Counting with Bounded Treewidth

Yitong Yin Nanjing University

Joint work with Chihao Zhang $(SJTU \rightarrow ?)$

Spin Systems

graph G=(V,E)

vertices are variables (domain [q]) *edge* are constraints:

 $\forall e = (u, v) \in E$ $A_e : [q] \times [q] \to \mathbb{C}$

configuration $\sigma \in [q]^V$

partition function:

$$Z = \sum_{\sigma \in [q]^V} \prod_{e=(u,v) \in E} A_e(\sigma_u, \sigma_v)$$

Holant Problem

graph G=(V,E)

edges are variables (domain [q]) vertices are constraints (signatures)

 $\forall v \in V, \quad f_v : [q]^{\deg(v)} \to \mathbb{C}$

configuration $\sigma \in [q]^E$

 $\begin{aligned} \text{holant} &= \sum_{\sigma \in [q]^E} \prod_{v \in V} f_v \left(\sigma \mid_{E(v)} \right) \\ & E(v) = (e_1, \dots, e_d) \\ & \text{ incident edges of } v \end{aligned}$

 q^m configurations where m=|E|

 $\sigma \in [q]^F v \in V \cup E$

 $Z = \sum w(\sigma)$ $\sigma \in [q]^V$

 $f = [f_0, f_1, \dots, f_d]$ where $f_i = f(x)$ for $\sum_j x_j = i$

counting matchings:

at every vertex $v \in V$, $f_v = [1, 1, 0, 0..., 0]$ the at-most-one function

holant = $\sum_{\sigma \in \{0,1\}^E} \prod_{v \in V} [1, 1, 0, \dots, 0] (\sigma \mid_{E(v)})$

 $f = [f_0, f_1, \dots, f_d]$ where $f_i = f(x)$ for $\sum_j x_j = i$

counting *perfect* matchings:

at every vertex $v \in V$, $f_v = [0, 1, 0, 0..., 0]$ the exact-one function

holant =
$$\sum_{\sigma \in \{0,1\}^E} \prod_{v \in V} [0, 1, 0, 0, \dots, 0] (\sigma \mid_{E(v)})$$

 $f = [f_0, f_1, \dots, f_d]$ where $f_i = f(x)$ for $\sum_j x_j = i$

counting edge covers:

at every vertex $v \in V$, $f_v = [0, 1, 1, 1..., 1]$ the at-least-one function $holant = \sum_{\sigma \in \{0,1\}^E} \prod_{v \in V} [0, 1, 1, 1, ..., 1] \left(\sigma \mid_{E(v)}\right)$

 $f = [f_0, f_1, ..., f_d]$ where $f_i = f(x)$ for $\sum_j x_j = i$ $f_v = [1, \mu, 1, \mu, 1, \mu, ...]$

subgraphs world (Jerrum-Sinclair'90):

$$Z = \sum_{X \subseteq E} \mu^{\mathrm{odd}(X)}$$

odd(X) = #odd-degree vertices in X

$$\text{holant} = \sum_{\sigma \in \{0,1\}^E} \prod_{v \in V} [1, \mu, 1, \mu, \ldots] \left(\sigma \mid_{E(v)} \right)$$

counting Eulerian orientations:

$$\text{holant} = \sum_{\sigma \in \{0,1\}^F} \prod_{v \in V} [\underbrace{0, \dots, 0}_{\deg(v)/2}, 1, \underbrace{0, \dots, 0}_{\deg(v)/2}] \left(\sigma \mid_{F(v)}\right) \prod_{e=(e_1, e_2) \in E} [\sigma(e_1) \neq \sigma(e_2)]$$

Treewidth

- tw(G): *treewidth* of graph G
- measures how much a graph is like a tree:
 - tw(tree) = 1
 - $\operatorname{tw}(k \times k \operatorname{grid}) = k$
 - $\operatorname{tw}(K_n) = n-1$
- *q*-state spin system on *G* with *n* vertices:
 - Courcelle's Theorem: f(q, tw) poly(n) time [Courcelle'90]
 - Junction-tree belief propagation: $q^{O(tw)}poly(n)$ time
- Holant (tensor networks) on G with O(1) max-degree: q^{O(tw)}poly(n) [Markov, Shi'08] [Arad, Landau'10]

Treewidth

graph G=(V,E)

tree-decomposition

a tree of "bags" of vertices:

- 1. Every vertex is in some bag.
- 2. Every edge is in some bag.
- 3. If two bags have a same vertex, then all bags in the path between them have that vertex.

width: max bag size-1

tree decomposition

Separator Decomposition

given a graph G=(V,E)

- a binary tree T_G of $\leq n$ nodes:
- 1. Every node is a vertex set $V_i \subseteq V$. The root is V. Every leaf is \emptyset .
- 2. Every node V_i has a separator $S_i \neq \emptyset$ in $G[V_i]$ separating V_i into V_j and V_k .

