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Theoretical Physics

Disordered systems such as spin glasses are models of interacting
particles/variables with frustrated interactions.

Many random constraint satisfaction problems can be recast as
dilute mean-field spin glasses.
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Basic Definition:

Variables: xi,...,x, € {TRUE, FALSE} = {+, -}

Constraints: m clauses taking the OR of k variables uniformly
chosen from {+x1,-x1,...,+Xn, ~Xn}.

Example: A 3-SAT formula with 4 clauses:

clause

G(x) = (+x1 OR +x2 OR —x3) AND (+x3 OR +x4 OR —X5)
AND (=x3 OR —xg OR +x5) AND (+x2 OR -x3 OR +Xxg)

Clause density: The K-SAT model is parameterized the problem
by the density of clauses a = m/n.
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Graphical description: We can encode a K-SAT formula as a

bipartite graph:

Take a 4-SAT formula with 3 clauses: G(x) =

(+x1 OR +x3 OR —x5 OR -x7) AND (-x1 OR -x2 OR +x5 OR +Xxg)
AND (-x3 OR +x4 OR X5 OR +x7)

We can encode the formula as a bipartite graph G = (V, F, E):

clauses F

clause a € F, variable ve V: E\ edges E

blue edge (av) if +x, in clause a

yellow edge (av) if -x, in clause a
o \

variables V

(4-SAT: each clause has degree 4)

The resulting random graph is locally tree-like, almost no short
cycles and it's local distribution can be described completely.
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Further Question:

m Free Energy: How many solutions are there?
— Jim 1
d(a) = Jme ~log Z.

m Local Statistics: Properties of solutions such as how many
clauses are satisfied only once?

m Algorithmic: Can solutions be found efficiently?
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A k-NAESAT problem is a k-SAT where both x and —x are
satisfying assignments. Each clause contains one + and one -.

clause of width k = 4
! 1

(+x1 OR +X3 OR —X5 OR —X7 )

AND (=X OR =X OR +X5 OR +Xg )
AND (—X3 OR +X4 OR —Xg OR +X7 )

d-Regular NAESAT is an instance where every variable appears in
exactly d clauses.
Why regular NAESAT?  Same rich set of in phase transitions.

Binary, symmetric, locally homogeneous.
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We are interested in SOL = {solutions of G} and Z = |SOL|.
Keep k fixed and let o = d/k.
First moment method:

EZ = 2"(1 —2/2K™ = exp{n[In2 + alog(1 — 2/2°)|}

exponent decreases in «, crosses zero at oy ~ (21— 1)In2.
Second moment method:
If E[Z?] = (EZ)?, then P[Z > cEZ] bounded away from 0.

Fails at ap = 2k=1n2 — %(In 2+ 1) o — % Achlioptas—Moore '06

This a» can be improved, but not all the way to ;.
Coja-Oghlan—Zdeborova '12
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In fact there exist s < (eond < vsat < @vq such that:

logZ =logEZ 4+ Op(1) « < tvcond
log Z < logEZ — Q(n)  cond < @ < (sat
P(Z=0)—>1 o > eat
— [EZ fails to describe Z for o = cveong.
Coja-Oghlan—Zdeborové '12, Ding-Sly-Sun '13a
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Non-concentration of Z

—_— % logEZ

typical < log Z
planted % log Z

a2 Qcond Olsat ]

First explanation:
Typically, any solution x of G has > ne free variables, that can

flip without violating any clause.
— [EZ is dominated by unusual cluster of solutions of size = 2"¢,

Deeper reason: 1RSB Theory from statistical physics.
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Main result

— tlogEZ

— typical L log Z

Q2 Qcond Qsat a «
Free energy: ®(a) = lim LlogZ.
n—aoo
Main result: For k > ko, the limit ®(o) does exist for

Qeond < @ < (isat, and we give an explicit formula matching the
1RSB prediction from statistical physics.
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Statistical physics for random CSPs

Statistical physicists made major advances in this field by showing
how to adapt heuristics from the study of spin glasses (disordered

magnets) to explain the CSP solution space.
Mézard—Parisi '85, '86, '87; Fu—Anderson '86

In particular, physicists proposed a class of sparse random CSPs —
the one-step replica symmetry breaking (LRSB) models, which

exhibit the similar phase diagram at predicted locations.
Krzakata—Montanari—Ricci- Tersenghi—-Semerjian—Zdeborova '07,
Zdeborovd—Krzakata '07, Montanari—Ricci-Tersenghi—Semerjian '08.
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Phase diagram

well-connected clustered
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Qiclust

Qicond

Olsat

KMRSZ '07, MRS '08

The solution space SOL starts out as a well-connected cluster.

After aust, SOL decomposes into exponentially clusters

After ceond, SOL is dominated by a few large clusters

After e, no solutions w.h.p.
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Condensation and non-concentration

Clust. Cond.  UNSAT

vz

A in typical picture,
mass is dominated by
few clusters of this size

The correct prediction:

nli_)moo Llog Z = sup{s + X(s) : £(s) > 0} = sup{s : £(s) > 0}
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Counting clusters

Question: How do we find sup{s : (s) > 0}7?

First step: Work with clusters of solutions.

CLUSTERS = set of k-NAESAT solution clusters
= set of connected components of SOL

1RSB suggests that there is no extra structure in CLUSTERS.

