk (for k ≥ 3).

Even cardinality is not.

Connectivity in L4:

path≤l(x, y) := ∃z1(E(x, z1)∧∃z2(E(z1, z2)∧∃z1(E(z2, z1)∧· · ·E(zi, y))))

disconnectl := ∀x, y(path≤l+1(x, y)⇒ path≤l(x, y))∧∃x, y¬path≤l(x, y)

Connectivity is then axiomatized by the set

{¬disconnectl | l ∈ N}
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Definability and Invariance

A class of structures is closed under ≡p (for some p) if, and only if, it is
defined by a FO sentence.

A class of finite structures is closed under ≡k if, and only if, it is
axiomatizable in Lk (possibly by an infinite collection of sentences).

In a finite, relational vocabulary, there are only finitely many sentences of
quantifier rank at most p.
Thus, the relation ≡p has only finitely many equivalence classes.

The relation ≡k has infintiely many classes for all k ≥ 2.
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Pebble Games

The k-pebble game is played on two structures A and B, by two
players—Spoiler and Duplicator—using k pairs of pebbles
{(a1, b1), . . . , (ak, bk)}.

Spoiler moves by picking a pebble and placing it on an element
(ai on an element of A or bi on an element of B).

Duplicator responds by picking the matching pebble and placing
it on an element of the other structure

Spoiler wins at any stage if the partial map from A to B defined
by the pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for p moves, then A and B
agree on all sentences of Lk of quantifier rank at most p.
(Barwise)
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Using Pebble Games

To show that a class of structures S is not definable in first-order logic:
∀k ∀p ∃A,B (A ∈ S ∧ B 6∈ S ∧ A ≡k

p B)

To show that S is not axiomatisable with a finite number of variables:
∀k ∃A,B ∀p (A ∈ S ∧ B 6∈ S ∧ A ≡k

p B)
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Evenness

Evenness is not axiomatizable with a finite number of variables.

for every k, there are structures Ak and Bk such that Ak has an
even number of elements, Bk has an odd number of elements
and

A ≡k B.

It is easily seen that Duplicator has a strategy to play forever when one
structure is a set containing k elements (and no other relations) and the
other structure has k + 1 elements.
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Matching

Take Kk,k—the complete bipartite graph on two sets of k vertices.
and Kk,k+1—the complete bipartite graph on two sets, one of k vertices,
the other of k + 1.

These two graphs are ≡k equivalent, yet one has a perfect matching, and
the other does not. One contains a Hamiltonian cycle, the other does not.
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Gaifman Graphs and Neighbourhoods

On a structure A, define the binary relation:

E(a1, a2) if, and only if, there is some relation R and some
tuple a containing both a1 and a2 with R(a).

The graph GA = (A,E) is called the Gaifman graph of A.

dist(a, b) — the distance between a and b in the graph (A,E).

NbdAr (a) — the substructure of A given by the set:

{b | dist(a, b) ≤ r}
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Hanf Locality Theorem

We say A and B are Hanf equivalent with radius r (A 'r B) if, for every
a ∈ A the two sets

{a′ ∈ A | NbdAr (a) ∼= NbdAr (a
′)} and {b ∈ B | NbdAr (a)

∼= NbdBr (b)}

have the same cardinality.
and, similarly for every b ∈ B.

Theorem (Hanf)

For every vocabulary σ and every p there is r ≤ 3p such that for any
σ-structures A and B: if A 'r B then A ≡p B.

In other words, if r ≥ 3p, the equivalence relation 'r is a refinement of
≡p.
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Proving Hanf Locality

Duplicator’s strategy is to maintain the following condition:
After k moves, if a1, . . . , ak and b1, . . . , bk have been selected, then⋃

i

NbdA3p−k(ai) ∼=
⋃
i

NbdB3p−k(bi)

If Spoiler plays on a within distance 2 · 3p−k−1 of a previously chosen
point, play according to the isomorphism, otherwise, find b such that

Nbd3p−k−1(a) ∼= Nbd3p−k−1(b)

and b is not within distance 2 · 3p−k−1 of a previously chosen point.
Such a b is guaranteed by 'r.
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