
Stochastic Lambda-Calculus

Dana S. Scott, FBA, FNAS 

        
University Professor Emeritus 
Carnegie Mellon University 

Visiting Scholar 
University of California, Berkeley 



Pidgin Curry?

   

Combinatory logic is an abstract science dealing with objects called 
combinators. What their objects are need not be specified; the important thing  
is how they act upon each other. 
       

One is free to-choose for one's "combinators" anything one likes (for example, 
computer programs). Well, I have chosen birds for my combinators — motivated, 
no doubt, by the memory of the late Professor Haskell Curry, who was both a 
great combinatory logician and an avid bird-watcher.  
       

The main reason I chose combinatory logic for the central theme of this book was 
not for its practical applications, of which there are many, but for its great 
entertainment value. Here is a field considered highly technical, yet perfectly 
available to the general public; it is chock-full of material from which one can cull 
excellent recreational puzzles, and at the same time it ties up with fundamental 
issues in modem logic.  
    

What could be better for a puzzle book?  (Preface, p. x.) 

Raymond M. Smullyan. To Mock a Mockingbird and Other Logic Puzzles  
Alfred A. Knopf, 1985, x + 256 pp. 



Some Other Quotations

There is, however, one feature that I would like to suggest should 
be incorporated in the machines, and that is a random element. 

– Alan Turing, Intelligent Machinery, A Heretical Theory 

83. What is the difference between a Turing machine and the 
modern computer?  It’s the same as that between Hillary’s ascent 
of Everest and the establishment of a Hilton hotel on its peak. 
       

60. Dana Scott is the Church of the Lattice-Way Saints. 
    

30. Simplicity does not precede complexity, but follows it. 

– Alan Perlis, Epigrams on Programming 



Church's λ-Calculus












NOTE: The third axiom will be dropped in favor of a theory 
employing properties of a partial ordering.  

Definition.  λ-calculus — as a formal theory — has 
rules for the explicit definition of functions  

via well known equational axioms:

α-conversion
 λX.[...X...] = λY.[...Y...]
β-conversion

(λX.[...X...])(T) = [...T...]

η-conversion
   λX.F(X) = F



The Enumeration Operator Model





˙ Definitions. (1) Pairing: (n,m) = 2n(2m+1). 

(2)  Sequence numbers:〈〉= 0 and  

  〈n0,n1,...,nk-1,nk〉= (〈n0,n1,...,nk-1〉, nk). 

(3) Sets: set(0) = ∅ and  set((n,m))= set(n)∪{ m }.  
      

(4) Kleene star: X* = { n | set(n) ⊆ X }, for sets X ⊆ ℕ.

    Definition.  The model is given by these definitions  
on the powerset of the set integers, �(ℕ): 

Application:

     

F(X) = { m | ∃n ∈ X*.(n,m) ∈ F } 
      
Abstraction:

      
λX.[...X...] = 

{0}∪{ (n,m) | m  ∈ [... set(n)...] }



What is the Secret?

  

(1)  The powerset  �(ℕ)  = { X|X⊆ℕ }is a topological space with the sets   
        �n = { X|n ∈ X*} as a basis for the topology. 
    
(2)  Functions Φ:�(ℕ)n ⟶  �(ℕ) are continuous iff, for all m ∈ ℕ, we have  
        m ∈ Φ(X0,X1,…,Xn-1) iff  there are ki ∈ Xi* for each of the i<n, such that  
    m ∈ Φ(set(k0), set(k1),…, set(kn-1)). 
   

(3)  The application operation F(X) is continuous as a function of two variables.  
    
(4)  If the function  Φ(X0,X1,…,Xn-1) is continuous, then the abstraction term 
       λX0.Φ(X0,X1,…,Xn-1) is continuous in all of the remaining variables.       
     
(5)  If Φ(X) is continuous, then λX.Φ(X) is the largest set  F such that for all    

       sets T,  we have F(T)= Φ(T).  And, therefore, generally  F ⊆ λX.F(X).

NOTE: This model could easily have been defined in 1957!!

It clearly satisfies the rules of  α, β-conversion (but not η).  



This Lecture is Dedicated to the Memories of 
    

John R. Myhill 
 Born: 11 August 1923, Birmingham, UK 
 Died: 15 February 1987, Buffalo, NY 
     
John Shepherdson 
 Born: 7 June 1926, Huddersfield, UK 
 Died: 8 January 2015, Bristol, UK 
      
Hartley Rogers, Jr.  
 Born:  6 July, 1926, Buffalo, NY 
 Died: 17 July, 2015, Waltham, MA 

•  John Myhill and John C. Shepherdson, Effective operations on partial recursive functions, 
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 1 (1955), 
pp. 310-317.
    

•  Richard M. Friedberg and Hartley Rogers Jr., Reducibility and completeness for sets of 
integers, Mathematical Logic Quarterly, vol. 5 (1959), pp. 117-125.   Some earlier  results 
are presented in an abstract in The Journal of Symbolic Logic, vol. 22 (1957), p. 107.
    
    

•  Hartley Rogers, Jr., Theory of Recursive Functions and Effective Computability, 
McGraw-Hill, 1967, xix + 482 pp.  



Some Lambda Properties


 

     
Theorem. For all sets of integers F and G we have: 

λX.F(X) ⊆ λX.G(X) iff  ∀X.F(X) ⊆ G(X), 
   

λX.(F(X)∩ G(X)) = λX.F(X) ∩ λX.G(X),  

and 

λX.(F(X)∪ G(X)) = λX.F(X) ∪ λX.G(X). 

Definition.  A continuous operator Φ(X0,X1,…,Xn-1) 
is computable  iff  in the model this set is RE:  

F = λX0λX1…λXn-1.Φ(X0,X1,…,Xn-1).



