Canonical Paths for Markov Chain Monte Carlo: from Art to Science

Chihao Zhang
Joint work with Lingxiao Huang and Pinyan Lu

Shanghai Jiao Tong University
March 30, 2016
Simons Institute for the Theory of Computing

Matchings

Matchings

Matchings

The problem of counting matchings is $\# \mathbf{P}$-hard.

Matchings

The problem of counting matchings is $\# \mathbf{P}$-hard.
The problem admits FPRAS via the Markov chain Monte-Carlo technique.

FPRAS and Sampling

FPRAS and Sampling

A fully polynomial-time randomized approximation scheme (FPRAS) outputs a number M^{*} satisfying

$$
(1-\varepsilon) \cdot M(G) \leq M^{*} \leq(1+\varepsilon) \cdot M(G)
$$

with probability $1-\delta$ in time poly $(|G|, 1 / \varepsilon, \log (1 / \delta))$.

FPRAS and Sampling

A fully polynomial-time randomized approximation scheme (FPRAS) outputs a number M^{*} satisfying

$$
(1-\varepsilon) \cdot M(G) \leq M^{*} \leq(1+\varepsilon) \cdot M(G)
$$

with probability $1-\delta$ in time poly $(|G|, 1 / \varepsilon, \log (1 / \delta))$.
An efficient sampler implies FPRAS.

FPRAS and Sampling

A fully polynomial-time randomized approximation scheme (FPRAS) outputs a number M^{*} satisfying

$$
(1-\varepsilon) \cdot M(G) \leq M^{*} \leq(1+\varepsilon) \cdot M(G)
$$

with probability $1-\delta$ in time $\operatorname{poly}(|G|, 1 / \varepsilon, \log (1 / \delta))$.
An efficient sampler implies FPRAS.
Jerrum and Sinclair defined a Markov chain to uniformly sample matchings in a graph $G=(V, E)$.

Markov Chain for Sampling Matchings

Markov Chain for Sampling Matchings

Assume we are now at some matching M, the new matching M^{\prime} after one step is

Markov Chain for Sampling Matchings

Assume we are now at some matching M, the new matching M^{\prime} after one step is

- with prob. $\frac{1}{2}, M^{\prime}=M$;

Markov Chain for Sampling Matchings

Assume we are now at some matching M, the new matching M^{\prime} after one step is

- with prob. $\frac{1}{2}, M^{\prime}=M$;
- otherwise, choose an edge $e=\{u, v\} \in E$ u.a.r, and

Markov Chain for Sampling Matchings

Assume we are now at some matching M, the new matching M^{\prime} after one step is

- with prob. $\frac{1}{2}, M^{\prime}=M$;
- otherwise, choose an edge $e=\{u, v\} \in E$ u.a.r, and
(REMOVE) if $e \in M, M^{\prime}=M-e$;

Markov Chain for Sampling Matchings

Assume we are now at some matching M, the new matching M^{\prime} after one step is

- with prob. $\frac{1}{2}, M^{\prime}=M$;
- otherwise, choose an edge $e=\{u, v\} \in E$ u.a.r, and
(REMOVE) if $e \in M, M^{\prime}=M-e$;

(ADD) if both u and v are not matched, $M^{\prime}=M+e$;

Markov Chain for Sampling Matchings

Assume we are now at some matching M, the new matching M^{\prime} after one step is

- with prob. $\frac{1}{2}, M^{\prime}=M$;
- otherwise, choose an edge $e=\{u, v\} \in E$ u.a.r, and
(REMOVE) if $e \in M, M^{\prime}=M-e$;

(ADD) if both u and v are not matched, $M^{\prime}=M+e$;

(REPLACE) if exactly one of u and v is matched by an edge e^{\prime},
 $M^{\prime}=M-e+e^{\prime}$;

Markov Chain for Sampling Matchings

Assume we are now at some matching M, the new matching M^{\prime} after one step is

- with prob. $\frac{1}{2}, M^{\prime}=M$;
- otherwise, choose an edge $e=\{u, v\} \in E$ u.a.r, and
(REMOVE) if $e \in M, M^{\prime}=M-e$;

(ADD) if both u and v are not matched, $M^{\prime}=M+e$;

(REPLACE) if exactly one of u and v is matched by an edge e^{\prime},
 $M^{\prime}=M-e+e^{\prime}$; otherwise, $M^{\prime}=M$.

