Counting with Bounded Treewidth

Yitong Yin
Nanjing University

Joint work with Chihao Zhang $(S J T U \longrightarrow$?

Spin Systems

graph $G=(V, E)$

vertices are variables (domain [q]) edge are constraints:

$$
\forall e=(u, v) \in E
$$

$$
A_{e}:[q] \times[q] \rightarrow \mathbb{C}
$$

$$
\text { configuration } \sigma \in[q]^{V}
$$

partition function:

$$
Z=\sum_{\sigma \in[q]^{V}} \prod_{e=(u, v) \in E} A_{e}\left(\sigma_{u}, \sigma_{v}\right)
$$

Holant Problem

$$
\text { graph } G=(V, E)
$$

edges are variables (domain [q]) vertices are constraints (signatures)

$$
\forall v \in V, \quad f_{v}:[q]^{\operatorname{deg}(v)} \rightarrow \mathbb{C}
$$

configuration $\sigma \in[q]^{E}$

$$
\begin{aligned}
& \text { holant }= \sum_{\sigma \in[q]^{E}} \prod_{v \in V} f_{v}\left(\left.\sigma\right|_{E(v)}\right) \\
& \begin{array}{l}
E(v)=\left(e_{1}, \ldots, e_{d}\right) \\
\text { incident edges of } v
\end{array}
\end{aligned}
$$

q^{m} configurations where $m=|E|$
incidence graph $B(V, E, F)$
graph $G=(V, E)$

$\forall \sigma \in[q]^{V}$

$$
w(\sigma)=\prod_{e=(u, v) \in E} A_{e}\left(\sigma_{u}, \sigma_{v}\right)
$$

$$
Z=\sum_{\sigma \in[q]^{V}} w(\sigma)
$$

where

$$
\operatorname{EQ}\left(x_{1}, \ldots, x_{d}\right)= \begin{cases}1 & x_{1}=\cdots=x_{d} \\ 0 & \text { otherwise }\end{cases}
$$

$$
\text { holant }=\sum_{\sigma \in[q]^{F}} \prod_{v \in V \cup E} f_{v}\left(\left.\sigma\right|_{F(v)}\right)
$$

$$
q=2
$$
 graph $G=(V, E) \quad$ Boolean symmetric $f:\{0,1\}^{d} \rightarrow \mathbb{C}$

$$
\begin{aligned}
& f=\left[f_{0}, f_{1}, \ldots, f_{d}\right] \\
& \quad \text { where } f_{i}=f(x) \text { for } \Sigma_{j} x_{j}=i
\end{aligned}
$$

counting matchings:

$$
\begin{aligned}
& \text { at every vertex } v \in V, \\
& f_{v}= {[1,1,0,0 \ldots, 0] } \\
& \text { the at-most-one function }
\end{aligned}
$$

$$
\text { holant }=\sum_{\sigma \in\{0,1\}^{E}} \prod_{v \in V}[1,1,0, \ldots, 0]\left(\left.\sigma\right|_{E(v)}\right)
$$

$$
\text { graph } G=(V, E) \quad \text { Boolean symmetric } f:\{0,1\}^{d} \rightarrow \mathbb{C}
$$

$$
\begin{aligned}
& f=\left[f_{0}, f_{1}, \ldots, f_{d}\right] \\
& \quad \quad \text { where } f_{i}=f(x) \text { for } \Sigma_{j} x_{j}=i
\end{aligned}
$$

counting perfect matchings:

$$
\begin{gathered}
\text { at every vertex } v \in V \text {, } \\
f_{v}=[0,1,0,0 \ldots, 0]
\end{gathered}
$$

the exact-one function

$$
\text { holant }=\sum_{\sigma \in\{0,1\}^{E}} \prod_{v \in V}[0,1,0,0, \ldots, 0]\left(\left.\sigma\right|_{E(v)}\right)
$$

$$
q=2
$$
 graph $G=(V, E) \quad$ Boolean symmetric $f:\{0,1\}^{d} \rightarrow \mathbb{C}$

$$
\begin{aligned}
& f=\left[f_{0}, f_{1}, \ldots, f_{d}\right] \\
& \quad \text { where } f_{i}=f(x) \text { for } \Sigma_{j} x_{j}=i
\end{aligned}
$$

counting edge covers:

$$
\begin{aligned}
& \text { at every vertex } v \in V, \\
& f_{v}=[0,1,1,1 \ldots, 1]
\end{aligned}
$$ the at-least-one function

$$
\text { holant }=\sum_{\sigma \in\{0,1\}^{E}} \prod_{v \in V}[0,1,1,1, \ldots, 1]\left(\left.\sigma\right|_{E(v)}\right)
$$

