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FEATURE LEARNING
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MULTILAYER PERCEPTRON 
(SUPERVISED)

L

F1
F2

F3

Y

F3 2 RR2

Goal: Learn F1, F2, F3, such that 

P samples of N-dimensional data (known)

Samples are labeled (labels L known).

Hierarchy of features
/synaptic weights
(unknown):

activation functions (element-wise) , e.g. sign

F2 2 RR2⇥R1

(Rosenblatt’61)

g3, g2, g1

L = g3 (F3 g2 (F2 g1(F1Y )))

Y 2 RN⇥P

L 2 RP

F1 2 RR1⇥N

N = 4, R2 = 3, R2 = 2
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AUTO-ENCODER 
(UNSUPERVISED)

F1
F2

Y

Goal: Learn F1, F2, such that 

Hierarchy of features
(unknown):

activation functions (element-wise).

Y

F2 2 RR2⇥R1

g̃2, g̃1, g2, g1

(Rumelhart, Hinton, Williams’86)

Y = g1
�
FT
1 g2

�
FT
2 g̃2 (F2 g̃1(F1Y ))

��

FT
2

FT
1

Y 2 RN⇥P P samples of N-dimensional data (known)

F1 2 RR1⇥N

N = 4, R2 = 3, R2 = 2
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INVERTRON 
(UNSUPERVISED)

Goal: Learn F1, F2, X, such that 

Hierarchy of features
(unknown):

activation functions (element-wise).

F2

F1

Y

g2, g1

Y = g1 (F1g2 (F2X))

F2 2 RR1⇥R2

Representation/
compression (sparse, 
or low-dimensional ):

(Baldassi, Krzakala, 
Mezard, LZ, Zecchina, 

in preparation)

Y 2 RN⇥P P samples of N-dimensional data (known)

X 2 RR2⇥P

F1 2 RN⇥R1
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HOW TO BUILD A THEORY?

Y = some real data, say a database of images. What can be 
done theoretically!? Not much (with our techniques) .... 
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HOW TO BUILD A THEORY?

Y = some real data, say a database of images. What can be 
done theoretically!? Not much (with our techniques) .... 

Y = random iid elements. For this we have replicas/cavity. 
Studied for perceptron (Gardner, Derrida, Sompolinsky, ... 
80s). But random data do not have features!
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HOW TO BUILD A THEORY?

Y = some real data, say a database of images. What can be 
done theoretically!? Not much (with our techniques) .... 

Y = random iid elements. For this we have replicas/cavity. 
Studied for perceptron (Gardner, Derrida, Sompolinsky, ... 
80s). But random data do not have features!

Y = g1 (F1g2 (F2X))

Y = g1 (F
⇤
1 g2 (F

⇤
2X

⇤))

Y = data created by planting iid random features. Now we 
can talk! 

Planted Invertron: Learn F1, F2, X, such that 
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SIMPLEST CASE TO STUDY

Goal: Learn F, and X, such that 

Features (unknown):

activation functions (element-wise).

Sparse representation 
(unknown):

Y
X F

g(·)

Y = g (FX)

(Kabashima, Krzakala, Mezard, Sakata, LZ, Trans. Inf. Theory’16)

Known also as (Olshausen, Field’97):                                                                      
Dictionary learning, sparse coding, matrix factorization ... 

Y 2 RN⇥P P samples of N-dimensional data (known)

F 2 RN⇥R

X 2 RR⇥P
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MATRIX FACTORIZATION
= the smallest non-trivial piece of feature learning. 

Represent P-samples of N-dimensional data (Y, known) by 
features (F, unknown), and weights (X, unknown) trough a 
(non-linear) activation function f(.)

Dictionary learning: The dictionary (F) has R “atoms”, we 
typically look for F such that the data Y can be explained with 
sparse weights X (think of sound expressed with Fourier, 
images in wavelets ...).

Related to talks by F. Krzakala (with R=O(N)), D. Steurer (k=2)

µ = 1, . . . , P

i = 1, . . . , NYµi = f(
RX

↵=1

Xµ↵F↵i)
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SOME KNOWN RESULTS
Algorithms: MOD, K-SVD, alternate minimization with L1 regularization. But 
all require many samples P. What is the minimal number of samples needed? 

Theory: Interesting statistical results assuming incoherence of F, o(N) sparsity 
of X. For O(N) sparsity existing results not satisfactory. So far O(N log(N)) 
samples needed, MMSE unknown.    
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“PLANTED” MATRIX FACTORIZATION

Y known data (P samples of N-dimensional data)

F unknown dictionary, features

X unknown coefficients (typically sparse). 

f(.) known “output channel”, e.g.                                                      
nonlinear f(.) relevant in neural nets.