Mixing Time

Mixing Time

Assume $G=(V, E)$ is a graph of n vertices.

Mixing Time

Assume $G=(V, E)$ is a graph of n vertices.
We use Ω to denote the family of matchings in G and let π denote the uniform distribution on Ω.

Mixing Time

Assume $G=(V, E)$ is a graph of n vertices.
We use Ω to denote the family of matchings in G and let π denote the uniform distribution on Ω.

We use $P \in \mathbb{Q}^{\Omega \times \Omega}$ to denote the transition matrix of the chain.

Mixing Time

Assume $G=(V, E)$ is a graph of n vertices.
We use Ω to denote the family of matchings in G and let π denote the uniform distribution on Ω.

We use $P \in \mathbb{Q}^{\Omega \times \Omega}$ to denote the transition matrix of the chain.
The chain is rapidly mixing if for every distribution σ on Ω,
$\left\|P^{t} \sigma-\pi\right\|_{T V} \leq \varepsilon$ for $t=\operatorname{poly}\left(n, \varepsilon^{-1}\right)$.

One way to prove the rapidly mixing property is to design a family of good canonical paths in the configuration graph.

One way to prove the rapidly mixing property is to design a family of good canonical paths in the configuration graph.

We want to route $\pi(x) \pi(y)$ units between every pair (x, y) of distinct configurations in Ω^{2} via a set of weighted paths $\Gamma_{x, y}$.

It is required to have

$$
\pi(x) \pi(y)=\sum_{\gamma \in \Gamma_{x, y}} w(\gamma)
$$

One way to prove the rapidly mixing property is to design a family of good canonical paths in the configuration graph.

We want to route $\pi(x) \pi(y)$ units between every pair (x, y) of distinct configurations in Ω^{2} via a set of weighted paths $\Gamma_{x, y}$.

It is required to have

$$
\pi(x) \pi(y)=\sum_{\gamma \in \Gamma_{x, y}} w(\gamma)
$$

The family of paths $\Gamma:=\bigcup_{x, y \in \Omega^{2}}$ is called the canonical paths.

The congestion of canonical paths Γ is

$$
\rho(\Gamma)=\max _{e=(u, v)} \frac{1}{Q(e)} \sum_{\gamma \in \Gamma \text { with }} w \in \gamma(\gamma),
$$

where $Q(e)=\pi(u) P(u, v)$ is the capacity of e.

The congestion of canonical paths Γ is

$$
\rho(\Gamma)=\max _{e=(u, v)} \frac{1}{Q(e)} \sum_{\gamma \in \Gamma \text { with }} w \in \gamma(\gamma),
$$

where $Q(e)=\pi(u) P(u, v)$ is the capacity of e.

Theorem (Sinclair)

A lazy reversible Markov chain is rapidly mixing if for some canonical paths Γ, it holds that $\rho(\Gamma) \leq \operatorname{poly}(n)$.

Canonical Paths for Jerrum-Sinclair's Chain

Canonical Paths for Jerrum-Sinclair's Chain

Consider two matchings M and M^{\prime} in a graph G.

M

M^{\prime}

Canonical Paths for Jerrum-Sinclair's Chain

Their symmetric difference is

- $M \oplus M^{\prime}$ consists of disjoint cycles and paths.
$M \oplus M^{\prime}$

Canonical Paths for Jerrum-Sinclair's Chain

Their symmetric difference is

- $M \oplus M^{\prime}$ consists of disjoint cycles and paths.
- Edges in $M \oplus M^{\prime}$ are unwinding in some canonical order.
$M \oplus M^{\prime}$

Canonical Paths for Jerrum-Sinclair's Chain

Their symmetric difference is

- $M \oplus M^{\prime}$ consists of disjoint cycles and paths.
- Edges in $M \oplus M^{\prime}$ are unwinding in some canonical order.
$M \oplus M^{\prime}$

Canonical Paths for Jerrum-Sinclair's Chain

Their symmetric difference is

- $M \oplus M^{\prime}$ consists of disjoint cycles and paths.
- Edges in $M \oplus M^{\prime}$ are unwinding in some canonical order.
$M \oplus M^{\prime}$

