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MULTILAYER PERCEPTRON
(SUPERVISED)

Y € RV*F P samples of N-dimensional data (known)
L c RY Samples are labeled (labels L known).

Hierarchy of features F; € R <%
/synaptic weights F, € RE2xi
(unknown): P R B>

Goal: Learn F,, F., F5, such that
L =g3(F392 (F2q1(F1Y)))

=4t = =

93,92,91 activation functions (element-wise) , e.g. sign
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AUTO-ENCODER
(UNSUPERVISED) «

Y € RV*F P samples of N-dimensional data (known)

Hierarchy of features
(unknown):

F1 = RRlXN
F2 = RRQXRl

Goal: Learn F,, F», such that
= T i ~
Y = g1 (F} g2 (Fy g2 (F2g1(F1Y))))

92,91, 92, 91 activation functions (element-wise).
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INVERTRON
(UNSUPERVISED)

Y € RV*F P samples of N-dimensional data (known)

Hierarchy of features F e RY*M
(unknown): F, € R E1xRo

Representation/
compression (sparse,
or low-dimensional ):

e Ry

Goal: Learn F,, F», X, such that
Y = g1 (F1g2 (F2X))

g2, 91 activation functions (element-wise).
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HOW TO BUILD A THEORY?

e Y = some real data, say a database of images. What can be
done theoretically!? Not much (with our techniques) ....




HOW TO BUILD A THEORY?

e Y = some real data, say a database of images. What can be
done theoretically!? Not much (with our techniques) ....

e Y = random 1id elements. For this we have replicas/cavity.
Studied for perceptron (Gardner, Derrida, Sompolinsky, ...
80s). But random data do not have features!
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HOW TO BUILD A THEORY?

e Y = some real data, say a database of images. What can be
done theoretically!? Not much (with our techniques) ....

e Y = random 1id elements. For this we have replicas/cavity.
Studied for perceptron (Gardner, Derrida, Sompolinsky, ...
80s). But random data do not have features!

e Y = data created by planting iid random features. Now we
! * * VK
can talk! Vo G (h e L X))

e Planted Invertron: Learn Fi, F», X, such that
Y = g1 (F192 (F2 X))
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SIMPLEST CASE TO STUDY

Y € RV*F P samples of N-dimensional data (known)

SiGars ¥ Features (unknown): F e RVXE

Sparse representation X ¢ REXFP
(unknown):

g(+) activation functions (element-wise).

Goal: Learn F, and X, such that Y = g (F'X)

Known also as (Olshausen, Field’ 97):
Dictionary learning, sparse coding, matrix factorization ...
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MATRIX FACTORIZATION

o = the smallest non-trivial piece of feature learning.

e Represent P-samples of N-dimensional data (Y, known) by
features (F, unknown), and weights (X, unknown) trough a

(non-linear) activation function 1(.)
sl a2

R
Yui:f(quaFai) el
a=1

e Dictionary learning: The dictionary (F) has R “atoms”, we
typically look for F such that the data Y can be explained with
sparse weights X (think of sound expressed with Fourier,
images in wavelets ...).

o Related to talks by F. Krzakala (with R=0O(N)), D. Steurer (k=2)
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SOME KNOWN RESULTS

e Algorithms: MOD, K-SVD, alternate minimization with L; regularization. But
all require many samples P. What is the minimal number of samples needed?

e Theory: Interesting statistical results assuming incoherence of F, o(N) sparsity
of X. For O(N) sparsity existing results not satisfactory. So far O(N log(N))
samples needed, MMSE unknown.
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Thursday, May 12, 16



“PLANTED” MATRIX FACTORIZATION

Teacher creates data Y as:

X*
X>l< F>l< O
Z ot'e) £ o EE )

(Student estimates F, X from Y, f(.), Px and PF.j

e Y known data (P samples of N-dimensional data)
e F unknown dictionary, features

e X unknown coefficients (typically sparse).

o (.) known “output channel”,e.g. f(Z)=Z+W, W ~ N(0,A)
nonlinear f(.) relevant in neural nets.
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BAYES-OPTIMAL STUDENT

e Posterior probability distribution

P(XMQ7FQZ|YMZ e HPF at HPX o Hpout Y,uleFosz,uoz
e Marginal probabilities

px (Xpa), wr(Fai)

e Bayes-optimal estimator minimizes the mean-squared error,
1.e. squared distance to the ground-truth

A

Xlwé e ﬂux (X,ua) Faz’ =
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SOLVABLE WITH REPLICAS

Exact (but non-rigorous) computation of the performance (MMSE)
of the Bayes-optimal student.