µ = 1, . . . , P
i = 1, . . . , N
↵ = 1, . . . , R

f(Z) = Z +W, W ⇠ N (0,�)

Yµi = f(
RX

↵=1

X⇤
µ↵F

⇤
↵i)

X⇤
µ↵ ⇠ PX(X⇤

µ↵)

F ⇤
↵i ⇠ PF (F

⇤
↵i)

Teacher creates data Y as: 

Student estimates F, X from Y, f(.), PX and PF.
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Posterior probability distribution

Marginal probabilities  

Bayes-optimal estimator minimizes the mean-squared error, 
i.e. squared distance to the ground-truth 

BAYES-OPTIMAL STUDENT 

X̂µ↵ = EµX (Xµ↵) F̂↵i = EµF (F↵i)

P (Xµ↵, F↵i|Yµi) =
1

Z

Y

↵i

PF (F↵i)
Y

µ↵

PX(Xµ↵)
Y

µi

P
out

(Yµi|
X

↵

F↵iXµ↵)

µX(Xµ↵), µF (F↵i)
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↵ = N/R = O(1) ⇡ = P/R = O(1)

P (Xµ↵, F↵i|Yµi) =
1

Z

Y

↵i

PF (F↵i)
Y

µ↵

PX(Xµ↵)
Y

µi

P
out

(Yµi|
X

↵

F↵iXµ↵)

µ = 1, . . . , P
i = 1, . . . , N
↵ = 1, . . . , R

Yµi = O(1) Xµ↵ = O(1)
EPF (F↵i) = 0

Posterior probability distribution:

The thermodynamic limit and scaling of quantities: 

SOLVABLE WITH REPLICAS

Exact (but non-rigorous) computation of the performance (MMSE) 
of the Bayes-optimal student. 

F↵i = O(1/
p
R)

N,P,R ! 1
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logZ = lim

n!0

Zn � 1

n
2) Use the following identity:

3) After (a bit of) work:

1) Compute average of       over realizations of                      and noise for  Zn

THE REPLICA METHOD

X⇤
µ↵, F

⇤
↵i

↵ = N/R = O(1) ⇡ = P/R = O(1)

P (Xµ↵, F↵i|Yµi) =
1

Z

Y

↵i

PF (F↵i)
Y

µ↵

PX(Xµ↵)
Y

µi

P
out

(Yµi|
X

↵

F↵iXµ↵)

n 2 N

logZ /
Z

dmF dmX dm̂ eN
2�(mX ,mF ,m̂)

N,P,R ! 1
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FREE ENERGY

Replica free energy of the planted dictionary learning:

Global maximum  of                                gives the MMSE:               �(mF ,mX , m̂)

EX = MMSE(X) = EPX (X2)�mX

�(mF ,mX , m̂F = ⇡mXm̂, m̂X = ↵mF m̂) =

↵⇡

Z
dyD⇠Du0P

out

⇣
y|
p
��mFmXu0

+

p
mFmX⇠

⌘
log

✓Z
DuP

out

⇣
y|
p

��mFmXu+

p
mFmX⇠

⌘◆

+↵

✓
�m̂FmF

2

+

Z
D⇠ dF 0e�

Rm̂F
2 (F 0

)

2
+

p
Rm̂F ⇠F 0

PF (F
0

) log

✓Z
dFe�

Rm̂F
2 F 2

+

p
Rm̂F ⇠FPF (F )

◆◆

+⇡

✓
�m̂XmX

2

+

Z
D⇠ dX0e�

m̂X
2 (X0

)

2
+

p
m̂X⇠X0

PX(X0

) log

✓Z
dXe�

m̂X
2 X2

+

p
m̂X⇠XPX(X)

◆◆
,

� = REPX (X2)EPF (F
2)

EF = MMSE(F ) = REPF (F
2)�mF
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STATIONARITY CONDITIONS

mX =
1p

↵mF m̂

Z
dt

h
fX
1

⇣
tp

↵mF m̂
, 1
↵mF m̂

⌘i2

fX
0

⇣
tp

↵mF m̂
, 1
↵mF m̂

⌘

mF =
1p

⇡mXm̂

Z
dt

h
fF
1

⇣
tp

⇡mXm̂
, 1
⇡mXm̂

⌘i2

fF
0

⇣
tp

⇡mXm̂
, 1
⇡mXm̂

⌘

m̂ =
1

mXmF

Z
dy

Z
Dt

⇥
@tfY

0 (y|pmXmF t,��mXmF )
⇤2

fY
0 (y|pmXmF t,��mXmF )

fF
n (W,Z) ⌘ 1p

2⇡Z

Z
dF (

p
RF )nPF (F )e�

(
p

RF�W )2

2Z

fX
n (T,⌃) ⌘ 1p

2⇡⌃

Z
dXXnPX(X)e�

(X�T )2

2⌃

fY
n (y|!, V ) ⌘ 1p

2⇡V

Z
dt (t� !)nP

out

(y|t)e�
(t�!)2

2V

﹜
﹛

Generic

Problem 
dependent 
functions
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AND ALGORITHMS?