Canonical Paths for Jerrum-Sinclair's Chain

Their symmetric difference is

- $M \oplus M^{\prime}$ consists of disjoint cycles and paths.
- Edges in $M \oplus M^{\prime}$ are unwinding in some canonical order.
$M \oplus M^{\prime}$

Canonical Paths for Jerrum-Sinclair's Chain

Their symmetric difference is

- $M \oplus M^{\prime}$ consists of disjoint cycles and paths.
- Edges in $M \oplus M^{\prime}$ are unwinding in some canonical order.
$M \oplus M^{\prime}$

Canonical Paths for Jerrum-Sinclair's Chain

Their symmetric difference is

- $M \oplus M^{\prime}$ consists of disjoint cycles and paths.
- Edges in $M \oplus M^{\prime}$ are unwinding in some canonical order.
$M \oplus M^{\prime}$

Canonical Paths for Jerrum-Sinclair's Chain

Their symmetric difference is

- $M \oplus M^{\prime}$ consists of disjoint cycles and paths.
- Edges in $M \oplus M^{\prime}$ are unwinding in some canonical order.
$M \oplus M^{\prime}$

Canonical Paths for Jerrum-Sinclair's Chain

Their symmetric difference is

- $M \oplus M^{\prime}$ consists of disjoint cycles and paths.
- Edges in $M \oplus M^{\prime}$ are unwinding in some canonical order.
$M \oplus M^{\prime}$

Canonical Paths for Jerrum-Sinclair's Chain

Their symmetric difference is

- $M \oplus M^{\prime}$ consists of disjoint cycles and paths.
- Edges in $M \oplus M^{\prime}$ are unwinding in some canonical order.

$$
M \oplus M^{\prime}
$$

This family of canonical paths admits poly (n) congestion, and thus the Markov chain is rapidly mixing.

Holant Problems

Holant Problems

An instance of Holant problem $\operatorname{Holant}(\mathcal{F})$ is a tuple $\Lambda=\left(G(V, E),\left\{f_{v}\right\}_{v \in V}\right)$, where each $f_{v}:\{0,1\}^{E(v)} \rightarrow \mathbb{R} \in \mathcal{F}$ is a function defined on edges incident to vertex v.

Holant Problems

An instance of Holant problem $\operatorname{Holant}(\mathcal{F})$ is a tuple $\Lambda=\left(G(V, E),\left\{f_{v}\right\}_{v \in V}\right)$, where each $f_{v}:\{0,1\}^{E(v)} \rightarrow \mathbb{R} \in \mathcal{F}$ is a function defined on edges incident to vertex v.
For every assignment $\sigma \in\{0,1\}^{E}$, define its weight as $w_{\wedge}(\sigma):=\prod_{v \in V} f_{v}\left(\left.\sigma\right|_{E(v)}\right)$.

Holant Problems

An instance of Holant problem $\operatorname{Holant}(\mathcal{F})$ is a tuple $\Lambda=\left(G(V, E),\left\{f_{v}\right\}_{v \in V}\right)$, where each $f_{v}:\{0,1\}^{E(v)} \rightarrow \mathbb{R} \in \mathcal{F}$ is a function defined on edges incident to vertex v.
For every assignment $\sigma \in\{0,1\}^{E}$, define its weight as $w_{\wedge}(\sigma):=\prod_{v \in V} f_{v}\left(\left.\sigma\right|_{E(v)}\right)$.
The problem is to compute the quantity $\operatorname{Hol}(\Lambda):=\sum_{\sigma \in\{0,1\}^{E}} w_{\wedge}(\sigma)$.

Holant Problems

An instance of Holant problem $\operatorname{Holant}(\mathcal{F})$ is a tuple
$\Lambda=\left(G(V, E),\left\{f_{v}\right\}_{v \in V}\right)$, where each $f_{v}:\{0,1\}^{E(v)} \rightarrow \mathbb{R} \in \mathcal{F}$ is a function defined on edges incident to vertex v.
For every assignment $\sigma \in\{0,1\}^{E}$, define its weight as $w_{\wedge}(\sigma):=\prod_{v \in V} f_{v}\left(\left.\sigma\right|_{E(v)}\right)$.
The problem is to compute the quantity $\operatorname{Hol}(\Lambda):=\sum_{\sigma \in\{0,1\}^{E}} w_{\Lambda}(\sigma)$.
A constraint function f_{v} is symmetric, if its value only depends on the Hamming weight of the input.