3. V_j and V_k are children of V_i .

width of $T_G = \max_i \{|S_i|, |\partial V_i|\}$ ∂V_i : vertex boundary of V_i in Gsw(G): width of optimal T_G

1. $sw(G) = \theta(tw(G))$

2. T_G can be constructed in $2^{O(tw)}$ poly(*n*) time

FPT Algorithm for Spin System

for $\tau \in [q]^{\partial V_i}$:

 $\max\left\{|S_i|, |\partial V_i|\right\} = \mathcal{O}(\mathsf{tw}(G))$

for q-state spin systems

$$Z = \sum_{\sigma \in [q]^V} \prod_{e=(u,v) \in E} A_e(\sigma_u, \sigma_v)$$

dynamic programming:

- table size: $q^{O(tw(G))}n$
- running time: $q^{O(tw(G))}n$

 $Z(V_i, \tau) = \sum_{\substack{\text{feasible}\\\sigma \in [q]^{S_i}}} Z(V_j, \tau \cup \sigma \mid_{\partial V_j}) Z(V_k, \tau \cup \sigma \mid_{\partial V_k}) Z(S_i \cup \partial V_i, \sigma \cup \tau)$

also works for bounded-degree Holant

"Fine-grained" Classification

classify the computational complexity of $\mathrm{Holant}(\mathcal{G},\mathcal{F})$

in terms of graph family $\, \mathcal{G} \,$ and function family $\mathcal{F} \,$

Classify $\operatorname{Holant}(\mathcal{G}, \mathcal{F})$:

- $G = \text{all graphs: } 2^{O(n)} \text{ time}$
- $\mathcal{G} = \text{graphs with treewidth } k: 2^{O(k)} \text{poly}(n) \text{ time}$
- G = planar graphs:
 - PTAS for *log-Holant* (log-partition function)
 - FPTAS for Holant assuming strong spatial mixing

Pinning & Peering

symmetric $f: [q]^d \to \mathbb{C}$ fix any $\tau \in [q]^{d-k}$

$$\operatorname{Pin}_{\tau}(f): [q]^k \to \mathbb{C}$$

Pinning:
$$\forall \sigma \in [q]^k$$

Pin_t $(f)(\sigma) = f(\tau_1, \tau_2, ..., \tau_{d-k}, \sigma_1, \sigma_2, ..., \sigma_k)$
Reprinc: equivalent relation between $\tau \tau' \in [a]^{d-k}$

Peering: equivalent relation between $\tau, \tau' \in [q]^{d-k}$

 $\tau \sim \tau'$ if $\operatorname{Pin}_{\tau}(f) = \operatorname{Pin}_{\tau'}(f)$

$$f \text{ is } r\text{-regular if } r = \max_{0 \le k \le d} \left| \left\{ \operatorname{Pin}_{\tau}(f) \mid \tau \in [q]^{d-k} \right\} \right|$$
not violating f

Boolean symmetric $f: \{0,1\}^d \to \mathbb{C}$

$$\tau \in \{0,1\}^{i+j}$$
 τ has *i* 1's and *j* 0's

$$f = [f_0, f_1, \dots, f_{i-1}, [f_i, \dots, f_{d-j-1}], f_{d-j}, \dots, f_d]$$

$$\prod_{i=1}^{n} \operatorname{Pin}_{\tau}(f) \quad \text{where } f_i = f(x) \text{ for } \Sigma_j x_j = i$$

$$f \text{ is } r\text{-regular if } r = \max_{0 \le k \le d} \left| \left\{ \operatorname{Pin}_{\tau}(f) \mid \tau \in [q]^{d-k} \right\} \right|$$
not violating f

- 2-state spin systems: EQ=[1,0,...,0,1] is 2-regular, A_e is 3-regular
- matchings & PMs: [1,1,0,...,0] and [0,1,0,...,0] are 2-regular
- edge covers: [0,1,1,...,1] is 2-regular
- subgraphs world: $[1, \mu, 1, \mu, ...]$ is 2-regular
- Eulerian orientations: $[0, \dots, 0, 1, 0, \dots, 0]$ is (d/2+1)-regular

- all *d*-ary symmetric function is at most $\binom{d+q-1}{q-1}$ -regular
- bounded-degree Holant is O(1)-regular

Theorem

For any constant domain size $q \ge 2$, Holant of any graph G=(V, E) with *r*-regular symmetric signatures can be computed in time:

• $r^{O(n)}$ where n = |V|

• $r^{O(tw(G))}n + 2^{O(tw(G))} \operatorname{Poly}(n)$

- extendable to asymmetric signatures (under proper assumption for evaluating asymmetric functions with unbounded arity);
- implications in approximate counting on planar graphs:
 - PTAS for log-holant
 - FPTAS for holant assuming strong spatial mixing