Posterior probability distribution:
P(X,uomFozz’Y,uz e

The thermodynamic limit and scaling of quantities:

MR ciioo on = NI 00} e PIR = Ot

Y, = 0O(1) Ko=) s RO R
£PF (FON?) =0
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THE REPLICA METHOD

P(X,u,aaFaz|Yuz ey HPF at HPX o HPout YILL’L‘ZF&’LX,LL(X

N,P,R — 0o a:N/R:O() w:P/R:O( )

1) Compute average of /' over realizations of X it F”. and noise for n € N

2) Use the following identity: log Z = lim zZm —1
n—0 n

3) After (a bit of) work: ]QgZ X /de de dm 6N2(I)(mX,mF,’ffL)
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FREE ENERGY

Replica free energy of the planted dictionary learning:

d(mp,mx,Mp = TmMxm, Mx = ampm) =

o %S dyDgl)uOP y|\/I‘ mepm x u’ —|—\/mFmX£ log (/DuP y|\/I’ mpmxu+\/mpmxf>)

a( MEME /DdeO ——(F )2 +VRmpEF° = (Fo)log (/dFe_—F +vVRmpE §FP (F)))

_|_

[EE=l:i

43PX (XQ)

Global maximum of ¢(mp, mx,m)gives the MMSE:

Ex = MMSE(X) =
Ep = MMSE(F) =

meX /ngXO — X (X0 /x EX° Px(X")log (/dXe_—XX LIRSS P (X))>>

4:PF (F2)




STATIONARITY CONDITIONS

e amm)]

( ampm ampm

( wmxm’ mem)] Generic

F
0 wmxm TM X M

1 /dy/m o 1o (yly/mxmpt,T — meF)]

mxmpg o (ylyv/mxmpt,I' —mxmp)

m —

=

dependent FE (W, Z) =
functions

/ X TEIE e

/dF (VRF)"Pg(F)e™

Problem

m
\/2TZ
= v/ &

X (y|w, V) dt (t — w
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AND ALGORITHMS?

e Andrea Montanari on Monday:

For dense models do approximate message passing.




GRAPHICAL MODEL

P(X,u,om Fai|Yuz’) —y % H PF(Faz) H PX(X,u,oz) H Pout(Y,uJi‘ Z Faz’X,uoz)
at o 7%} o

features-variables
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BELIEF PROPAGATION

1

Zil—spl

N
Px(Xa) | mwisa(t.Xa).
v(#p)

miu(t+ 1, Xa) =

P
1 %
n#i—ml(t + l,Fui) = Z_PF(FM) H n,m_m,-(t, Fm‘) )

il n(l)

R R R R R
) 1 R
Mmui—it(t, Xa) = sz—w/ I | dX; I Idek Pout (Yui Z FuxXk) | Inpk—)pl(ta Fuk) H mji—ui(t, Xji) ,
C () k k k J(#1)

Zpl—)pi

R R R R R

- 1

R st d0n) = /Hdez H dF, Pout(ypllekakl) H npkqu(t,Fpk)Hmﬂqpt(t, X;1)
J

k(1) k k(i) j

Signal variables Matrix variables

Not tractable .... each node
many neighbors, incoming
messages independent (by
assumption), smells
central limit theorem ....

Prior Px(x;)
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Approximate message passing

Physics-wise: AMP = TAP (Thouless, Anderson, Palmer’77) equations
generalized to the present graphical model. Kabashima’o4 for CDMA &
perceptron (linear estimation).

Approximate Message Passing (AMP) for linear estimation (firm
rigorous foundations, non-Bayesian, continuous variables) by Donoho,
Maleki, Montanari’09, Bayati, Montanari’il, Rangan’10, and many
followers since.

AMP in the present problem different from the one of linear estimation
of low-rank factorization. Notably, not much known rigorously.

For very nice applications-oriented work on AMP for matrix
factorization see: BiIG-AMP by Schniter, Parker, Cevher’13.
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AMP FOR MATRIX FACTORIZATION

Vi = % Dlesss®) + O30 + E08s0),

ul - \/— Zmﬂ(t)fm(t) gout( ul ’yphvtt_l)%z [f#j(t)f#j(t — Dej(t) + ()@t — l)sm‘(t)]

) = NZ{ Buout (Whas Vs Vil) [ F2i8) + 8,i(8)| — 02 (has vyt, Vi) sus(9)

T,-‘,=z,-,{ﬁ Zgout(w,,,,y,,z,vzz)fm(t) Fa(t) NZfﬁ,(t)awgm( Lyt Vi)
—Za(t — 1)+ Zsm(t)gout( wts Yuts Vi) Gout (W Yt 71)},

Z) = NZ{ ~BuGoutWhis Yut, Vi) [23(8) + car(t)] — g (Wb, yut, Vi) car(t) }

Wi = Zh{—= \/_Zgou.,( whay vt V) Ba(t) — fu(®) Eﬁ,z(t)awgom( LY V)

