Finite And Algorithmic Model Theory I: Definability and Undefinability

Anuj Dawar

University of Cambridge Computer Laboratory

Simons Institute, 29 August 2016

Finite and Algorithmic Model Theory

In the 1980s, the term *finite model theory* came to be used to describe the study of the expressive power of logics (from first-order to second-order logic and in between), on the class of all finite structures.

The motivation for the study is that problems in computer science (especially in *complexity theory* and *database theory*) are naturally expressed as questions about the expressive power of logics. And, the structures involved in computation are finite.

A wide range of techniques, many of them *algorithmic*, for studying expressive power were developed.

Many of these techniques have been extended to the study of structures that are not necessarily finite but admit a *finite, alogrithmic* description.

Model Theoretic Questions

The kind of questions we are interested in are about the *expressive power* of logics. Given a formula φ , its class of models is the collection of *finite* relational structures A in which it is true.

 $\mathrm{Mod}(\varphi) = \{\mathbb{A} \mid \mathbb{A} \models \varphi\}$

What classes of structures are definable in a given logic \mathcal{L} ?

How do syntactic restrictions on φ relate to semantic restrictions on $Mod(\varphi)$?

How does the computational complexity of $Mod(\varphi)$ relate to the syntactic complexity of φ ?

Expressive Power of Logics

We are interested in the *expressive power* of logics on finite structures.

We consider finite structures in a *relational vocabulary*.

A finite set A, with relations R_1, \ldots, R_m and constants c_1, \ldots, c_n .

A *property* of finite structures is any *isomorphism-closed* class of structures.

For a logic $\mathcal L$, we ask for which properties P, there is a sentence φ of the language such that

 $\mathbb{A} \in P$ if, and only if, $\mathbb{A} \models \varphi$.

First-Order Logic

As an example, consider *coloured graphs*, i.e. structures in a vocabulary with one binary relation E, some number of unary relations C_1, \ldots, C_n , and possibly some constant symbols.

Formulas of *first-order logic* are given by the following rules

terms -c, x

atomic formulae – $E(t_1, t_2), t_1 = t_2, C_i(t)$

boolean operations $-\varphi \wedge \psi, \varphi \lor \psi, \neg \varphi$

first-order quantifiers – $\exists x \varphi, \forall x \varphi$

Example - Vertex Cover

For each k, we can write a *first-order formula* in the language of graphs which says that there is a vertex cover of size at most k.

$$\exists x_1 \cdots \exists x_k (\forall y \forall z (E(y, z) \Rightarrow (\bigvee_{1 \le i \le k} y = x_i \lor \bigvee_{1 \le i \le k} z = x_i))$$

Here, quantifiers range over vertices of the graph.

Example - 3-Colourability

3-colourability of graphs can be expressed by a formula when we allow quantification over *sets of vertices*.

```
 \exists R \subseteq V \exists B \subseteq V \exists G \subseteq V \\ \forall x (Rx \lor Bx \lor Gx) \land \\ \forall x (\neg (Rx \land Bx) \land \neg (Bx \land Gx) \land \neg (Rx \land Gx)) \land \\ \forall x \forall y (Exy \to (\neg (Rx \land Ry) \land \\ \neg (Bx \land By) \land \\ \neg (Gx \land Gy)))
```

Compactness and Completeness

The *Compactness Theorem* fails if we restrict ourselves to finite structures.

The Completeness Theorem also fails:

Theorem (Trakhtenbrot 1950)

The set of finitely valid sentences is not recursively enumerable.

Various preservation theorems (*Łoś-Tarski, Lyndon*) fail when restricted to finite structures.

The finitary analogues of *Craig Interpolation Theorem* and the *Beth Definability Theorem* also fail.

Tools for Finite Model Theory

It seems that the class of finite structures is not well-behaved for the study of definability.

What *tools and methods* are available to study the expressive power of logic in the finite?

- Ehrenfeucht-Fraissé Games and related model-comparison games;
- Locality Theorems (reviewed in this lecture);
- Automata-based methods (in the next lecture);
- Complexity (in later lectures);
- Asymptotic Combinatorics (in the guest lecture by Albert Atserias).