Andrea Montanari on Monday: 

For dense models do approximate message passing. 
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Factor nodes

Signal variables Matrix variables

nµi!µl(Fµi)
m̃

µl!
il(xil)

m

il!µl(
xil) ñµl!

µi
(Fµi

)
x11

x21

x31

F11

F12

F13

F23

F22

F21
x12

x22

x32

Pr
io

r

Pr
io

r

y11

y12

y22

y21

P

X
(x

il
)

P
F
(F

µ
l)

P (Xµ↵, F↵i|Yµi) =
1

Z

Y

↵i

PF (F↵i)
Y

µ↵

PX(Xµ↵)
Y

µi

P
out

(Yµi|
X

↵

F↵iXµ↵)

weights-variables features-variables

GRAPHICAL MODEL

Y
X F
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BELIEF PROPAGATION

Factor nodes

Signal variables Matrix variables

nµi!µl(Fµi)
m̃

µl!
il(xil)

m

il!µl(
xil) ñµl!

µi
(Fµi

)
x11

x21

x31

F11

F12

F13

F23

F22

F21
x12

x22

x32

Pr
io

r

Pr
io

r

y11

y12

y22

y21

P

X
(x

il
)

P
F
(F

µ
l)

Not tractable ....  each node 
many neighbors, incoming 
messages independent (by 
assumption), smells 
central limit theorem .... 

RRR

R

R R

RR R R

N
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Physics-wise: AMP = TAP (Thouless, Anderson, Palmer’77) equations 
generalized to the present graphical model. Kabashima’04 for CDMA & 
perceptron (linear estimation). 

Approximate Message Passing (AMP) for linear estimation (firm 
rigorous foundations, non-Bayesian, continuous variables) by Donoho, 
Maleki, Montanari’09, Bayati, Montanari’11, Rangan’10, and many 
followers since. 

AMP in the present problem different from the one of linear estimation 
of low-rank  factorization. Notably, not much known rigorously. 

For very nice applications-oriented work on AMP for matrix 
factorization see: BiG-AMP by Schniter, Parker, Cevher’13.

Approximate message passing            
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AMP FOR MATRIX FACTORIZATION
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GENERALITY OF AMP

Only 3 quantities (function) in AMP are problem dependent:

 Input functions

Output function

fX(⌃, T ) ⌘
R
dXX PX(X)e�

(X�T )2

2⌃

R
dX PX(X)e�

(X�T )2

2⌃

g
out

(!, y, V ) ⌘
R
dzP

out

(y|z) (z � !) e�
(z�!)2

2V

V
R
dzP

out

(y|z)e�
(z�!)2

2V

fF (Z,W ) ⌘
R
dF

p
RF PF (F )e�

(
p

RF�W )2

2Z

R
dF PF (F )e�

(F�W )2

2Z
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STATE EVOLUTION 

Physics-wise: Cavity method to derive RS solution from TAP. 

Rigorous for linear estimation, low rank factorization in 
Bayati, Montanari’11, Bayati, Lelarge, Montanari’15, 
Javanmard, Montanari’13. No proof yet for the present model.

Define order parameters: 

Track their evolution as AMP is iterated. 

m

t
X ⌘ 1

RP

X

jl

x̂jl(t)X
⇤
jl

mt
F ⌘ 1

N
p
R

X

µi

f̂µi(t)F
⇤
µi ,
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mX =
1p

↵mF m̂

Z
dt

h
fX
1

⇣
tp

↵mF m̂
, 1
↵mF m̂

⌘i2

fX
0

⇣
tp

↵mF m̂
, 1
↵mF m̂

⌘

mF =
1p

⇡mXm̂

Z
dt

h
fF
1

⇣
tp

⇡mXm̂
, 1
⇡mXm̂

⌘i2

fF
0

⇣
tp

⇡mXm̂
, 1
⇡mXm̂

⌘

m̂ =
1

mXmF

Z
dy

Z
Dt

⇥
@tfY

0 (y|pmXmF t,��mXmF )
⇤2

fY
0 (y|pmXmF t,��mXmF )

fF
n (W,Z) ⌘ 1p

2⇡Z

Z
dF (

p
RF )nPF (F )e�

(
p

RF�W )2

2Z

fX
n (T,⌃) ⌘ 1p

2⇡⌃

Z
dXXnPX(X)e�

(X�T )2

2⌃

fY
n (y|!, V ) ⌘ 1p

2⇡V

Z
dt (t� !)nP

out

(y|t)e�
(t�!)2

2V

﹜
﹛

Generic

Problem 
dependent 
functions

STATE EVOLUTION 
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State evolution of AMP gives the same expressions as the 
replica method.

