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Hamiltonian cycles

Input: Graph G

Object of interest: Hamiltonian cycle

Q1: Does G have a Ham cycle? NP-complete

Q2: How many Ham cycles? #P-complete

Q3: Describe all cycles. Enumerate them symbolically.
New variable for each edge.

HamCn([Xi ,j ]) ,
∑

σ: n-cycle

(
n∏

i=1

Xi ,σ(i)

)

Hamiltonian cycles ⇐⇒ Monomials of HamC.

eg K4: 1-2-3-4-1: X12X23X34X41

1-2-4-3-1: X12X24X43X31

1-3-2-4-1: X13X32X24X41

HamC must be “hard”. In what computation model?
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Algebraic computation models: Circuits
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Arithmetic Circuit Families

Circuit family (Cn) computes polynomial family (pn).

Family {fn}n>0 is a p-family if degree and number of variables in fn grows
polynomially in n.

Now onwards, only p-families.
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Algebraic Complexity Classes

VP: p-computability; polynomial size circuits.

VNP: p-definability; exponential sums of partial Boolean
instantiations of polynomials in VP.
(fn) ∈ VNP if there exist (gm) ∈ VP and polynomial r(n):

fn(x̃) =
∑

ỹ∈{0,1}t(n)

gr(n)(x̃ , ỹ)

(Defined by Valiant in 1979; algebraic analogues of P, NP.)
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Algebraic Reductions: Projections

(HamCn) ∈ VNP.

(HamCn) hard for VNP with respect to p-projections.

projections – Example: g(x1, x2, x3, x4) = x1x2 + x3x4.

projections of g not projections of g

y1 + y2 = g(y1, 1, y2, 1) y2
1 y2

y1y2 + 5 = g(y1, y2, 1, 5) (too high degree)
y1y2 + y2y3 = g(y1, y2, y2, y3) y1 + y2 + y3

2y2 = g(y , y , y , y) (too many terms)

f ≤proj g if circuit for g can be used to compute f ,
with no extra gates.

p-projection: fn ≤proj gm(n) for some poly m(.).
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Algebraic Reductions: Projections

f is a projection of g

f

x1 x2
. . .

xn

g

y1 y2 y3 . . . ym

a

f is a p-projection of g
if m(n) ∈ nO(1).
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Other Hard “Enumerator” Polynomials

Enumerating Cliques:

Cliquen ,
∑
A⊆[n]

 ∏
i ,j∈A,i<j

Xi ,j



=
∑

T⊆En:(Vn,T ) is clique
+ isolated vertices

(∏
e∈T

Xe

)

VNP-complete with respect to p-projections

Enumerating Bipartite Perfect Matchings:

Permn ,
∑

M a perfect
matching in Kn,n

 ∏
(ui ,vj )∈M

Xi ,j

 =
∑
σ∈Sn

∏
i∈[n]

Xi ,σ(i)


VNP-complete with respect to p-projections
(over fields of characteristic 6= 2).
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A remarkable enumerator polynomial

Cutn(X ) ,
∑

(A,B) partition of [n]

 ∏
i∈A,j∈B

Xi ,j

 .

eg: Cut3(X ) = 1 + X1,2X1,3 + X1,2X2,3 + X1,3X2,3.

(Cutn) is in VNP. What’s remarkable?

Theorem (Bürgisser (1999))

Over the field GF[2],
(Cutn) is neither in VP, nor VNP-hard (with respect to p-projections),
unless all languages in ⊕P (Mod2P) have polynomial-size circuits
and hence PH collapses to second level.
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Intermediate Complexity

(Boolean world) Ladner’s theorem (1975): If P 6= NP, then there is a
language in NP that is neither in P nor NP-hard.

(Algebraic world) Bürgisser (1999): Over every field, if VP 6= VNP,
then there is a polynomial family in VNP that is neither in VP nor
VNP-hard.

Existence of intermediate-complexity demonstrated
(using diagonalisation).

Over GF[2], explicit polynomial: the cut enumerator.
(using an additional assumption about ⊕P)

Over other fields?

Over R, Cutn is in fact VNP-complete. [deRugy-Altherre 2012]
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Intermediate Complexity over finite fields

Fix field Fq of size q, characteristic p.

Cutq
n(X ) ,

∑
(A,B) partition of [n]

 ∏
i∈A,j∈B

(Xi ,j)
q−1



Theorem (Bürgisser (1999))

Over the field Fq, (Cutq
n) is in VNP. It is

not VNP-hard with respect to p-projections, and

not in VP,

unless all languages in ModpP have polynomial-size circuits
(and hence PH collapses to second level).