Holant Problems

An instance of Holant problem $\operatorname{Holant}(\mathcal{F})$ is a tuple
$\Lambda=\left(G(V, E),\left\{f_{v}\right\}_{v \in V}\right)$, where each $f_{v}:\{0,1\}^{E(v)} \rightarrow \mathbb{R} \in \mathcal{F}$ is a function defined on edges incident to vertex v.
For every assignment $\sigma \in\{0,1\}^{E}$, define its weight as $w_{\wedge}(\sigma):=\prod_{v \in V} f_{v}\left(\left.\sigma\right|_{E(v)}\right)$.
The problem is to compute the quantity $\operatorname{Hol}(\Lambda):=\sum_{\sigma \in\{0,1\}^{E}} w_{\Lambda}(\sigma)$.
A constraint function f_{v} is symmetric, if its value only depends on the Hamming weight of the input.
A symmetric function f of arity m can be written as $f=\left[f_{0}, f_{1}, \ldots, f_{m}\right]$, where f_{i} is the value of f on inputs with Hamming weight i.

Holant Problems

An instance of Holant problem $\operatorname{Holant}(\mathcal{F})$ is a tuple
$\Lambda=\left(G(V, E),\left\{f_{v}\right\}_{v \in V}\right)$, where each $f_{v}:\{0,1\}^{E(v)} \rightarrow \mathbb{R} \in \mathcal{F}$ is a function defined on edges incident to vertex v.
For every assignment $\sigma \in\{0,1\}^{E}$, define its weight as $w_{\wedge}(\sigma):=\prod_{v \in V} f_{v}\left(\left.\sigma\right|_{E(v)}\right)$.
The problem is to compute the quantity $\operatorname{Hol}(\Lambda):=\sum_{\sigma \in\{0,1\}^{E}} w_{\Lambda}(\sigma)$.
A constraint function f_{v} is symmetric, if its value only depends on the Hamming weight of the input.
A symmetric function f of arity m can be written as $f=\left[f_{0}, f_{1}, \ldots, f_{m}\right]$, where f_{i} is the value of f on inputs with Hamming weight i.
The problem of counting matchings corresponds to the Holant problem with every $f_{v}=[1,1,0,0, \ldots, 0]$.

Windable Functions

Windable Functions

McQuillan define a class of windable function, aim at generalizing the sampling algorithm for matchings to other Holant problems.

Windable Functions

McQuillan define a class of windable function, aim at generalizing the sampling algorithm for matchings to other Holant problems.
Let J be a set and $x \in\{0,1\}^{J}$. Define \mathcal{M}_{x} to be the set of partitions of $\left\{i \mid x_{i}=1\right\}$ into pairs and at most one singleton.

Windable Functions

McQuillan define a class of windable function, aim at generalizing the sampling algorithm for matchings to other Holant problems.
Let J be a set and $x \in\{0,1\}^{J}$. Define \mathcal{M}_{x} to be the set of partitions of $\left\{i \mid x_{i}=1\right\}$ into pairs and at most one singleton.

Example

Let $x=(1,0,1,1,1,1) \in\{0,1\}^{[5]}$, then

$$
\begin{aligned}
\mathcal{M}_{x}= & \{\{\{1,3\},\{4,5\},\{6\}\},\{\{1,4\},\{3,5\},\{6\}\},\{\{1,5\},\{3,4\},\{6\}\}, \\
& \{\{\{1,3\},\{4,6\},\{5\}\},\{\{1,4\},\{3,6\},\{5\}\},\{\{1,6\},\{3,4\},\{5\}\}, \\
& \{\{\{1,3\},\{5,6\},\{4\}\},\{\{1,5\},\{3,6\},\{4\}\},\{\{1,6\},\{3,5\},\{4\}\}, \\
& \{\{\{1,4\},\{5,6\},\{3\}\},\{\{1,5\},\{4,6\},\{3\}\},\{\{1,6\},\{4,5\},\{3\}\} \\
& \{\{\{3,4\},\{5,6\},\{1\}\},\{\{3,5\},\{4,6\},\{1\}\},\{\{3,6\},\{4,5\},\{1\}\}\}
\end{aligned}
$$

