Stochastic Integration via Error-Correcting Codes

Dimitris Achlioptas

Pei Jiang

UC Santa Cruz

The Setting

- A (large) domain $\Omega=D_{1} \times \cdots \times D_{n}$, where $\left\{D_{i}\right\}_{i=1}^{n}$ are finite.

■ A non-negative function $f: \Omega \rightarrow \mathbb{R}$.
The Goal ("Stochastic Approximate Integration")

Probabilistically, approximately estimate $Z=\sum_{\sigma \in \Omega} f(\sigma)$.
Non-negativity of $f \Longrightarrow$ No Cancellations

Appplications

- Probabilistic Inference via graphical models (partition function)
- Automatic test-input generation in verification (model counting)
- Generic alternative to MCMC

The Setting

■ A (large) domain $\Omega=D_{1} \times \cdots \times D_{n}$, where $\left\{D_{i}\right\}_{i=1}^{n}$ are finite.

- A non-negative function $f: \Omega \rightarrow \mathbb{R}$.

The Goal ("Stochastic Approximate Integration")
Probabilistically, approximately estimate $Z=\sum_{\sigma \in \Omega} f(\sigma)$.
Non-negativity of $f \Longrightarrow$ No Cancellations

Quality Guarantee

For any accuracy $\epsilon>0$, with effort proportional to $s n / \epsilon^{2}$,

$$
\operatorname{Pr}_{\mathcal{A}}\left[1-\epsilon<\frac{\widehat{Z}}{Z}<1+\epsilon\right]=1-\exp (-\Theta(s)) .
$$

The Setting

■ A (large) domain $\Omega=D_{1} \times \cdots \times D_{n}$, where $\left\{D_{i}\right\}_{i=1}^{n}$ are finite.

- A non-negative function $f: \Omega \rightarrow \mathbb{R}$.

The Goal
Probabilistically, approximately estimate $Z=\sum_{\sigma \in \Omega} f(\sigma)$.
Non-negativity of $f \Longrightarrow$ No Cancellations

Rest of the Talk

■ $\Omega=\{0,1\}^{n}$

$$
D_{i}=\{0,1\} \text { for all } i \in[n]
$$

- 32-approximation.

The Setting

■ A (large) domain $\Omega=D_{1} \times \cdots \times D_{n}$, where $\left\{D_{i}\right\}_{i=1}^{n}$ are finite.

- A non-negative function $f: \Omega \rightarrow \mathbb{R}$.

The Goal
Probabilistically, approximately estimate $Z=\sum_{\sigma \in \Omega} f(\sigma)$.
Non-negativity of $f \Longrightarrow$ No Cancellations

General Idea

- For i from 0 to n

Repeat $\Theta\left(\epsilon^{-2}\right)$ times

- Generate random $R_{i} \subseteq \Omega$ of size $\sim 2^{n-i}$
- Find $y_{i}=\max _{\sigma \in R_{i}} f(\sigma)$
- Combine $\left\{y_{i}\right\}$ in a straightforward way to get \widehat{Z}.

The Setting

- A (large) domain $\Omega=D_{1} \times \cdots \times D_{n}$, where $\left\{D_{i}\right\}_{i=1}^{n}$ are finite.

■ A non-negative function $f: \Omega \rightarrow \mathbb{R}$.
The Goal
Probabilistically, approximately estimate $Z=\sum_{\sigma \in \Omega} f(\sigma)$.
Non-negativity of $f \Longrightarrow$ No Cancellations

General Idea

■ For i from 0 to n
Repeat $\Theta\left(\epsilon^{-2}\right)$ times

- Generate random $R_{i} \subseteq \Omega$ of size $\sim 2^{n-i}$ as an ECC
- Find $y_{i}=\max _{\sigma \in R_{i}} f(\sigma)$
- Combine $\left\{y_{i}\right\}$ in a straightforward way to get \widehat{Z}.

Estimation by Stratification

Thought Experiment

Sort Ω by decreasing f-value. W.I.o.g.

$$
f\left(\sigma_{1}\right) \geq f\left(\sigma_{2}\right) \geq f\left(\sigma_{3}\right) \cdots f\left(\sigma_{2^{i}}\right) \cdots \geq f\left(\sigma_{2^{n}}\right)
$$

Imagine we could get our hands on the $n+1$ numbers $b_{i}=f\left(\sigma_{2^{i}}\right)$.