Elementary Equivalence

On finite structures, the elementary equivalence relation is trivial:

 $\mathbb{A}\equiv\mathbb{B}$ if, and only if, $\mathbb{A}\cong\mathbb{B}$

Given a structure \mathbb{A} with n elements, we construct a sentence

$$\varphi_{\mathbb{A}} = \exists x_1 \dots \exists x_n \psi \land \forall y \bigvee_{1 \le i \le n} y = x_i$$

where, $\psi(x_1, \ldots, x_n)$ is the conjunction of all atomic and negated atomic formulas that hold in A.

Then, if $\mathbb{B} \models \varphi_{\mathbb{A}}$, $\mathbb{A} \cong \mathbb{B}$.

Theories vs. Sentences

First order logic can make all the distinctions that are there to be made between finite structures.

Any isomorphism closed class of finite structures S can be defined by a *first-order theory*:

 $\{\neg \varphi_{\mathbb{A}} \mid \mathbb{A} \notin S\}.$

To understand the limits on the expressive power of *first-order sentences*, we need to consider coarser equivalence relations than \equiv .

We will also be interested in the expressive power of logics extending first-order logic. This amounts to studying theories satisfying a weaker *axiomatisibality* requirement than *finite axiomatisability*.

Quantifier Rank

The *quantifier rank* of a formula φ , written $qr(\varphi)$ is defined inductively as follows:

- 1. if φ is atomic then $qr(\varphi) = 0$,
- 2. if $\varphi = \neg \psi$ then $qr(\varphi) = qr(\psi)$,
- 3. if $\varphi = \psi_1 \lor \psi_2$ or $\varphi = \psi_1 \land \psi_2$ then $qr(\varphi) = max(qr(\psi_1), qr(\psi_2)).$

4. if $\varphi = \exists x \psi$ or $\varphi = \forall x \psi$ then $qr(\varphi) = qr(\psi) + 1$

Note: For the rest of this lecture, we assume that our signature consists only of relation and constant symbols.

With this proviso, it is easily proved that in a finite vocabulary, for each q, there are (up to logical equivalence) only finitely many sentences φ with $qr(\varphi) \leq q$.

Finitary Elementary Equivalence

For two structures \mathbb{A} and \mathbb{B} , we say $\mathbb{A} \equiv_p \mathbb{B}$ if for any sentence φ with $\operatorname{qr}(\varphi) \leq p$,

 $\mathbb{A} \models \varphi$ if, and only if, $\mathbb{B} \models \varphi$.

Key fact:

a class of structures S is definable by a first order sentence if, and only if, S is closed under the relation \equiv_p for some p.

In a *finite* relational vocabulary, for any structure \mathbb{A} there is a sentence $\theta^p_{\mathbb{A}}$ such that

 $\mathbb{B} \models \theta^p_{\mathbb{A}}$ if, and only if, $\mathbb{A} \equiv_p \mathbb{B}$

Partial Isomorphisms

The equivalence relations \equiv_p can be characterised in terms of sequences of partial isomorphisms

(Fraïssé 1954)

or two player games.

(Ehrenfeucht 1961)

A *partial isomorphism* is an injective partial function f from \mathbb{A} to \mathbb{B} such that:

- for any constant c: $f(c^{\mathbb{A}}) = c^{\mathbb{B}}$; and
- for any tuple **a** of elements of A such that all elements of **a** are in dom(f) and any relation R we have

 $R^{\mathbb{A}}(\mathbf{a}) \quad \Leftrightarrow \quad R^{\mathbb{B}}(f(\mathbf{a}))$

Ehrenfeucht-Fraïssé Game

The $p\text{-}\mathrm{round}$ Ehrenfeucht game on structures \mathbbm{A} and \mathbbm{B} proceeds as follows:

- There are two players called *Spoiler* and *Duplicator*
- At the *i*th round, *Spoiler* chooses one of the structures (say **B**) and one of the elements of that structure (say b_i).
- Duplicator must respond with an element of the other structure (say a_i).
- If, after p rounds, the map $a_i \mapsto b_i$ is a partial isomorphism, then *Duplicator* has won the game, otherwise *Spoiler* has won.

Theorem (Fraïssé 1954; Ehrenfeucht 1961)

Duplicator has a strategy for winning the *p*-round Ehrenfeucht game on \mathbb{A} and \mathbb{B} if, and only if, $\mathbb{A} \equiv_p \mathbb{B}$.