$q=2$
 graph $G=(V, E) \quad$ Boolean symmetric $f:\{0,1\}^{d} \rightarrow \mathbb{C}$

$$
\begin{aligned}
& f=\left[f_{0}, f_{1}, \ldots, f_{d}\right] \\
& \quad \text { where } f_{i}=f(x) \text { for } \Sigma_{j} x_{j}=i
\end{aligned}
$$

$$
f_{v}=[1, \mu, 1, \mu, 1, \mu, \ldots]
$$

subgraphs world (Jerrum-Sinclair'90):

$$
\begin{aligned}
Z= & \sum_{X \subseteq E} \mu^{\operatorname{odd}(X)} \\
& \operatorname{odd}(X)=\# \text { odd-degree vertices in } X
\end{aligned}
$$

$$
\text { holant }=\sum_{\sigma \in\{0,1\}^{E}} \prod_{v \in V}[1, \mu, 1, \mu, \ldots]\left(\left.\sigma\right|_{E(v)}\right)
$$

incidence graph $B(V, E, F)$
graph $G=(V, E)$

counting Eulerian orientations:
holant $=\sum_{\sigma \in\{0,1\}^{F}} \prod_{v \in V}[\underbrace{0, \ldots, 0}_{\operatorname{deg}(v) / 2}, 1, \underbrace{0, \ldots, 0}_{\operatorname{deg}(v) / 2}]\left(\left.\sigma\right|_{F(v)}\right) \prod_{e=\left(e_{1}, e_{2}\right) \in E}\left[\sigma\left(e_{1}\right) \neq \sigma\left(e_{2}\right)\right]$

Treewidth

- $\operatorname{tw}(G)$: treewidth of graph G
- measures how much a graph is like a tree:
- $\operatorname{tw}($ tree $)=1$
- $\operatorname{tw}(k \times k$ grid $)=k$
- $\operatorname{tw}\left(K_{n}\right)=n-1$
- q-state spin system on G with n vertices:
- Courcelle's Theorem: $\boldsymbol{f}(\boldsymbol{q}, \mathbf{t w}) \mathbf{p o l y}(\boldsymbol{n})$ time [Courcelle'90]
- Junction-tree belief propagation: $\boldsymbol{q}^{\mathbf{O}(\mathrm{tw})} \mathbf{p o l y}(n)$ time
- Holant (tensor networks) on G with $\mathrm{O}(1)$ max-degree: $\boldsymbol{q}^{\mathbf{O (t w})} \mathbf{p o l y}(\boldsymbol{n})$ [Markov, Shi'08] [Arad, Landau' 10]

Treewidth

graph $G=(V, E)$

tree-decomposition
a tree of "bags" of vertices:

1. Every vertex is in some bag.
2. Every edge is in some bag.
3. If two bags have a same vertex, then all bags in the path between them have that vertex.
width: max bag size-1
treewidth: width of optimal tree decomposition

Separator Decomposition

given a graph $G=(V, E)$
a binary tree T_{G} of $\leq n$ nodes:

1. Every node is a vertex set $V_{i} \subseteq V$. The root is V. Every leaf is \varnothing.
2. Every node V_{i} has a separator $S_{i} \neq \varnothing$ in $G\left[V_{i}\right]$ separating V_{i} into V_{j} and V_{k}.
3. V_{j} and V_{k} are children of V_{i}.
width of $T_{G}=\max _{i}\left\{\left|S_{i}\right|,\left|\partial V_{i}\right|\right\}$
∂V_{i} : vertex boundary of V_{i} in G $\operatorname{sw}(G)$: width of optimal T_{G}
4. $\operatorname{sw}(G)=\theta(\operatorname{tw}(G))$
5. T_{G} can be constructed in $2^{0(\mathrm{tw})} \operatorname{poly}(n)$ time