$b_{0} b_{1} b_{2}$	b_{3}	b_{4}	b_{5}		b_{6}
124	8	16	32		64

Estimation by Stratification

Thought Experiment

Sort Ω by decreasing f-value. W.I.o.g.

$$
f\left(\sigma_{1}\right) \geq f\left(\sigma_{2}\right) \geq f\left(\sigma_{3}\right) \cdots f\left(\sigma_{2^{i}}\right) \cdots \geq f\left(\sigma_{2^{n}}\right)
$$

Imagine we could get our hands on the $n+1$ numbers $b_{i}=f\left(\sigma_{2^{i}}\right)$.

If we let

$$
U:=b_{0}+\sum_{i=0}^{n-1} b_{i} 2^{i} \quad \text { and } \quad L:=b_{0}+\sum_{i=0}^{n-1} b_{i+1} 2^{i}
$$

then

$$
L \leq Z \leq U \leq 2 L
$$

Estimation by Stratification

Thought
Sort Ω b

Imagine

Estimation by Stratification

Thought Experiment

Sort Ω by decreasing f-value. W.I.o.g.

$$
f\left(\sigma_{1}\right) \geq f\left(\sigma_{2}\right) \geq f\left(\sigma_{3}\right) \cdots f\left(\sigma_{2^{i}}\right) \cdots \geq f\left(\sigma_{2^{n}}\right)
$$

Imagine we could get our hands on the $n+1$ numbers $b_{i}=f\left(\sigma_{2^{i}}\right)$.

Theorem (EGSS)

To get a $2^{2 c+1}$-approximation it suffices to find for each $0 \leq i \leq n$,

$$
b_{i+c} \leq \widehat{b_{i}} \leq b_{i-c}
$$

Estimation by Stratification

Thought Experiment

Sort Ω by decreasing f-value. W.I.o.g.

$$
f\left(\sigma_{1}\right) \geq f\left(\sigma_{2}\right) \geq f\left(\sigma_{3}\right) \cdots f\left(\sigma_{2^{i}}\right) \cdots \geq f\left(\sigma_{2^{n}}\right)
$$

Imagine we could get our hands on the $n+1$ numbers $b_{i}=f\left(\sigma_{2^{i}}\right)$.

Corollary (when $c=2$)

To get a 32-approximation it suffices to find for each $0 \leq i \leq n$,

$$
b_{i+2} \leq \widehat{b}_{i} \leq b_{i-2}
$$

$b_{0} \quad b_{3} \quad b_{6}$

Refinement by Repetition

Lemma (Concentration of measure)

Let X be any r.v. such that:

$$
\begin{array}{lc}
\operatorname{Pr}[X \leq \text { Upper }] & \geq 1 / 2+\delta \\
& \text { and } \\
\operatorname{Pr}[X \geq \text { Lower }] & \geq 1 / 2+\delta
\end{array}
$$

If $\left\{X_{1}, X_{2}, \ldots, X_{t}\right\}$ are independent samples of X, then

$$
\operatorname{Pr}\left[\text { Lower } \leq \operatorname{Median}\left(X_{1}, X_{2}, \ldots, X_{t}\right) \leq \text { Upper }\right] \geq 1-2 \exp \left(-\delta^{2} t\right)
$$

The Basic Plan

Thinning Sets

We will consider random sets R_{i} such that for every $\sigma \in \Omega$,

$$
\operatorname{Pr}\left[\sigma \in R_{i}\right]=2^{-i} .
$$

Our estimator for $b_{i}=f\left(\sigma_{2^{i}}\right)$ will be

$$
m_{i}=\max _{\sigma \in R_{i}} f(\sigma)
$$

Recall that $f\left(\sigma_{1}\right) \geq f\left(\sigma_{2}\right) \geq f\left(\sigma_{3}\right) \cdots \geq f\left(\sigma_{2^{i}}\right) \geq f\left(\sigma_{2^{i}}+1\right) \cdots \geq f\left(\sigma_{2^{n}}\right)$

The Basic Plan

Thinning Sets

We will consider random sets R_{i} such that for every $\sigma \in \Omega$,

$$
\operatorname{Pr}\left[\sigma \in R_{i}\right]=2^{-i} .
$$

Our estimator for $b_{i}=f\left(\sigma_{2^{i}}\right)$ will be

$$
m_{i}=\max _{\sigma \in R_{i}} f(\sigma)
$$

Lemma (Avoiding Overestimation is Easy)

$$
\begin{aligned}
\operatorname{Pr}\left[m_{i}>b_{i-2}\right] & \leq \operatorname{Pr}\left[R_{i} \cap\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots, \sigma_{2^{i-2}}\right\} \neq \emptyset\right] \\
& \leq 2^{i-2} 2^{-i} \\
& =1 / 4 .
\end{aligned}
$$

Getting Down to Business: Avoiding Underestimation

To avoid underestimation, i.e., to achieve $m_{i} \geq b_{i+2}$, we need

$$
X_{i}=\left|R_{i} \cap\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots, \sigma_{2^{i+2}}\right\}\right|>0
$$

