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High-Dimensional Integration

The Setting

m A (large) domain Q = Dy X -+ X Dy, where {D;}?_; are finite.
m A non-negative function f : Q2 — R.

The Goal (“Stochastic Approximate Integration”)
Probabilistically, approximately estimate Z = Z flo) .

o€
Non-negativity of f == No Cancellations

Appplications
m Probabilistic Inference via graphical models (partition function)
m Automatic test-input generation in verification (model counting)
m Generic alternative to MCMC
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m A (large) domain Q = Dy X -+ X Dy, where {D;}?_; are finite.
m A non-negative function f : Q2 — R.

The Goal (“Stochastic Approximate Integration”)

Probabilistically, approximately estimate Z = Z flo) .

o€
Non-negativity of f == No Cancellations

Quality Guarantee

For any accuracy € > 0, with effort proportional to sn/e?,

5rl1—e<g<1+e =1—exp(—0O(s)) .
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High-Dimensional Integration

The Setting

m A (large) domain Q = Dy X -+ X Dy, where {D;}?_; are finite.
m A non-negative function f : Q2 — R.

The Goal

(“Stochastic Approximate Integration”)

Probabilistically, approximately estimate Z = Z flo) .

o€
Non-negativity of f == No Cancellations

Rest of the Talk
m Q={0,1}"

m 32-approximation.

D; = {0, 1} for all i € [n]

Typically Z = exp(n)
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The Goal

(“Stochastic Approximate Integration”)

Probabilistically, approximately estimate Z = Z flo) .
o€

Non-negativity of f == No Cancellations

General Idea
m For ¢ from 0 to n
Repeat O(e~?) times
— Generate random R; C ) of size ~ 2"~¢
- Find y; = max,ep,f(0)
m Combine {y;} in a straightforward way to get Z.
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The Goal

(“Stochastic Approximate Integration”)

Probabilistically, approximately estimate Z = Z flo) .
o€

Non-negativity of f == No Cancellations

General Idea
m For ¢ from 0 to n
Repeat O(e~?) times
- Generate random R; C § of size ~ 2"% as an ECC
- Find y; = max,ep,f(0)
m Combine {y;} in a straightforward way to get Z.
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[Ermon, Gomes, Sabharwal and Selman 10-15]

Estimation by Stratification

Thought Experiment
Sort ) by decreasing f-value. W.l.o.g.

flo1) = f(o2) = f(o3) - - (o) - = f(o2m)

Imagine we could get our hands on the 7 + 1 numbers b; = f(o9:).

bob1b- b3 b4 b5 be

00 -0 @ osann @cececescnneanns @t e eetsectantostcncscssocesanns .

124 8 16 32 64
n=6
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[Ermon, Gomes, Sabharwal and Selman 10-15]

Estimation by Stratification

Thought Experiment
Sort ) by decreasing f-value. W.l.o.g.

flo1) = f(o2) = f(o3) - - (o) - = f(o2m)

Imagine we could get our hands on the 7 + 1 numbers b; = f(o9:).

If we let
n—1 ] n—1 ]
U:=by+ Z b;2" and L:=by+ Z bi+121
=0 =0
then

L<Z<U<2L

Dimitris Achlioptas (UC Santa Cruz) Stochastic Integration via ECC Simons Institute May 2016



[Ermon, Gomes, Sabharwal and Selman 10-15]

Estimation by Stratification

Thought
Sort ) by T
100, — f .
| - - uppersum
3 R lower sum
. 8ol

Imagine \ ).
CEEEEEEE— —
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quantile
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[Ermon, Gomes, Sabharwal and Selman 10-15]

Estimation by Stratification

Thought Experiment
Sort ) by decreasing f-value. W.l.o.g.

flo1) = f(o2) = f(o3) - - (o) - = f(o2m)

Imagine we could get our hands on the 7 + 1 numbers b; = f(o9:).