Proof by Example

Suppose $\mathbb{A} \not\equiv_3 \mathbb{B}$, in particular, suppose $\theta(x, y, z)$ is quantifier free, such that:

 $\mathbb{A} \models \exists x \forall y \exists z \theta \quad \text{and} \quad \mathbb{B} \models \forall x \exists y \forall z \neg \theta$

round 1: Spoiler chooses $a_1 \in A$ such that $\mathbb{A} \models \forall y \exists z \theta[a_1]$. Duplicator responds with $b_1 \in B$.

round 2: Spoiler chooses $b_2 \in B$ such that $\mathbb{B} \models \forall z \neg \theta[b_1, b_2]$. Duplicator responds with $a_2 \in A$.

round 3: Spoiler chooses $a_3 \in A$ such that $\mathbb{A} \models \theta[a_1, a_2, a_3]$. Duplicator responds with $b_3 \in B$.

Spoiler wins, since $\mathbb{B} \not\models \theta[b_1, b_2, b_3]$.

Using Games

To show that a class of structures S is not definable in FO, we find, for every p, a pair of structures \mathbb{A}_p and \mathbb{B}_p such that

- $\mathbb{A}_p \in S$, $\mathbb{B}_p \in \overline{S}$; and
- *Duplicator* wins a *p*-round game on \mathbb{A}_p and \mathbb{B}_p .

Example:

 C_n —a cycle of length n.

Duplicator wins the *p*-round game on $C_{2^p} \oplus C_{2^p}$ and $C_{2^{p+1}}$.

- 2-Colourability is not definable in FO.
- Even cardinality is not definable in FO.
- Connectivity is not definable in FO.

Using Games

An illustration of the game for undefinability of *connectivity* and *2-colourability*.

Duplicator's strategy is to ensure that after r moves, the distance between corresponding pairs of pebbles is either *equal* or $\geq 2^{p-r}$.

Stratifying Elementary Equivalence

In order to study the expressive power of *first-order logic* on finite structures, we consider one stratification of elementary equivalence:

 $\mathbb{A}\equiv_p\mathbb{B}$

if A and B cannot be distinguished by any sentence with *quantifier rank* at most p.

An alternative stratification that is useful in studying *fixed-point logics* is based on the number of variables.

 $\mathbb{A}\equiv^k\mathbb{B}$

if A and B cannot be distinguished by any sentence with at most k distinct variables.

Finite Variable Logic

We write L^k for the first order formulas using only the variables x_1, \ldots, x_k .

A first order formula φ is equivalent to one of L^k if no sub-formula of φ contains more than k free variables.

 $\mathbb{A}\equiv^k\mathbb{B}$

denotes that \mathbb{A} and \mathbb{B} agree on all sentences of L^k .

For any k, $\mathbb{A} \equiv^k \mathbb{B} \Rightarrow \mathbb{A} \equiv_k \mathbb{B}$

However, for any p, there are \mathbb{A} and \mathbb{B} such that

 $\mathbb{A} \equiv_p \mathbb{B}$ and $\mathbb{A} \not\equiv^2 \mathbb{B}$.

Examples

Connectivity and 2-colourability are axiomatizable in L^k (for $k \ge 3$). Even cardinality is not.

Connectivity in L^4 :

 $\operatorname{path}_{<l}(x,y) := \exists z_1(E(x,z_1) \land \exists z_2(E(z_1,z_2) \land \exists z_1(E(z_2,z_1) \land \cdots \land E(z_i,y))))$

 $\operatorname{disconnect}_{l} := \forall x, y(\operatorname{path}_{< l+1}(x, y) \Rightarrow \operatorname{path}_{< l}(x, y)) \land \exists x, y \neg \operatorname{path}_{< l}(x, y)$

Connectivity is then axiomatized by the set

 $\{\neg \operatorname{disconnect}_l \mid l \in \mathbb{N}\}$

Definability and Invariance

A class of structures is closed under \equiv_p (for some p) if, and only if, it is *defined* by a FO sentence.

A class of finite structures is closed under \equiv^k if, and only if, it is axiomatizable in L^k (possibly by an infinite collection of sentences).

In a *finite, relational* vocabulary, there are only finitely many sentences of quantifier rank at most p. Thus, the relation \equiv_p has only finitely many equivalence classes.

The relation \equiv^k has infinitely many classes for all $k \ge 2$.

Pebble Games

The k-pebble game is played on two structures A and B, by two players—*Spoiler* and *Duplicator*—using k pairs of pebbles $\{(a_1, b_1), \ldots, (a_k, b_k)\}$.