Observe that

$$
\mathbb{E} X_{i}=2^{i+2} 2^{-i}=4
$$

So, we have:
■ Two exponential-sized sets
■ $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots, \sigma_{2^{i+2}}\right\}$

- $\left|R_{i}\right| \sim 2^{n-i}$

■ Which must intersect with probability $1 / 2+\delta$
■ While having expected intersection size 4

It Boils Down to This

We need to design a random set R such that:
■ $\operatorname{Pr}[\sigma \in R]=2^{-i}$ for every $\sigma \in\{0,1\}^{n} \quad$ e.g., a random subcube of dimension $n-i$

- Describing R can be done in $\operatorname{poly}(n)$ time ditto

■ For fixed $S \subseteq\{0,1\}^{n}$, the variance of $X=|R \cap S|$ is minimized

It Boils Down to This

We need to design a random set R such that:
$■ \operatorname{Pr}[\sigma \in R]=2^{-i}$ for every $\sigma \in\{0,1\}^{n} \quad$ e.g., a random subcube of dimension $n-i$

- Describing R can be done in poly (n) time

■ For fixed $S \subseteq\{0,1\}^{n}$, the variance of $X=|R \cap S|$ is minimized

Minimizing variance amounts to minimizing

$$
\sum_{\sigma \neq \sigma^{\prime} \in S} \operatorname{Pr}\left[\sigma^{\prime} \in R \mid \sigma \in R\right]
$$

It Boils Down to This

We need to design a random set R such that:
■ $\operatorname{Pr}[\sigma \in R]=2^{-i}$ for every $\sigma \in\{0,1\}^{n} \quad$ e.g., a random subcube of dimension $n-i$

- Describing R can be done in poly (n) time

■ For fixed $S \subseteq\{0,1\}^{n}$, the variance of $X=|R \cap S|$ is minimized

Minimizing variance amounts to minimizing

$$
\sum_{\sigma \neq \sigma^{\prime} \in S} \operatorname{Pr}\left[\sigma^{\prime} \in R \mid \sigma \in R\right]
$$

Since we know nothing about the geometry of S, a sensible goal is

$$
\operatorname{Pr}\left[\sigma^{\prime} \in R \mid \sigma \in R\right]=\operatorname{Pr}\left[\sigma^{\prime} \in R\right] \quad \text { Pairwise Independence }
$$

It Boils Down to This

We need to design a random set R such that:
■ $\operatorname{Pr}[\sigma \in R]=2^{-i}$ for every $\sigma \in\{0,1\}^{n} \quad$ e.g., a random subcube of dimension $n-i$

- Describing R can be done in poly (n) time

■ For fixed $S \subseteq\{0,1\}^{n}$, the variance of $X=|R \cap S|$ is minimized

Minimizing variance amounts to minimizing

$$
\sum_{\sigma \neq \sigma^{\prime} \in S} \operatorname{Pr}\left[\sigma^{\prime} \in R \mid \sigma \in R\right]
$$

Since we know nothing about the geometry of S, a sensible goal is

$$
\operatorname{Pr}\left[\sigma^{\prime} \in R \mid \sigma \in R\right]=\operatorname{Pr}\left[\sigma^{\prime} \in R\right] \quad \text { Pairwise Independence }
$$

How can this be reconciled with R being "simple to describe"?

Uncle Claude to the Rescue

Linear Error-Correcting Codes

Let

$$
R=\left\{\sigma \in\{0,1\}^{n}: A \sigma=b\right\}
$$

where both $A \in\{0,1\}^{i \times n}$ and $b \in\{0,1\}^{i}$ are uniformly random.
$A \quad \sigma=b$

Uncle Claude to the Rescue

Linear Error-Correcting Codes

Let

$$
R=\left\{\sigma \in\{0,1\}^{n}: A \sigma=b\right\}
$$

where both $A \in\{0,1\}^{i \times n}$ and $b \in\{0,1\}^{i}$ are uniformly random.
$A \quad \sigma=b$

n

$$
\operatorname{Pr}[A \sigma=b]=\left(\frac{1}{2}\right)^{i}
$$

Uncle Claude to the Rescue

The probability that both σ, σ^{\prime} are codewords is

$$
\operatorname{Pr}\left[A\left(\sigma^{\prime}-\sigma\right)=0 \wedge A \sigma=b\right]=\operatorname{Pr}\left[A\left(\sigma^{\prime}-\sigma\right)=0\right] \cdot \operatorname{Pr}[A \sigma=b]
$$