Indeed, counting E|CLUSTERS]| has lead to precise result of cat.
k-NAESAT: Coja-Oghlan—Panagiotou '12, Ding—Sly—Sun '13a
Independent set: Ding—Sly—Sun '13b
k-SAT: Coja-Oghlan—Panagiotou '13 '14, Ding—Sly—Sun '14

Not enough for our purpose. . .
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Counting clusters weighted

Second Step: Weight clusters by (their size)*

S

E|soL| = Zs exp{n[l-s+ X(s)]}, maximized at ¥'(s) = —1.

E|CLUSTERS| = Zs exp{n[0-s+ X(s)]}, maximized at ¥'(s) = 0.
EZ, = Zs exp{n[\-s+ X(s)]}, maximized at ¥'(s) = —\

In fact, %Iog EZ, is the Legendre transformation of X (s).



Explicit formula

For each A € [0, 1], there exist prob. measure py, iy on [0,1] such that

k-1 k=1

(8= f( [T=-1]a 7>1{2—n17{[nx<1— GB}'E‘A‘*MX”)

i=1 i

e lf(nl“ﬂl ) i o) Tl

Define X(\) = Ent(wy) + a Ent(W,) — d Ent(w)), where
d

w/\(B>:2;1f( y+ﬁ1— ) {f[ {!(1— B} [T

i=1 i=1

Wn(B) = 2 f(l—]_[x, H(l—x,) {I—Hx, H(l—x, EB} Qm(dx,.)

wn®) =2 [ (xy+ (1=x) 1—y>)A {xy+(1—x)<1—y>eB}m(dxwdy)

Main Theorem.[S.-Sun-Zhang '16]
For k = ko, tcond < a0 < vz Let A = sup{) : £(\) > 0}.

O(a) =lim, . Llog Z = L [log 2, + alog 25, — dlog 2. |.




Explicit formula

For each A € [0, 1], there exist prob. measure i, iy on [0,1] such that

A
X A

Some distributional recursion with fixed point

A A A

Define X(\) = Ent(wy) + a Ent(W,) — d Ent(w)), where

» ft Complexity function depending on (g, A) /i
A

Some functional of (1x, A) = +[As(ur, A) + Z(pr, A)]

A

A A A A

Main Theorem.[S.-Sun-Zhang '16]
For k = ko, teond < a0 < v Let A = sup{) : £(\) > 0}.

®(a) =lim, ., tlog Z = 3-[log Z), + alog Z5, — dlog 25, |.
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Upper bound

For upperbound, we prove a regular version of the interpolation
bound of Franz—Leone ‘03, Panchenko—Talagrand ‘04. The proof
resembles the proof of Bayati—-Gamarnik—Tetali ‘13.

In particular, it implies that
Llog Z < s(v}) + \TTE(1),

matching the lowerbound s(v}) as X (v}) — 0.
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Encoding of local neighborhood

We represent elements of CLUSTERS as a spin system on E(G).

o Start from x € {+,-}"(9 and explore the cluster C.
e Map each variable to a value from {+, -, £},
s.t. a variable is marked f if it can take multiple values.

— C € CLUSTERS © 7 € {+,-,£}V(9)

This gives a new spin system where
e f are not forced by any clause.
e + and - variables must be forced by at least one clause.
e Dependencies in free variable must be taken into account

when counting solutions in clusters
+ —
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We divide the subgraph of £'s into a forest of O(1)-size trees such
that assigning values to one tree does not affect the others.
Every edge encodes the ‘f-tree’ it resides in.

=r1e{+-f}V9 & g€ {f-trees}E@

Recall that we can use BP algorithm to count solutions on trees.

Define weight functions W, W, W, accordingly s.t. for each
o € {f-trees}E(9)

wio) = [, Viles)] [ Valesal] [,_ ., Yelean)
= HT(# of ways of assigning f's. in tree T)

= (size of cluster)

Then we can define
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Optimization

We can write \
_ Z(g,g) w (o)
#G

Then partitioning ¢ according to its empirical distribution v,

EZ,

EZ/\[[/] — Wwv)\m}wa/\ani)we/\dmj
(dnﬁ)
= exp{n|[X(v) + As(v)|+o(n)}
= exp{n®,(v)+o(n)}
Can find optimal v by finding fixed points of the Belief

Propagation equations Dembo—Montanari-Sun '13.

Fixed points are distributions over bi-directional pairs of messages.
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Optimization: from graph to trees

Choose (G, o) weighted by w*(c) and sample en vertices.
Record the boundary, remove the edges, rematches the graph.
Corresponds to sampling i.i.d. trees fixing marginals on leaves.
Preserves the distribution over (G, o).

-+ + - f 4+ - - - f f -
Sampling w.h.p. 1 =1 =v
Resampling w.h.p. 1 = BP(1,)

Hence v = 1» = 1 = BP(1») = BP(»3).
Fixed point of a much simpler uni-directional BP equation.



Further directions

Extend to other models: Hardcore model, k-SAT, graph coloring. . .

Extend to other type of graphs: Erdos-Renyi graph.
Another source of non-concentration: atypical neighborhood.

Show that the proportion of clusters are given by Poisson-Dirichlet
process.

Applications to the stochastic block model.



Thank you.



Further directions: Poisson weighted clusters

Physics: exp{nX(s)} is the expected #clusters of size exp{ns}

slope —A € (—1,0)

in typical picture,
mass is dominated by
few clusters of this size

Expected #clusters of size exp{ns., + x + dx} is exp{—Ax}dx;
so expected #clusters of size exp{ns.}(u + du) is u=*"1du

Therefore, cluster weights are given (up to normalization) by
Poisson point process with intensity u=*~1du
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