Since 1999, these were the only known intermediate-complexity
polynomials.
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New Intermediate Polynomials!

Why HamC, Clique are hard:
monomials encode (weights of) hard-to-find combinatorial objects

We put even more information into the encoding. Surprisingly, this
gives easier polynomials, of intermediate complexity!

Clique encoded differently.
Vertex Cover
Closed Walks
3-dimensional matchings
3-SAT

31 Mar 2016, Simons Institute. Meena Mahajan, IMSc



New Intermediate Polynomials!

Why HamC, Clique are hard:
monomials encode (weights of) hard-to-find combinatorial objects

We put even more information into the encoding. Surprisingly, this
gives easier polynomials, of intermediate complexity!

Clique encoded differently.
Vertex Cover
Closed Walks
3-dimensional matchings
3-SAT

31 Mar 2016, Simons Institute. Meena Mahajan, IMSc



New Intermediate Polynomials!

Why HamC, Clique are hard:
monomials encode (weights of) hard-to-find combinatorial objects

We put even more information into the encoding. Surprisingly, this
gives easier polynomials, of intermediate complexity!

Clique encoded differently.
Vertex Cover
Closed Walks
3-dimensional matchings
3-SAT

31 Mar 2016, Simons Institute. Meena Mahajan, IMSc



Clique polynomial, redefined

Old definition:

Cliquen ,
∑

T⊆En:(Vn,T ) is clique
+isolated vertices

(∏
e∈T

Xe

)

Our definition for GF[2]:

CISn ,
∑
T⊆En

(∏
e∈T

Xe

)( ∏
v incident on T

Yv

)

In K3, T ∅ {12} {12, 23} E

Monomial 1 X1,2Y1Y2 X1,2X2,3Y1Y2Y3 X1,2X2,3X1,3Y1Y2Y3

For other fields Fq:

CISq
n ,

∑
T⊆En

(∏
e∈T

(Xe)q−1

)( ∏
v incident on T

(Yv )q−1

)
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3Sat polynomial (over GF[2])

Cln: Set of all possible 3-literal clauses on n variables.

Satn ,
∑

a∈{0,1}n

 ∏
i∈[n]:ai=1

Xi


 ∏

c ∈Cln:
a satisfies c

Yc
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Closed-Walk polynomial (over GF[2])

Clow: Closed walk, not necessarily simple.
Smallest vertex visited exactly once.

Clown ,
∑

w=〈v0,v1,...,vn−1〉:
∀j>0, v0<vj

∏
i∈[n]

X(vi−1,vi mod n)

 ∏
v∈{v0,v1,...,vn−1}

Yv



Clow 1-2-3-2-3-1: X1,2X
2
2,3X3,2X3,1Y1Y2Y3

Clow 1-2-2-2-2-1: X1,2X
3
2,2X2,1Y1Y2
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Vertex Cover polynomial (over GF[2])

VCn ,
∑
S⊆Vn

 ∏
e∈En : e is incident on S

Xe

(∏
v∈S

Yv

)
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3-Dimensional Matching polynomial (over GF[2])

3DMq
n :=

∑
M⊆An×Bn×Cn

(∏
e∈M

Xe

) ∏
v∈M

(counted only once)

Yv
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Why these are intermediate ...

Following Bürgisser’s strategy,

For h any of the polynomials (Cut, CIS, Sat, Clow, VC, 3DM), show that:

M: Membership. h is in VNP.

E: Ease. Over GF[2], h can be evaluated in P.
(Hence, if h is VNP-hard, then ⊕P has small circuits.)

H: Hardness. The monomials of h encode solutions to a problem that is
#P-hard via parsimonious reductions.
(Hence, if h is in VP, then ⊕P has small circuits. )
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Why Sat is intermediate

Satn ,
∑

a∈{0,1}n

 ∏
i∈[n]:ai=1

Xi


 ∏

c ∈Cln:
a satisfies c

Yc



Ease: Given a 0-1 assignment to X̃ and Ỹ , Satn(x̃ , ỹ) equals
# {a: xi = 0 =⇒ ai = 0 and yc = 0 =⇒ a does not satisfy c}.
This equals 2number of unconstrained bits.

Hard: Given any 3-CNF formula F on n variables with m clauses,
For clauses c ∈ F , set all Yc = t; set other Yc to 1. Set all Xi to 1.