FPT Algorithm for Spin System

$\max \left\{\left|S_{i}\right|,\left|\partial V_{i}\right|\right\}=\mathrm{O}(\operatorname{tw}(G))$
for q-state spin systems

$$
Z=\sum_{\sigma \in[q]^{V}} \prod_{e=(u, v) \in E} A_{e}\left(\sigma_{u}, \sigma_{v}\right)
$$

dynamic programming:

- table size: $q^{\mathrm{O}(\mathrm{tw}(G))} n$
- running time: $q^{\mathrm{O}(\mathrm{tw}(G))} n$
for $\tau \in[q]^{\partial V_{i}}$:

$$
Z\left(V_{i}, \tau\right)=\sum_{\substack{\text { feasible } \\ \sigma \in[q]^{i}}} Z\left(V_{j},\left.\tau \cup \sigma\right|_{\partial V_{j}}\right) Z\left(V_{k},\left.\tau \cup \sigma\right|_{\partial V_{k}}\right) Z\left(S_{i} \cup \partial V_{i}, \sigma \cup \tau\right)
$$

also works for bounded-degree Holant

"Fine-grained" Classification

classify the computational complexity of

$\operatorname{Holant}(\mathcal{G}, \mathcal{F})$

in terms of graph family \mathcal{G} and function family \mathcal{F}

Classify $\operatorname{Holant}(\mathcal{G}, \mathcal{F})$:

- $\mathcal{G}=$ all graphs: $\mathbf{2}^{\mathbf{O}(n)}$ time
- $\mathcal{G}=$ graphs with treewidth $k: \mathbf{2 0}^{\mathbf{(k})} \mathbf{p o l y}(\boldsymbol{n})$ time
- \mathcal{G} = planar graphs:
- PTAS for log-Holant (log-partition function)
- FPTAS for Holant assuming strong spatial mixing

Pinning \& Peering

symmetric $f:[q]^{d} \rightarrow \mathbb{C} \quad$ fix any $\tau \in[q]^{d-k}$

$$
\operatorname{Pin}_{\tau}(f):[q]^{k} \rightarrow \mathbb{C}
$$

Pinning: $\forall \sigma \in[q]^{k}$
$\operatorname{Pin}_{\tau}(f)(\sigma)=f(\tau_{1}, \tau_{2}, \ldots, \tau_{d-k}, \underbrace{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}}_{k})$
Peering: equivalent relation between $\tau, \tau^{\prime} \in[q]^{d-k}$

$$
\tau \sim \tau^{\prime} \text { if } \operatorname{Pin}_{\tau}(f)=\operatorname{Pin}_{\tau^{\prime}}(f)
$$

f is r-regular if $r=\max _{0 \leq k \leq d}\left|\left\{\operatorname{Pin}_{\tau}(f) \mid \tau \in[q]_{\text {not violating } f}^{d-k}\right\}\right|$

Boolean symmetric $f:\{0,1\}^{d} \rightarrow \mathbb{C}$

$$
\begin{array}{r}
\tau \in\{0,1\}^{i+j} \quad \tau \text { has } i 1 \text { 's and } j 0 \text { 's } \\
f=\left[f_{0}, f_{1}, \ldots, f_{i-1}, \frac{\left[f_{i}, \ldots, f_{d-j-1}\right]}{}, f_{d-j}, \ldots, f_{d}\right] \\
\operatorname{Pin}_{\tau}(f) \text { where } f_{i}=f(x) \text { for } \Sigma_{j} x_{j}=i
\end{array}
$$

$$
f \text { is } r \text {-regular if } r=\max _{0 \leq k \leq d}\left|\left\{\operatorname{Pin}_{\tau}(f) \mid \tau \in[q]_{\text {not violating } f}^{d-k}\right\}\right|
$$