Definition

Let J be a finite set. A function $f:\{0,1\}^{J} \rightarrow \mathbb{R}^{+}$is windable, if there exists values $B(x, y, M) \geq 0$ for all $x, y \in\{0,1\}^{J}$ and all $M \in \mathcal{M}_{x \oplus y}$ satisfying:

1. $f(x) f(y)=\sum_{M \in \mathcal{M}_{x \oplus y}} B(x, y, M)$ for all $x, y \in\{0,1\}^{J}$, and
2. $B(x, y, M)=B(x \oplus S, y \oplus S, M)$ for all $x, y \in\{0,1\}^{J}$ and all $S \in M \in \mathcal{M}_{x \oplus y}$.

Definition

Let J be a finite set. A function $f:\{0,1\}^{J} \rightarrow \mathbb{R}^{+}$is windable, if there exists values $B(x, y, M) \geq 0$ for all $x, y \in\{0,1\}^{J}$ and all $M \in \mathcal{M}_{x \oplus y}$ satisfying:

1. $f(x) f(y)=\sum_{M \in \mathcal{M}_{x \oplus y}} B(x, y, M)$ for all $x, y \in\{0,1\}^{J}$, and
2. $B(x, y, M)=B(x \oplus S, y \oplus S, M)$ for all $x, y \in\{0,1\}^{J}$ and all $S \in M \in \mathcal{M}_{x \oplus y}$.

The definition, essentially captures the way one route flows in the canonical paths arguments.

Definition

Let J be a finite set. A function $f:\{0,1\}^{J} \rightarrow \mathbb{R}^{+}$is windable, if there exists values $B(x, y, M) \geq 0$ for all $x, y \in\{0,1\}^{J}$ and all $M \in \mathcal{M}_{x \oplus y}$ satisfying:

1. $f(x) f(y)=\sum_{M \in \mathcal{M}_{x \oplus y}} B(x, y, M)$ for all $x, y \in\{0,1\}^{J}$, and
2. $B(x, y, M)=B(x \oplus S, y \oplus S, M)$ for all $x, y \in\{0,1\}^{\zeta}$ and all $S \in M \in \mathcal{M}_{x \oplus y}$.

The definition, essentially captures the way one route flows in the canonical paths arguments.

Intuitively, every $M \in \mathcal{M}_{x \oplus y}$ corresponds to a canonical path in $\Gamma_{x y}$, with weight proportional to $B(x, y, M)$.

Definition

Let J be a finite set. A function $f:\{0,1\}^{J} \rightarrow \mathbb{R}^{+}$is windable, if there exists values $B(x, y, M) \geq 0$ for all $x, y \in\{0,1\}^{J}$ and all $M \in \mathcal{M}_{x \oplus y}$ satisfying:

1. $f(x) f(y)=\sum_{M \in \mathcal{M}_{x \oplus y}} B(x, y, M)$ for all $x, y \in\{0,1\}^{J}$, and
2. $B(x, y, M)=B(x \oplus S, y \oplus S, M)$ for all $x, y \in\{0,1\}^{\zeta}$ and all $S \in M \in \mathcal{M}_{x \oplus y}$.

The definition, essentially captures the way one route flows in the canonical paths arguments.

Intuitively, every $M \in \mathcal{M}_{x \oplus y}$ corresponds to a canonical path in $\Gamma_{x y}$, with weight proportional to $B(x, y, M)$.

Condition 2 allows us to apply flow-encoding argument to bound the congestion.

Half Edges

Half Edges

Half Edges

We use Ω_{k} to denote the set of configurations with k inconsistent (full) edges.

An assignment in Ω_{1}

An assignment in Ω_{3}

Markov Chain for Windable Functions

Markov Chain for Windable Functions

Let $\Lambda=\left(G(V, E),\left\{f_{v}\right\}_{v \in V}\right)$ be an instance of Holant problem with $2|E|=n$.

Markov Chain for Windable Functions

Let $\Lambda=\left(G(V, E),\left\{f_{v}\right\}_{v \in V}\right)$ be an instance of Holant problem with $2|E|=n$.

The state space of the chain is $\Omega:=\Omega_{0} \cup \Omega_{2}$.