A Simple *r*^{O(*n*)}-time Algorithm

given a Holant instance: G=(V,E) $V=\{v_1, v_2, ..., v_n\}$

all $f_{v_i}: [q]^{\deg(v_i)} \to \mathbb{C}$

are ≤*r*-regular

f is r-regular if
$$r = \max_{0 \le k \le d} \left| \left\{ \operatorname{Pin}_{\tau}(f) \mid \tau \in [q]^{d-k} \right\} \right|$$

- running time: $r^n q^n = r^{O(n)}$

$$\text{holant}(G, \{f_{v_1}, \dots, f_{v_n}\}) = \sum_{\substack{\text{feasible}\\ \sigma \in [q]^{\text{deg}(v_n)}}} f_{v_n}(\sigma) \cdot \text{holant}\left(G \setminus \{v_n\}, \{\text{new } f_{v_1}^{\sigma}, \dots, f_{v_i}^{\sigma}\}\right)$$

$$\text{where } f_{v_i}^{\sigma} = \begin{cases} f_{v_i} & v_i \not\sim v_n \\ \operatorname{Pin}_{\sigma_j}(f_{v_i}) & v_i \text{ is } j\text{'s nbr. of } v_n \end{cases}$$

Oracles

fix f_{v_i} and arity k: there are $\leq r$ distinct $\operatorname{Pin}_{\tau}(f_{v_i}) : [q]^k \to \mathbb{C}$ denoted as $f_{i,1}^k, f_{i,2}^k, \dots, f_{i,r}^k$

Evaluation oracle: Given (i, j, k) and $\sigma \in [q]^k$, returns $f_{i,j}^k(\sigma)$

Pinning oracle: Given (i, j, k) and $\tau \in [q]^{k-l}$, returns j' that $f_{i,j'}^l = \text{Pin}_{\tau}(f_{i,j}^k)$

For symmetric function $f : [q]^d \to \mathbb{C}$ with constant q, these oracles can be implemented using:

- Poly(*d*) preprocessing time
- Poly(d) space for Holant with finitely many signatures:
- O(1) query time this can be "hard-wired" into the algorithm

 $\max\left\{ \left|S_{i}\right|,\left|\partial V_{i}\right|\right\} = \mathcal{O}(\mathsf{tw}(G))$

for Holant problems:

holant =
$$\sum_{\sigma \in [q]^E} \prod_{v \in V} f_v \left(\sigma \mid_{E(v)}\right)$$

each $v \in S_i$ has unbounded degree but only has 3 classes of edges

Peering: $\tau \sim \tau'$ if $\operatorname{Pin}_{\tau}(f) = \operatorname{Pin}_{\tau'}(f)$

Observation:

 $f(\rho\sigma\tau)$ is determined by the equivalent classes for ρ,σ,τ enumerate equivalent classes of local configurations!

each $v \in S_i$ has unbounded degree but only has 3 classes of edges

 $\tau \sim \tau'$ if $\operatorname{Pin}_{\tau}(f) = \operatorname{Pin}_{\tau'}(f)$

 $f(\rho\sigma\tau)$ is determined by the equivalent classes for ρ,σ,τ

$$\operatorname{Peer}_{\tau}(f)(\sigma) = \begin{cases} 1 & \operatorname{Pin}_{\sigma}(f) = \operatorname{Pin}_{\tau}(f) \\ 0 & \text{o.w.} \end{cases}$$

f is *r*-regular \longrightarrow Peer_t(*f*) is \leq *r*-regular

each $v \in S_i$ has unbounded degree but only has 3 classes of edges

 $\tau \sim \tau'$ if $\operatorname{Pin}_{\tau}(f) = \operatorname{Pin}_{\tau'}(f)$

 $f(\rho\sigma\tau)$ is determined by the equivalent classes for ρ,σ,τ

$$\operatorname{Peer}_{\tau}(f)(\sigma) = \begin{cases} 1 & \operatorname{Pin}_{\sigma}(f) = \operatorname{Pin}_{\tau}(f) \\ 0 & \text{o.w.} \end{cases}$$