- 2-state spin systems: $\mathrm{EQ}=[1,0, \ldots, 0,1]$ is 2-regular, A_{e} is 3-regular
- matchings \& PMs: $[1,1,0, \ldots, 0]$ and $[0,1,0, \ldots, 0]$ are 2-regular
- edge covers: $[0,1,1, \ldots, 1]$ is 2-regular
- subgraphs world: $[1, \mu, 1, \mu, \ldots]$ is 2-regular
- Eulerian orientations: $[0, \ldots, 0,1,0, \ldots, 0]$ is $(d / 2+1)$-regular
symmetric $f:\{0,1,2\}^{d} \rightarrow \mathbb{C}$

- all d-ary symmetric function is at most $\binom{d+q-1}{q-1}$-regular
- bounded-degree Holant is $\mathrm{O}(1)$-regular

Theorem

For any constant domain size $q \geq 2$, Holant of any graph $G=(V, E)$ with r-regular symmetric signatures can be computed in time:

- $r^{\mathrm{O}(n)}$ where $n=|V|$
- $r^{\mathrm{O}(\operatorname{tw}(G))} n+2^{\mathrm{O}(\operatorname{tw}(G))} \operatorname{Poly}(n)$
- extendable to asymmetric signatures (under proper assumption for evaluating asymmetric functions with unbounded arity);
- implications in approximate counting on planar graphs:
- PTAS for log-holant
- FPTAS for holant assuming strong spatial mixing

A Simple $r^{\mathrm{O}(n) \text {-time Algorithm }}$

 given a Holant instance: $G=(V, E) \quad V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$

$$
\begin{aligned}
\text { all } f_{v_{i}}: & {[q]^{\operatorname{deg}\left(v_{i}\right)} \rightarrow \mathbb{C} } \\
& \text { are } \leq r \text {-regular }
\end{aligned}
$$

$$
f \text { is } r \text {-regular if } r=\max _{0 \leq k \leq d}\left|\left\{\operatorname{Pin}_{\tau}(f) \mid \tau \in[q]^{d-k}\right\}\right|
$$

dynamic programming:

- table size: $r^{n} n$
- running time: $r^{n} q^{n}=r^{\mathrm{O}(n)}$

$$
\begin{aligned}
\operatorname{holant}\left(G,\left\{f_{v_{1}}, \ldots, f_{v_{n}}\right\}\right)= & \sum_{\substack{\text { feasible } \\
\sigma \in[q]^{\operatorname{deg}\left(v_{n}\right)}}} f_{v_{n}}(\sigma) \cdot \text { holant }\left(G \backslash\left\{v_{n}\right\},\left\{\text { new } f_{v_{1}}^{\sigma}, \ldots, f_{v_{i}}^{\sigma}\right\}\right) \\
\text { where } f_{v_{i}}^{\sigma} & = \begin{cases}f_{v_{i}} & v_{i} \nsim v_{n} \\
\operatorname{Pin}_{\sigma_{j}}\left(f_{v_{i}}\right) & v_{i} \text { is } j \text { 's nbr. of } v_{n}\end{cases}
\end{aligned}
$$

Oracles

given a Holant instance: $G=(V, E) \quad V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$

$$
\begin{aligned}
\text { all } f_{v_{i}}: & {[q]^{\operatorname{deg}\left(v_{i}\right)} \rightarrow \mathbb{C} } \\
& \text { are } \leq r \text {-regular }
\end{aligned}
$$

fix $f_{v_{i}}$ and arity k : there are $\leq r$ distinct $\operatorname{Pin}_{\tau}\left(f_{v_{i}}\right):[q]^{k} \rightarrow \mathbb{C}$ denoted as $f_{i, 1}^{k}, f_{i, 2}^{k}, \ldots, f_{i, r}^{k}$
Evaluation oracle: Given (i, j, k) and $\sigma \in[q]^{k}$, returns $f_{i, j}^{k}(\sigma)$
Pinning oracle: Given (i, j, k) and $\tau \in[q]^{k-l}$, returns j^{\prime} that $f_{i, j^{\prime}}^{l}=\operatorname{Pin}_{\tau}\left(f_{i, j}^{k}\right)$
For symmetric function $f:[q]^{d} \rightarrow \mathbb{C}$ with constant q, these oracles can be implemented using:

- Poly (d) preprocessing time
- Poly (d) space
for Holant with finitely many signatures:
- $\mathrm{O}(1)$ query time

An FPT Algorithm

$$
\max \left\{\left|S_{i}\right|,\left|\partial V_{i}\right|\right\}=\mathrm{O}(\operatorname{tw}(G))
$$

for Holant problems:

$$
\text { holant }=\sum_{\sigma \in[q]^{E}} \prod_{v \in V} f_{v}\left(\left.\sigma\right|_{E(v)}\right)
$$

each $v \in S_{i}$ has unbounded degree but only has 3 classes of edges

Peering: $\quad \tau \sim \tau^{\prime}$ if $\operatorname{Pin}_{\tau}(f)=\operatorname{Pin}_{\tau^{\prime}}(f)$
Observation:
$f(\varrho \sigma \tau)$ is determined by the equivalent classes for ϱ, σ, τ enumerate equivalent classes of local configurations!

An FPT Algorithm

each $v \in S_{i}$ has unbounded degree but only has 3 classes of edges

$$
\tau \sim \tau^{\prime} \text { if } \operatorname{Pin}_{\tau}(f)=\operatorname{Pin}_{\tau^{\prime}}(f)
$$

$f(\varrho \sigma \tau)$ is determined by the equivalent classes for ϱ, σ, τ

$$
\operatorname{Peer}_{\tau}(f)(\sigma)= \begin{cases}1 & \operatorname{Pin}_{\sigma}(f)=\operatorname{Pin}_{\tau}(f) \\ 0 & \text { o.w. }\end{cases}
$$

f is r-regular $\longmapsto \operatorname{Peer}_{\tau}(f)$ is $\leq r$-regular

locally enumerate equivalent classes ϱ, σ, τ

An FPT Algorithm

each $v \in S_{i}$ has unbounded degree but only has 3 classes of edges

$$
\tau \sim \tau^{\prime} \text { if } \operatorname{Pin}_{\tau}(f)=\operatorname{Pin}_{\tau^{\prime}}(f)
$$

$f(\varrho \sigma \tau)$ is determined by the equivalent classes for ϱ, σ, τ

$$
\operatorname{Peer}_{\tau}(f)(\sigma)= \begin{cases}1 & \operatorname{Pin}_{\sigma}(f)=\operatorname{Pin}_{\tau}(f) \\ 0 & \text { o.w. }\end{cases}
$$

Holant (V_{i}, boundary signatures $\operatorname{Peer}_{\pi}\left(f_{v}\right)$ at $\left.v \in \partial V_{i}\right)$
$=\quad \sum \quad \operatorname{Holant}\left(V_{j}, \begin{array}{c}\text { old boundary signatures of } V_{j} \\ \text { and } \operatorname{Peer}_{\rho_{v}}\left(f_{v}\right) \text { at } v \in S_{i}\end{array}\right)$
equiv. classes $\rho_{v}, \sigma_{v}, \tau_{v}$

$$
\cdot \operatorname{Holant}\left(S_{i} \cup \partial V_{i}, \quad \begin{array}{c}
\text { old boundary signatures of } V_{i} \\
\text { and } \operatorname{Peer}_{\sigma_{v}}\left(f_{v}\right) \text { at } v \in S_{i}
\end{array}\right) \cdot \prod_{v \in S_{i}} f_{v}\left(\rho_{v}, \sigma_{v}, \tau_{v}\right)
$$

An FPT Algorithm

each $v \in S_{i}$ has unbounded degree but only has 3 classes of edges

$$
\tau \sim \tau^{\prime} \text { if } \operatorname{Pin}_{\tau}(f)=\operatorname{Pin}_{\tau^{\prime}}(f)
$$