A
$\sigma-\sigma^{\prime}$

Uncle Claude to the Rescue

The probability that both σ, σ^{\prime} are codewords is

$$
\operatorname{Pr}\left[A\left(\sigma^{\prime}-\sigma\right)=0 \wedge A \sigma=b\right]=\operatorname{Pr}\left[A\left(\sigma^{\prime}-\sigma\right)=0\right] \cdot \operatorname{Pr}[A \sigma=b]
$$

Uncle Claude to the Rescue

The probability that both σ, σ^{\prime} are codewords is

$$
\operatorname{Pr}\left[A\left(\sigma^{\prime}-\sigma\right)=0 \wedge A \sigma=b\right]=\operatorname{Pr}\left[A\left(\sigma^{\prime}-\sigma\right)=0\right] \cdot \operatorname{Pr}[A \sigma=b]
$$

Uncle Claude to the Rescue

The probability that both σ, σ^{\prime} are codewords is

$$
\operatorname{Pr}\left[A\left(\sigma^{\prime}-\sigma\right)=0 \wedge A \sigma=b\right]=\operatorname{Pr}\left[A\left(\sigma^{\prime}-\sigma\right)=0\right] \cdot \operatorname{Pr}[A \sigma=b]
$$

Are We Done Yet?

Recapping

- Define R_{i} via i random parity constraints with $\sim n / 2$ variables each
- Estimate b_{i} by maximizing f subject to the constraints

Are We Done Yet?

Recapping

- Define R_{i} via i random parity constraints with $\sim n / 2$ variables each
- Estimate b_{i} by maximizing f subject to the constraints
$n=10 \times 10$
Ferromagnetic Ising Grid

Coupling Strengths \& External Fields Near criticality

First Contribution: Random Affine Maps (Exploiting Linearity)
Let $G \in\{0,1\}^{(n-i) \times n}$ be the generator matrix of R, i.e.,

$$
R=\left\{\sigma \in\{0,1\}^{n}: \sigma=x G \text { and } x \in\{0,1\}^{n-i}\right\} .
$$

First Contribution: Random Affine Maps (Exploiting Linearity)

Let $G \in\{0,1\}^{(n-i) \times n}$ be the generator matrix of R, i.e.,

$$
R=\left\{\sigma \in\{0,1\}^{n}: \sigma=x G \text { and } x \in\{0,1\}^{n-i}\right\} .
$$

Instead of solving the constrained optimization problem

$$
\max _{\substack{\sigma \in\{0,1\}^{n} \\ A \sigma=b}} f(\sigma)
$$

First Contribution: Random Affine Maps (Exploiting Linearity)

Let $G \in\{0,1\}^{(n-i) \times n}$ be the generator matrix of R, i.e.,

$$
R=\left\{\sigma \in\{0,1\}^{n}: \sigma=x G \text { and } x \in\{0,1\}^{n-i}\right\} .
$$

Instead of solving the constrained optimization problem

$$
\max _{\substack{\sigma \in\{0,1\}^{n} \\ A \sigma=b}} f(\sigma)
$$

solve the unconstrained optimization problem

$$
\max _{x \in\{0,1\}^{n-i}} f(x G)
$$

over the exponentially smaller set $\{0,1\}^{n-i}$.

First Contribution: Random Affine Maps (Exploiting Linearity)

Fact
Working with an explicit representation of f is often crucial for efficient maximization

Second Contribution: Use Low Density Parity Check Codes

Extremely sparse equations but with variable regularity

Second Contribution: Use Low Density Parity Check Codes

Extremely sparse equations but with variable regularity

Second Contribution: Use Low Density Parity Check Codes

Extremely sparse equations but with variable regularity

Second Contribution: Use Low Density Parity Check Codes

Extremely sparse equations but with variable regularity

Second Contribution: Use Low Density Parity Check Codes

Extremely sparse equations but with variable regularity

Second Contribution: Use Low Density Parity Check Codes

Extremely sparse equations but with variable regularity

Second Contribution: Use Low Density Parity Check Codes

Extremely sparse equations but with variable regularity

Second Contribution: Use Low Density Parity Check Codes

Extremely sparse equations but with variable regularity

■ Scales to problems with several thousand variables

■ Running-time when proving satisfiability comparable to original instance

- In all problems where ground truth is known:
- Equally accurate as long XORs
- 2-1000x faster

Second Contribution: Use Low Density Parity Check Codes

Extremely sparse equations but with variable regularity
$\log _{2}\left(\frac{\text { Time with LXOR }}{\text { Time with LDPC }}\right)$

$$
\log _{2} \log _{2}\left(\frac{\hat{Z}_{\mathrm{LDPC}}}{\hat{Z}_{\mathrm{LXOR}}}\right)
$$

Each point represents one CNF formula

Thanks!