Theorem (EGSS)

To get a 22¢t1_approximation it suffices to find for each 0 < i < n,

bite < by < bi—c .
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[Ermon, Gomes, Sabharwal and Selman 10-15]

Estimation by Stratification

Thought Experiment
Sort ) by decreasing f-value. W.l.o.g.

flo1) = f(o2) = f(o3) - - (o) - = f(o2m)

Imagine we could get our hands on the 7 + 1 numbers b; = f(o9:).

Corollary (when ¢ = 2)

To get a 32-approximation it suffices to find for each 0 < 7 < n,
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[Ermon, Gomes, Sabharwal and Selman 10-15]

Refinement by Repetition

Lemma (Concentration of measure)

Let X be any r.v. such that:

Pr[X < Upper] > 1/2+496
and

Pr[X > Lower] > 1/2+4§ .

If {X1, Xs,...,X;} are independent samples of X, then

Pr [Lower < Median(Xj, Xa,...,X;) < Upper] > 1 —2exp (—52t)
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[Ermon, Gomes, Sabharwal and Selman 10-15]

The Basic Plan

Thinning Sets

We will consider random sets R; such that for every o € (2,
PI‘[U € RZ] =277,
Our estimator for b; = f(oq:) will be

ity — gne&%f(a) .

Recall that f(01) > f(o2) > f(o3) -+ > f(0o9i) > f(ogi +1) -+ > f(o2n)

bi—2 b; bit2
TR R R R R R T S Y ol o
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[Ermon, Gomes, Sabharwal and Selman 10-15]

The Basic Plan

Thinning Sets

We will consider random sets R; such that for every o € (2,
Prjc € R]=2"°.
Our estimator for b; = f(oq:) will be

ity — gnee}{)if(a) .

Lemma (Avoiding Overestimation is Easy)

Pr[m; > bi—2] < Pr[R;N{o1,02,03,...,09i-2} # 0]
S 2i_2 2_7; Union Bound
— 1/4 .
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[Ermon, Gomes, Sabharwal and Selman 10-15]

Getting Down to Business: Avoiding Underestimation

To avoid underestimation, i.e., to achieve m; > b; 2, we need

X;=|R;N{o1,02,03,...,09i+2}| >0 .
Observe that
EX; =22270 =4 |

So, we have:
m Two exponential-sized sets

m {01,009, 0351, Ogitz }
m Ryl ~ 2770

m Which must intersect with probability 1/2 + §

m While having expected intersection size 4
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Pseudorandom Sets

It Boils Down to This

We need to design a random set R such that:
m Pr[o € R] =27 for every o € {0,1}"
m Describing R can be done in poly(n) time
m For fixed S C {0,1}", the variance of X = |RN S| is minimized

e.g., a random subcube of dimension n — 7

ditto
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Minimizing variance amounts to minimizing
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oFo'eS
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m Describing R can be done in poly(n) time
m For fixed S C {0,1}", the variance of X = |RN S| is minimized

e.g., a random subcube of dimension n — 7

ditto

Minimizing variance amounts to minimizing

Z Prlo’ € R| o € R)
oFo'eS

Since we know nothing about the geometry of .S, a sensible goal is

Prlo’ € R| o € R|=Pr[0’ € R]

Pairwise Independence
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Pseudorandom Sets

It Boils Down to This

We need to design a random set R such that:
m Pr[o € R] =27 for every o € {0,1}"
m Describing R can be done in poly(n) time
m For fixed S C {0,1}", the variance of X = |RN S| is minimized

e.g., a random subcube of dimension n — 7

ditto

Minimizing variance amounts to minimizing

Z Prlo’ € R| o € R)
oFo'eS

Since we know nothing about the geometry of .S, a sensible goal is

Prlo’ € R| o € R|=Pr[0’ € R]

Pairwise Independence

How can this be reconciled with R being “simple to describe"?
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Error-Correcting Codes

Uncle Claude to the Rescue

Linear Error-Correcting Codes
Let

R={oc€{0,1}": Ao = b}
where both 4 € {0,1}"*" and b € {0,1}" are uniformly random.