$f(\varrho \sigma \tau)$ is determined by the equivalent classes for ϱ, σ, τ

$$
\operatorname{Peer}_{\tau}(f)(\sigma)= \begin{cases}1 & \operatorname{Pin}_{\sigma}(f)=\operatorname{Pin}_{\tau}(f) \\ 0 & \text { o.w. }\end{cases}
$$

Peering oracle: Given i, (equivalent class) τ, returns $\operatorname{Peer}_{\tau}\left(f_{v_{i}}\right)$
Pinning oracle \& Evaluation oracle: for $\operatorname{Peer}_{\tau}\left(f_{v_{i}}\right)$
Evaluation oracle: Given i, (equivalent classes) ϱ, σ, τ, returns $f_{v_{i}}(\rho \sigma \tau)$
For symmetric functions, can be implemented using Poly (n) preprocessing time, $\operatorname{Poly}(n)$ space, and $O(1)$ query time

Theorem

For any constant domain size $q \geq 2$, Holant of any graph $G=(V, E)$ with r-regular signatures can be computed in time:

- $r^{\mathrm{O}(n)}$ where $n=|V| \quad$ assuming Peering, Pinning, \& Evaluation oracles.
- $r^{\mathrm{O}(\mathrm{tw}(G))}|V|+2^{\mathrm{O}(\operatorname{tw}(G))}$ Poly $(|V|)$
asymmetric $f:[q]^{d} \rightarrow \mathbb{C} \quad$ fix any $\tau \in[q]^{d-k}$ and $S \in\binom{[d]}{d-k}$

f is r-regular if $r=\max _{0 \leq k \leq d} \max _{S \in\binom{[d]}{d-k}}\left|\left\{\operatorname{Pin}_{S, \tau(f)} \mid \tau \in[q]^{d-k}\right\}\right|$

Planar Decomposition

Baker's Decomposition (Baker'93):
For all k, a planar graph G can be decomposed into subgraphs G_{1}, \ldots, G_{k} each of treewidth $\mathrm{O}(k)$.

Jerrum-Goldberg-McQuillan'12:
For spin systems on planar graphs, if always holant $\geq \exp (\Omega(n))$ then \exists PTAS for log-holant.

Correlation Decay

strong spatial mixing (SSM): $\quad \forall \sigma_{B} \in[q]^{B}$

$$
\left|\operatorname{Pr}\left(\sigma(e)=c \mid \sigma_{A}\right)-\operatorname{Pr}\left(\sigma(e)=c \mid \sigma_{A}, \sigma_{B}\right)\right| \leq \operatorname{poly}(|V|) \exp (-\Omega(t))
$$

SSM: sufficiency of local information

for approx. of $\operatorname{Pr}\left(\sigma(e)=c \mid \sigma_{A}\right)$

efficiency of
local computation

Theorem (Demaine-Hajiaghayi'04) For apex-minor-free graphs, treewidth of t-ball is $\mathrm{O}(t)$.

Correlation Decay

strong spatial mixing (SSM): $\quad \forall \sigma_{B} \in[q]^{B}$

$$
\left|\operatorname{Pr}\left(\sigma(e)=c \mid \sigma_{A}\right)-\operatorname{Pr}\left(\sigma(e)=c \mid \sigma_{A}, \sigma_{B}\right)\right| \leq \operatorname{poly}(|V|) \exp (-\Omega(t))
$$

SSM: sufficiency of local information
 for approx. of $\operatorname{Pr}\left(\sigma(e)=c \mid \sigma_{A}\right)$
for planar graphs

efficiency of local computation
for self-reducible problems

FPTAS for Holant

Conclusion

- A class of Holant problems behave like boundeddegree \#CSP:
- $2^{\mathrm{O}(n)-}$ and $2^{\mathrm{O}(\mathrm{tw})} \operatorname{Poly}(n)$-time algorithms.
- Regularity implies efficient DP algorithms, but:
- is not robust to holographic transformation;
- does not cover inversion-based algorithms.
- Open question: a Holant problem with Booleandomain symmetric signatures (and is easy for decision) with $n^{\Omega(\mathrm{tw})}$ lower bound:
- must have unbounded degree, must be irregular.

Thank you!