Satn(t) =
∑

a∈{0,1}n

 ∏
c ∈F :

a satisfies c

t

 =
∑

a∈{0,1}n
t(number of clauses sat by a)

Coefficient of tm equals #F (mod 2).
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# {a: xi = 0 =⇒ ai = 0 and yc = 0 =⇒ a does not satisfy c}.
This equals 2number of unconstrained bits.

Hard: Given any 3-CNF formula F on n variables with m clauses,
For clauses c ∈ F , set all Yc = t; set other Yc to 1. Set all Xi to 1.

Satn(t) =
∑

a∈{0,1}n

 ∏
c ∈F :

a satisfies c

t

 =
∑

a∈{0,1}n
t(number of clauses sat by a)

Coefficient of tm equals #F (mod 2).

31 Mar 2016, Simons Institute. Meena Mahajan, IMSc



Why Sat is intermediate

Satn ,
∑

a∈{0,1}n

 ∏
i∈[n]:ai=1

Xi


 ∏

c ∈Cln:
a satisfies c

Yc


Ease: Given a 0-1 assignment to X̃ and Ỹ , Satn(x̃ , ỹ) equals
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Why CIS is intermediate

CISn ,
∑
T⊆En

(∏
e∈T

Xe

)( ∏
v incident on T

Yv

)

Ease: Given a 0-1 assignment to X̃ and Ỹ ,

Discard vertices v with Yv = 0; discard edges e touching discarded
vertices or with Xe = 0.

` edges remain. Each subset of these edges contributes 1.
Value: 2` (mod 2); 1 iff ` = 0.

Hard: Given any graph G = (V ,E ),

Set all Yv = t; Set Xe = z if e ∈ E , Xe = 1 otherwise.

CIS(z , t) =
∑
T⊆En

z |T∩E(G)|t(number of vertices incident on T )

Coefficient of z(k2)tk = Number of cliques of size k, (mod 2).
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Why Clow is intermediate

Clown ,
∑

w=〈v0,v1,...,vn−1〉:
∀j>0, v0<vj

∏
i∈[n]

X(vi−1,vi mod n)

 ∏
v∈{v0,v1,...,vn−1}

Yv



Ease: Given a 0-1 assignment to X̃ and Ỹ ,

Discard vertices v with Yv = 0; discard edges e with Xe = 0.

In resulting graph, find number of clows of length n, modulo 2, by
powering the adjacency matrix.

Hard: Given any graph G = (V ,E ),

Set all Yv = t; Set Xe = z if e ∈ E , Xe = 1 otherwise.

Clow(z , t) =
∑

w : clow of length n

z |w∩E |t(number of vertices in w)

Coefficient of zntn = Number of Hamilton cycles (mod 2).
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Enumerating Graph Homomorphisms

Graphs G , H.

Homomorphism from G to H:
a map φ : V (G )→ V (H) preserving adjacencies.

Object of interest: Homomorphism from G to H

Q1: Is there a homomorphism G → H?

Q2: How many homomorphisms?

Q3: Describe all homomorphisms; Enumerate them symbolically.
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Enumerator Polynomial for Homomorphisms

Graphs G , H.
Variables on edges of H. (Think of G as fixed.)

fG ,H ,
∑

φ:homomorphism G→H

 ∏
(u,v)∈E(G)

Y(φ(u),φ(v))



(Gn), (Hn): p-families of graphs. (size grows polynomially with n)

fn = fGn,Hn .
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Homomorphism Polynomials (continued)

a b

cd

u v

w y z

Homomorphism Monomial
a→ u
b → v
c → y
d → w

Yu,vYv ,yYy ,wYu,w

Homomorphism Monomial
a→ v
b → y
c → z
d → y

Y 2
v ,yY

2
y ,z

Homomorphism Monomial
a→ u
b → v
c → u
d → v

Y 4
u,v
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Rigid, incomparable graphs

A rigid: the only homomorphism from A to A is the identity.
Asymptotically, almost all graphs are rigid.

A→ B: there exists a homomorphism from A to B.

A 6→ B: there exists no homomorphism from A to B.

A, B, incomparable: A 6→ B and B 6→ A.

Asymptotically, almost all pairs of graphs are incomparable.
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Describing our graph families

The family (Gn):
I0, I1, I2: any three rigid pairwise incomparable graphs.
Mark three nodes in each as attachment points. c = |I0|+ |I1|+ |I2|.