—fpt(t_l) Zczl(t)gout( uls Ypuls pl)gout(wpl syul,Vt_l)}a

j’tl(t g 1) fX(Ezl,Td) s czl(t T 1) B fc(zzl’ l) .
fl"(t 3 1) P fF( i ;z) ’ sl“(t g & 1) b fs(va ttu) g
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GENERALITY OF AMP

e Only 3 quantities (function) in AMP are problem dependent:

e Input functions
f X (27 T)

e Output function

Jout (wa Y, V)




STATE EVOLUTION

e Physics-wise: Cavity method to derive RS solution from TAP.

e Rigorous for linear estimation, low rank factorization in
Bayati, Montanari’i1, Bayati, Lelarge, Montanari’1s,
Javanmard, Montanari’13. No proof yet for the present model.

e Define order parameters: m'y

mt, =

e Track their evolution as AMP is iterated.
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STATE EVOLUTION

Problem
dependent
functions

Thursday, May 12, 16

15 ok )]
>

( ampm ampm

( wmxm’ mem)] Generic

F
O \ V/mTmxm '’ mmxm

0, 1Y (y|ly/mxmzt,T — mxmp)]”

fO (ylv/mxmpt, I —mxmp)

=

\/T / X TEIE e

AL = /dF (VRF)"Pg(F)e™

\/27r7
= 7w |

dt (t — w

o (ylw, V)




BOTTOM LINE

o State evolution of AMP gives the same expressions as the
replica method.

e AMP-MSE is the local maximum of the free energy
reached by state evolution initialized uninformatively.

e MMSE is the global maximum of the free energy.
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EXAMPLE: DICTIONARY LEARNING

Also known as sparse coding:

YGRNXP R
a=N/R Vi = Z Aot ai

Te—E )

1 e

Pout(YZ) = \/27T—A6 s Gaussian additive noise
Px(X)=(1—-p)é(X)+ pN(0,1) Gauss-Bernoulli weights
Pr(F)=N(0,1/R) Gaussian features
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Free energy of dictionary learning

AMP-MSE is the local maximum of ®(Ex, Er)with largest EX, EF.
MMSE is the global maximum of ®(Ex, Er).

a(A 4+ p)
A+ Ex + EF(,O = Ex)

@
(I)(Ex,EF) = —5 log (A Ll EF(IO o EX)) B

2 { / Dz log [e—%w%mmm%z mw} ]
Rx () Px (29)

Q0 R o F2 " 0 -
S D2 log 2 - +RmpFF 42/ NmpgpF
.

e O

A

ey Oé(].—EF) C
* A+ Ex 4+ pEr— ExEr

mpg

SR Er T ok = Ex By
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The phase diagram of dictionary learning

over-complete | |
dictionary - MMSE 1n noise

s\

sparsity
=52

log(MMSE)
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The phase diagram of dictionary learning

O
)
=
@]
o pd
— 5
w —
> o
O
7))
o pu=i
o
Z.
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Lower bound for the noiseless case and
continuous variables

ﬁnzﬁiXWEM Px(X) = (1—p)é(X) + pN(0,1)
Pr(F) = N(0,1/R)

Number of knowns >= number of unknowns

PN > pPR+ RN

QT > PT + «
«

O= 0

T
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Sample complexity of dictionary learning

—h
0)
|

Doable, but
current algorithms

well above!

LB,
o

Jard

=
S
O
—
@F
=
Q
O
o)
—
@F
s
S
op)

Impossible

| Pcs
0.4 0.5

sparsity
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CONCLUSIONS

Teacher-student matrix factorization with general output as a simple
model for feature learning. Also model for dictionary learning, blind
source separation, sparse PCA, robust PCA, ....

Invertron: Model for structured data. Useful for benchmarking of
algorithms, and as insight into theoretical understanding of feature
learning.

Exact formula for the MMSE. Its evaluation suggests that current
state-of-the-art algorithms have large gap to optimality.

Reading: Kabashima, Krzakala, Mezard, Sakata, LZ, arXiv:1402.1298.
Schniter, Parker, Cevher’13 for the algorithmic applications.
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TO DO LIST

e Math: Prove that the state evolution is correct.

e Math: Proving the detectability lower bound is tight in the noiseless
planted matrix factorization.

o Math, CS: Which other algorithms (provably and empirically) work
down to the AMP phase transition?

e Ph, CS: Robust and simple implementation of AMP (so far
convergence issues, instabilities ... )

e Ph: Replica symmetry breaking when prior does not match the
model, or when we want a ground state.

o Ph: Generalize to non-separable priors, more layers, tensors, ...
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AMP for matrix factorization

0=0.5, p=0.1,A=1€"° =0.5 and N=240

I théOI'y EXI
theory Er
AMP Ex
AMP Er
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