Holant $(V_i, \text{boundary signatures Peer}_{\pi}(f_v) \text{ at } v \in \partial V_i)$

$$= \sum_{\substack{\text{equiv. classes } \rho_v, \sigma_v, \tau_v \\ \text{at every } v \in S_i}} \operatorname{Holant} \begin{pmatrix} V_j, & \text{old boundary signatures of } V_j \\ \text{and } \operatorname{Peer}_{\rho_v}(f_v) \text{ at } v \in S_i \end{pmatrix} \\ \cdot \operatorname{Holant} \begin{pmatrix} V_k, & \text{old boundary signatures of } V_k \\ \text{and } \operatorname{Peer}_{\tau_v}(f_v) \text{ at } v \in S_i \end{pmatrix} \\ \cdot \operatorname{Holant} \begin{pmatrix} S_i \cup \partial V_i, & \text{old boundary signatures of } V_i \\ \text{and } \operatorname{Peer}_{\sigma_v}(f_v) \text{ at } v \in S_i \end{pmatrix} \cdot \prod_{v \in S_i} f_v(\rho_v, \sigma_v, \tau_v)$$

fix $f_{v_1}, f_{v_2}, \dots, f_{v_n}$

each $v \in S_i$ has unbounded degree but only has 3 classes of edges

 $\tau \sim \tau'$ if $\operatorname{Pin}_{\tau}(f) = \operatorname{Pin}_{\tau'}(f)$

 $f(\rho\sigma\tau)$ is determined by the equivalent classes for ρ,σ,τ

$$\operatorname{Peer}_{\tau}(f)(\sigma) = \begin{cases} 1 & \operatorname{Pin}_{\sigma}(f) = \operatorname{Pin}_{\tau}(f) \\ 0 & \text{o.w.} \end{cases}$$

Peering oracle: Given *i*, (equivalent class) τ , returns $\operatorname{Peer}_{\tau}(f_{v_i})$ Pinning oracle & Evaluation oracle: for $\operatorname{Peer}_{\tau}(f_{v_i})$ Evaluation oracle: Given *i*, (equivalent classes) ϱ, σ, τ , returns $f_{v_i}(\rho \sigma \tau)$

For symmetric functions, can be implemented using Poly(*n*) preprocessing time, Poly(*n*) space, and O(1) query time

Theorem

For any constant domain size $q \ge 2$, Holant of any graph G=(V, E)with *r*-regular signatures can be computed in time:

• $r^{O(n)}$ where n = |V| assuming Peering, Pinning, & Evaluation oracles.

• $r^{O(tw(G))}|V| + 2^{O(tw(G))} Poly(|V|)$

asymmetric
$$f: [q]^d \to \mathbb{C}$$
 fix any $\tau \in [q]^{d-k}$ and $S \in {\binom{[d]}{d-k}}$
 $\operatorname{Pin}_{S,\tau}(f) = f(\tau_1, \ldots, \tau_2, \ldots, \tau_3, \ldots, \tau_{d-k}, \ldots)$
at positions in S

$$f \text{ is } r\text{-regular if } r = \max_{0 \le k \le d} \max_{S \in \binom{[d]}{d-k}} \left| \left\{ \operatorname{Pin}_{S,\tau(f)} \mid \tau \in [q]^{d-k} \right\} \right|$$

Planar Decomposition

Baker's Decomposition (Baker'93):

For all k, a planar graph G can be decomposed into subgraphs $G_1, ..., G_k$ each of treewidth O(k).

Jerrum-Goldberg-McQuillan'12:

For spin systems on planar graphs, if always holant $\ge \exp(\Omega(n))$ then \exists PTAS for log-holant.

Correlation Decay

strong spatial mixing (SSM): $\forall \sigma_B \in [q]^B$ $\left| \Pr(\sigma(e) = c \mid \sigma_A) - \Pr(\sigma(e) = c \mid \sigma_A, \sigma_B) \right| \le \operatorname{poly}(|V|) \exp(-\Omega(t))$

SSM: sufficiency of local information for approx. of $Pr(\sigma(e) = c \mid \sigma_A)$

efficiency of local computation

Theorem (Demaine-Hajiaghayi'04) For *apex-minor-free* graphs, treewidth of *t*-ball is O(*t*).

Correlation Decay

strong spatial mixing (SSM): $\forall \sigma_B \in [q]^B$ $\left| \Pr(\sigma(e) = c \mid \sigma_A) - \Pr(\sigma(e) = c \mid \sigma_A, \sigma_B) \right| \le \operatorname{poly}(|V|) \exp(-\Omega(t))$

SSM: sufficiency of local information for approx. of $Pr(\sigma(e) = c \mid \sigma_A)$

for planar graphs efficiency of local computation

for self-reducible problems

FPTAS for Holant

Conclusion

- A class of Holant problems behave like boundeddegree #CSP:
 - $2^{O(n)}$ and $2^{O(tw)}$ Poly(*n*)-time algorithms.
- Regularity implies efficient DP algorithms, but:
 - is not robust to holographic transformation;
 - does not cover inversion-based algorithms.
- Open question: a Holant problem with Booleandomain symmetric signatures (and is easy for decision) with $n^{\Omega(tw)}$ lower bound:
 - must have unbounded degree, must be irregular.