A o = b
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Error-Correcting Codes

Uncle Claude to the Rescue

The probability that both o, ¢’ are codewords is
Pr[A(¢' — o) =0 A Aog = b] = Pr[A(¢’ — o) = 0] - Pr[Ado = b] .

A 0-0’
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Error-Correcting Codes

Are We Done Yet?

Recapping
m Define R; via 7 random parity constraints with ~ n/2 variables each

m Estimate b; by maximizing f subject to the constraints
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Error-Correcting Codes

Are We Done Yet?

Recapping
m Define R; via 7 random parity constraints with ~ n/2 variables each

m Estimate b; by maximizing f subject to the constraints

---- Affine Map
100-i
a—4 Dense Parity
n = 10 X 10 - e—e Sparse Parity| |
Ferromagnetic
Ising Grid B
’_; 60
Coupling Strengths 2l
& External Fields al
Near criticality

0r
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number of parity constraints (i)
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Error-Correcting Codes

First Contribution: Random Affine Maps (Exploiting Linearity)

Let G € {0,1}(»=9%" pbe the generator matrix of R, i.e.,

R= {o‘ €{0,1}" : 0 = zG and z € {0, 1}”_i}
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Error-Correcting Codes

First Contribution: Random Affine Maps (Exploiting Linearity)

Let G € {0,1}(»=9%" pbe the generator matrix of R, i.e.,
R= {a €{0,1}" : 0 = zG and z € {0, 1}""}
Instead of solving the constrained optimization problem

L5510
Ao=b
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Error-Correcting Codes

First Contribution: Random Affine Maps (Exploiting Linearity)

Let G € {0,1}(»=9%" pbe the generator matrix of R, i.e.,
R = {a € {0,1}" : 0 = 2G and z € {0, 1}”"}
Instead of solving the constrained optimization problem

L5510
Ao=b

solve the unconstrained optimization problem

G) ,
azefno,?i("—i f(x )

over the exponentially smaller set {0,1}"¢.
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Error-Correcting Codes

First Contribution: Random Affine Maps (Exploiting Linearity)
Let G € 140 ‘ ‘ ‘ w w
""" Affine Map
120 100-i J
. &—4 Dense Parity
100} e e—e Sparse Parity| |
Instead « T,
80 |
g
2 60 ) ' ) 4
£
H0f
solve the ol
0F
-20 s s s ‘ ‘
0 20 40 60 80 100
over the number of parity constraints (i)
.
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Error-Correcting Codes

Fact

Working with an explicit representation of f is often crucial for efficient
maximization
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Error-Correcting Codes

Second Contribution: Use Low Density Parity Check Codes
Extremely sparse equations but with variable regularity J
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Error-Correcting Codes

Second Contribution: Use Low Density Parity Check Codes
Extremely sparse equations but with variable regularity J

0

----- Sparse Parity

— PEG LDPC
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Error-Correcting Codes

Second Contribution: Use Low Density Parity Check Codes
Extremely sparse equations but with variable regularity J
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Error-Correcting Codes

Second Contribution: Use Low Density Parity Check Codes
Extremely sparse equations but with variable regularity J

m Scales to problems with several thousand variables

m Running-time when proving satisfiability comparable
to original instance

m In all problems where ground truth is known:

» Equally accurate as long XORs
m 2-1000x faster
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Error-Correcting Codes

Second Contribution: Use Low Density Parity Check Codes
Extremely sparse equations but with variable regularity
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Each point represents one CNF formula
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Error-Correcting Codes

Thanks!

Dimitris Achlioptas

Santa Cruz) Stochastic Integration via ECC Simons Institute May 2016 14 / 14



	High-Dimensional Integration
	[Ermon, Gomes, Sabharwal and Selman 10-15]
	Pseudorandom Sets
	Error-Correcting Codes