AMP-MSE is the local maximum of the free energy 
reached by state evolution initialized uninformatively.

MMSE is the global maximum of the free energy.

BOTTOM LINE
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EXAMPLE: DICTIONARY LEARNING 

PX(X) = (1� ⇢)�(X) + ⇢N (0, 1)

P
out

(Y |Z) =
1p
2⇡�

e�
(Y �Z)2

2�

Gauss-Bernoulli weights

Gaussian additive noise

Also known as sparse coding: 

Yµi =
RX

↵=1

Xµ↵F↵i +Wµi

Gaussian featuresPF (F ) = N (0, 1/R)

Y 2 RN⇥P

↵ = N/R

⇡ = P/R
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m̂F =
⇡(⇢� EX)

�+ EX + ⇢EF � EXEF
m̂

x

=
↵(1� E

F

)

�+ E
X

+ ⇢E
F

� E
X

E
F

AMP-MSE is the local maximum of                   with largest EX, EF. 

MMSE is the global maximum of                     .

�(EX , EF )

�(EX , EF )

�(E
X

, E
F

) = �↵

2

log (�+ E
X

+ E
F

(⇢� E
X

))� ↵(�+ ⇢)

�+ E
X

+ E
F

(⇢� E
X

)

+

↵

2

+

Z
Dz log

h
e�

m̂

x

2 x

2+m̂

x

xx

0+z

p
m̂

x

x

i

P

X

(x)

�

P

X

(x0)

+

↵

⇡

"Z
Dz log


e�

Rm̂

F

F

2

2 +Rm̂

F

FF

0+z

p
Nm̂

F

F

�

P

F

(F )

#

P

F

(F 0)

Free energy of dictionary learning
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The phase diagram of dictionary learning

MMSE in noise

log(noise
)

lo
g(

M
M

SE
)

R = 2N

⇢ = 0.2

over-complete 
dictionary

sparsity

⇡ = P/R
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MMSE AMP-MSE

Sample complexity

N
oi

se
 v

ar
ia

nc
e

R = 2N ⇢ = 0.2

The phase diagram of dictionary learning

P/(2N)
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Lower bound for the noiseless case and 
continuous variables 

PX(X) = (1� ⇢)�(X) + ⇢N (0, 1)Yµi =
RX

↵=1

Xµ↵F↵i

PN � ⇢PR+RN

Number of knowns >= number of unknowns

↵⇡ � ⇢⇡ + ↵

⇡ � ↵

↵� ⇢

PF (F ) = N (0, 1/R)
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Sample  complexity of dictionary learning

 0

 5

 10

 15

 20

 0  0.1  0.2  0.3  0.4  0.5

/=
P/

N

l=K/N

ls
CS lCS*

/*
/s

R = 2N

⇢ = 0.2
� = 0

Sa
m

pl
e 

co
m

pl
ex

it
y

sparsity

Doable, but 
current algorithms 

well above!
Hard

Impossible

⇡ = P/(2N)

⇡c =
↵

↵� ⇢
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Teacher-student matrix factorization with general output as a simple 
model for feature learning. Also model for dictionary learning, blind 
source separation, sparse PCA, robust PCA, ....

Invertron: Model for structured data. Useful for benchmarking of 
algorithms, and as insight into theoretical understanding of feature 
learning.  

Exact formula for the MMSE. Its evaluation suggests that current 
state-of-the-art algorithms have large gap to optimality. 

Reading: Kabashima, Krzakala, Mezard, Sakata, LZ, arXiv:1402.1298. 
Schniter, Parker, Cevher’13 for the algorithmic applications.  

CONCLUSIONS
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TO DO LIST

Math: Prove that the state evolution is correct. 

Math: Proving the detectability lower bound is tight in the noiseless 
planted matrix factorization. 

Math, CS: Which other algorithms (provably and empirically) work 
down to the AMP phase transition? 

Ph, CS: Robust and simple implementation of AMP (so far 
convergence issues, instabilities ... )

Ph: Replica symmetry breaking when prior does not match the 
model, or when we want a ground state. 

Ph: Generalize to non-separable priors, more layers, tensors, ... 
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AMP for matrix factorization
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theory EF
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AMP  EF

Thursday, May 12, 16