I0

I1 I1

I2 I2 I2 I2

I1 I1 I1 I1 I1 I1 I1 I1

path with c vertices
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What we show:

The family (Gn): complete binary tree with 2dlog ne leaves, “inflated”
by three rigid pairwise-incomparable graphs, and “stretched” with
long paths.

The family (Hn): complete graph on n6 vertices.

fG ,H =
∑

ψ:V (G)→n6

 ∏
(u,v)∈E(G)

Y(ψ(u),ψ(v))


The family (fG ,H) is complete for VP w.r.t. p-projections.

The family (Gn): simple path, “stretched”, endpoints “inflated” to
rigid pairwise-incomparable graphs.

The family (Hn): complete graph on n2 vertices.

The family (fG ,H) is complete for VBP w.r.t. p-projections.
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What’s the big deal?

For VP, first natural complete family whose definition is independent
of circuits and where completeness is w.r.t. p-projections.

(Earlier work by Durand,Malod,M,Rugy-Altherre,Saurabh (2014) gave
completeness w.r.t. oracle reductions, or for more artificial
homomorphisms with labels and weights.)

For VBP, complete polynomials were known – determinant, iterated
matrix multiplication. This is one more.

Our upper bounds hold whenever Gn is bounded tree-width /
path-width and Hn is complete.

(Dynamic programming approach using nice normal-form
tree-width/path-width decompositions of Gn.)
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Monotone p-projections

Even more restrictive than p-projections.

Recall projection: f ≤proj g if circuit for g can be used to compute f ,
with no extra gates.

Now monotone projections: f ≤m−proj g if circuit for g can be used to
compute f , with no extra gates, without using “negative” constants.

( Makes sense over totally ordered semi-ring.
eg R, Q, Boolean semi-ring.)
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Why bother?

Goal: to get lower bounds for restricted circuits.

Jukna: If HamCn is a monotone p-projection of Permn, then
monotone Boolean circuits for the Permanent must be of 2n

Ω(1)
size.

Current best lower bound: nlog n size. (Razborov 1985)
Over reals, lower bound 2Ω(n). (Jerrum, Snir 1982)

Grochow 2015: Any monotone projection from Perm to HamC needs
exponential blowup.
If HamCn ≤m−proj Permt(n), then t(n) = 2Ω(n).
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What we show:

Over the reals (or any totally ordered semi-ring), the families Sat and
Clow are not monotone p-projections of Perm.

Any monotone affine projection from Perm to Sat must have a
blow-up of at least 2Ω(

√
n).

Any monotone affine projection from Perm to Clow must have a
blow-up of at least 2Ω(n).

More recently, Nitin Saurabh showed: Any monotone affine projection
from Perm to Clique must have a blow-up of at least 2Ω(

√
n).
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Proof strategy

(Following Grochow’s idea) Associate polytopes with polynomials /
solution sets.

For Permt , polytope in Rt2
, convex hull of bipartite perfect

matchings in Kt,t .
Can be described with O(t) inequalities.

For Satn, polytope in Rn+8n3
, convex hull of

assignments+satisfied-clauses. There are formulas for which, even
allowing embedding in ≥ n + 8n3 dimensions, 2Ω(

√
n) inequalities are

needed. (AvisTiwary2013)

Suppose Satn is a monotone projection of Permt . Then Satn polytope
can be described with O(t(n)) inequalities. (using Grochow 2015)

For Clown, polytope in Rn2
, convex hull of clows.

The Travelling SalesPerson (TSP) polytope is embedded in it.
Any extension of TSP needs 2Ω(n) inequalities. (Rothvoss 2014)
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Summary

1 Over finite fields, five families of enumerator polynomials shown to
have complexity intermediate between VP and VNP, assuming the
PH does not collapse to second level.

2 Over R and Q, two of these families proved to require exponential
blowup when expressed as monotone p-projections of the permanent.

3 Enumerator polynomials for graph homomorphisms: Rich canvas.

First natural family of polynomials defined independent of circuits and
shown VP-complete w.r.t. p-projections.
Smooth transition to VBP-complete family.
VNP-complete variants also exist.
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Future Directions

Can we find polynomials with intermediate complexity over all fields?
all fields with non-0 characteristic? all finite fields? all finite fields
with characteristic p? finite fields with infinitely many different
characteristics?

Are there polynomials with intermediate complexity over some finite
fields but obtainable as monotone p-projections of the permanent?

Can we find polynomials enumerating homomorphisms, with
intermediate complexity?
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Thank You!
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