How to do Recursion?





      

       

 Three Basic Theorems. 
   •  All pure λ-terms define computable operators. 

   •  If Φ(X) is continuous and if we let ∇ = λX.Φ(X(X)), then the  
     set  P = ∇(∇) is the least fixed point of Φ.

   • The least fixed point of a computable operator is computable.

 A Principal Theorem.   These computable operators: 
Succ(X)={n+1|n ∈ X },  

Pred(X)={n|n+1 ∈ X }, and  
Test(Z)(X)(Y)= {n ∈ X|0 ∈ Z }∪{m ∈ Y|∃ k.k+1 ∈ Z },

 together with λ-calculus, suffice for defining all RE sets.



Gödel Numbering





NOTE: The operator V is the analogue of the 

Universal Turing Machine. 

    

      

Theorem.  There is a computable V = λX. V(X) where 

  (i)    V({0}) =  λY.λX. Y,

(ii)   V({1}) =  λZ.λY.λX. Z(X)(Y(X)), 

 (iii)  V({2}) =  Test, 

 (iv)  V({3}) =  Succ, 

 (v)    V({4}) =  Pred,  and 

 (vi)   V({4 + (n,m)})  =  V({n})(V({m})).

Theorem. Every recursively enumerable set is of the form V({n}).



Inseparable Sets?





 

     

Definition.  Modify the definition of V via finite approximations:
    

 (i)    Vk({n})  =  V({n})∩{i|i < k}  for n < 5,  and
 (ii)    Vk({4 + (n,m)})  =  Vk({n})(Vk({m})). 

     
Theorem. Each Vk({n}) ⊆ Vk+1({n}) is finite,  

the predicate j ∈ Vk({n}) is recursive,  

and we have: 
   V({n}) = ⋃ Vk({n}). 

    k < ∞ 

   Theorem. The sets �0 and �1 are recursively enumerable, 
disjoint, and recursively inseparable:

    

  �0 = {n|∃ j [0 ∈ Vj({n})({n}) ∧ 1 ∉ Vj({n})({n})]}
 �1 = {n|∃ k [1 ∈ Vk({n})({n}) ∧ 0 ∉ Vk({n})({n})]}



How to Randomize?


This idea is the beginning of putting a Boolean-valued Logic on random 
variables using the complete Boolean algebra of measurable sets modulo 
sets of measure zero.  This new model gives us a programming language 
with randomized parameters. 

     

Definition. By a random variable we mean a function 
    

 X:[0,1] ⟶  �(ℕ), 
   

where, for n ∈ ℕ, the set { t ∈ [0,1] |n ∈ X(t)}
is always Lebesgue measurable.

Theorem. The random variables over �(ℕ) are 
closed under (pointwise) application and 

form a model for the λ-calculus — 
expanding the original model.



Randomized Coin Tossing

Definition. A coin flip is a random variable  

F:[0,1] ⟶ {{0},{1}}, 

It is fair  iff  μ⟦ F = {0} ⟧ = 1/2.

Definition. Pairing functions for sets in �(ℕ) can be 
defined by these enumeration operators: 

       

Pair(X)(Y)={2n|n ∈ X }∪{2m+1|m ∈ Y }
   

Fst(Z)={n|2n ∈ Z }  and  Snd(Z)={m|2m+1 ∈ Z }.

Definition.  A tossing process is a random variable T where Fst(T)is a fair  
coin flip and where Snd(T) is another tossing — with the successive  

flippings all being mutually independent.

The problem with using a coin-tossing process T in an algorithm is that once 
Fst(T) has been looked at, then that toss should be discarded, and only the 
new coins from Snd(T)should be used in the future. 



A Prototype Algorithm Language

Perhaps a solution is always to evaluate programs in the order in which 
expressions are written.  Let's try a very sparse language.   


The idea here is that the text M is evaluated in an environment giving 

the values of free variables.  Then the result is passed on to a continuation.  
In case a random choice is needed, the tossing process is called. We will try 
to employ a continuation semantics where the denotation of a program uses 
the �-calculus formulation:

   


⦉ M ⦊(env)(cont)(toss)  

                 Vi — a variable 
M(N) — an application 

                  λVi.M — an abstraction 

                  M⨁N — a stochastic choice 

                  Let Vi= M in N — a direct valuation



The Semantical Equations   

• ⦉ Vi ⦊(E)(C)(T) = C(E({i}))(T) 

• ⦉ M(N)⦊(E)(C)(T) =  ⦉ M ⦊(E)(λX.⦉ N ⦊(E)(λY.C(X(Y))))(T) 

• ⦉λVi.M ⦊(E)(C)(T) =  C(λX.⦉ M ⦊(E[X/{i}]))(T) 

• ⦉ M⨁N ⦊(E)(C)(T) = Test(Fst(T))(⦉ M ⦊(E))(⦉ N ⦊(E))(C)(Snd(T)) 

• ⦉ Let Vi= M in N ⦊(E)(C)(T) = ⦉ N ⦊(E[⦉ M ⦊(E)/{i}])(C)(T)
   

Running a (closed) program means evaluating:

   


⦉ M ⦊(∅)(λX.λY.X)(T)
   


The semantics and model as presented here, however, 

are only sketches.  Examples of randomized algorithms 


need to be worked out, as well as good methods 

of proving probabilistic properties of programs.  



An Absoluteness Theorem


Proof Idea: Working within Boolean-valued logic over the 

measure algebra of Lebsegue sets modulo sets 


of measure zero, all tossing processes are the same 

up to a measure-preserving automorphism 


of the measure algebra. 

Theorem. If a closed program has a 
non-random value, then the value is 
the same for all tossing processes.



A Plea for help !

Let’s find some good 
applications for this model


with random variables!