Spoiler moves by picking a pebble and placing it on an element $(a_i \text{ on an element of } \mathbb{A} \text{ or } b_i \text{ on an element of } \mathbb{B}).$

Duplicator responds by picking the matching pebble and placing it on an element of the other structure

Spoiler wins at any stage if the partial map from A to \mathbb{B} defined by the pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for p moves, then \mathbb{A} and \mathbb{B} agree on all sentences of L^k of quantifier rank at most p. (Barwise)

Using Pebble Games

To show that a class of structures S is not definable in first-order logic: $\forall k \; \forall p \; \exists \mathbb{A}, \mathbb{B} \; (\mathbb{A} \in S \land \mathbb{B} \notin S \land \mathbb{A} \equiv_p^k \mathbb{B})$

To show that S is not axiomatisable with a finite number of variables: $\forall k \exists \mathbb{A}, \mathbb{B} \forall p \ (\mathbb{A} \in S \land \mathbb{B} \notin S \land \mathbb{A} \equiv_p^k \mathbb{B})$

Evenness

Evenness is not axiomatizable with a finite number of variables.

for every k, there are structures \mathbb{A}_k and \mathbb{B}_k such that \mathbb{A}_k has an even number of elements, \mathbb{B}_k has an odd number of elements and

 $\mathbb{A} \equiv^k \mathbb{B}.$

It is easily seen that *Duplicator* has a strategy to play forever when one structure is a set containing k elements (and no other relations) and the other structure has k + 1 elements.

Matching

Take $K_{k,k}$ —the complete bipartite graph on two sets of k vertices. and $K_{k,k+1}$ —the complete bipartite graph on two sets, one of k vertices, the other of k + 1.

These two graphs are \equiv^k equivalent, yet one has a perfect matching, and the other does not. One contains a Hamiltonian cycle, the other does not.

Gaifman Graphs and Neighbourhoods

On a structure \mathbb{A} , define the binary relation:

 $E(a_1, a_2)$ if, and only if, there is some relation R and some tuple **a** containing both a_1 and a_2 with $R(\mathbf{a})$.

The graph $G\mathbb{A} = (A, E)$ is called the *Gaifman graph* of \mathbb{A} .

dist(a, b) — the distance between a and b in the graph (A, E).

 $\operatorname{Nbd}_{r}^{\mathbb{A}}(a)$ — the substructure of \mathbb{A} given by the set:

 $\{b \mid dist(a,b) \leq r\}$

Hanf Locality Theorem

We say \mathbb{A} and \mathbb{B} are *Hanf equivalent* with radius $r (\mathbb{A} \simeq_r \mathbb{B})$ if, for every $a \in A$ the two sets

 $\{a' \in A \mid \operatorname{Nbd}_r^{\mathbb{A}}(a) \cong \operatorname{Nbd}_r^{\mathbb{A}}(a')\}$ and $\{b \in B \mid \operatorname{Nbd}_r^{\mathbb{A}}(a) \cong \operatorname{Nbd}_r^{\mathbb{B}}(b)\}$

have the same cardinality. and, similarly for every $b \in B$.

Theorem (Hanf)

For every vocabulary σ and every p there is $r \leq 3^p$ such that for any σ -structures \mathbb{A} and \mathbb{B} : if $\mathbb{A} \simeq_r \mathbb{B}$ then $\mathbb{A} \equiv_p \mathbb{B}$.

In other words, if $r \geq 3^p$, the equivalence relation \simeq_r is a refinement of \equiv_p .

Proving Hanf Locality

Duplicator's strategy is to maintain the following condition: After k moves, if a_1, \ldots, a_k and b_1, \ldots, b_k have been selected, then

$$\bigcup_{i} \operatorname{Nbd}_{3^{p-k}}^{\mathbb{A}}(a_{i}) \cong \bigcup_{i} \operatorname{Nbd}_{3^{p-k}}^{\mathbb{B}}(b_{i})$$

If *Spoiler* plays on *a* within distance $2 \cdot 3^{p-k-1}$ of a previously chosen point, play according to the isomorphism, otherwise, find *b* such that

$$Nbd_{3^{p-k-1}}(a) \cong Nbd_{3^{p-k-1}}(b)$$

and b is not within distance $2 \cdot 3^{p-k-1}$ of a previously chosen point. Such a b is guaranteed by \simeq_r .