Markov Chain for Windable Functions

Let $\Lambda=\left(G(V, E),\left\{f_{v}\right\}_{v \in V}\right)$ be an instance of Holant problem with $2|E|=n$.

The state space of the chain is $\Omega:=\Omega_{0} \cup \Omega_{2}$.
For every two configurations $\sigma, \pi \in \Omega$, define the transition probability:

$$
P^{\prime}(\sigma, \pi)= \begin{cases}\frac{2}{n^{2}} \min \left(1, \frac{w_{\Lambda}(\pi)}{w_{\Lambda}(\sigma)}\right), & \text { if } d(\sigma, \pi)=2 ; \\ 1-\frac{2}{n^{2}} \sum_{\rho: d(\sigma, \rho)=2} \min \left(1, \frac{w_{\Lambda}(\rho)}{w_{\wedge}(\sigma)}\right), & \text { if } \sigma=\pi ; \\ 0, & \text { otherwise. }\end{cases}
$$

Markov Chain for Windable Functions

Let $\Lambda=\left(G(V, E),\left\{f_{v}\right\}_{v \in V}\right)$ be an instance of Holant problem with $2|E|=n$.

The state space of the chain is $\Omega:=\Omega_{0} \cup \Omega_{2}$.
For every two configurations $\sigma, \pi \in \Omega$, define the transition probability:

$$
P^{\prime}(\sigma, \pi)= \begin{cases}\frac{2}{n^{2}} \min \left(1, \frac{w_{\Lambda}(\pi)}{w_{\Lambda}(\sigma)}\right), & \text { if } d(\sigma, \pi)=2 ; \\ 1-\frac{2}{n^{2}} \sum_{\rho: d(\sigma, \rho)=2} \min \left(1, \frac{w_{\Lambda}(\rho)}{w_{\wedge}(\sigma)}\right), & \text { if } \sigma=\pi ; \\ 0, & \text { otherwise }\end{cases}
$$

We then make the chain lazy by setting

$$
P(\sigma, \pi)= \begin{cases}\frac{1+P^{\prime}(\sigma, \pi)}{2}, & \text { if } \sigma=\pi ; \\ \frac{P^{\prime}(\sigma, \pi)}{2}, & \text { if } \sigma \neq \pi .\end{cases}
$$

Approximation via Windability

Approximation via Windability

Theorem (McQuillan, 2013)
If every f_{v} is windable, then the chain is rapidly mixing.

Approximation via Windability

Theorem (McQuillan, 2013)

If every f_{v} is windable, then the chain is rapidly mixing.

Corollary

There exists an FPRAS for $\operatorname{Holant}(\mathcal{F})$ if

1. Every function in \mathcal{F} is windable;
2. For every instance Λ, it holds that $\frac{w_{\Lambda}\left(\Omega_{2}\right)}{w_{\Lambda}\left(\Omega_{0}\right)} \leq \operatorname{poly}(n)$.

Canonical Paths for Windable Functions

Canonical Paths for Windable Functions

Consider two configurations $x \in \Omega_{0}$ and $y \in \Omega_{2}$.

$x \in \Omega_{0}$

$$
y \in \Omega_{2}
$$

Canonical Paths for Windable Functions

Their symmetric difference is

$z:=x \oplus y \in \Omega_{2}$

Canonical Paths for Windable Functions

Their symmetric difference is

- We now for every $v \in V$, fix a matching $M_{v} \in \mathcal{M}_{\left.(x \oplus y)\right|_{E(v)}}$.

Edges matched by blue dots.

Canonical Paths for Windable Functions

Their symmetric difference is

- We now for every $v \in V$, fix a matching $M_{v} \in \mathcal{M}_{\left.(x \oplus y)\right|_{E(v)}}$.

- Construct a new graph $G^{\prime}\left(V^{\prime}, E^{\prime}\right): V^{\prime}$ is the set of half edges; E^{\prime} consists of edges in each M_{v} and edges connecting half edges.

Edges matched by blue dots.

Canonical Paths for Windable Functions

Their symmetric difference is

- We now for every $v \in V$, fix a matching $M_{v} \in \mathcal{M}_{\left.(x \oplus y)\right|_{E(v)}}$.

Edges matched by blue dots.

- Construct a new graph $G^{\prime}\left(V^{\prime}, E^{\prime}\right): V^{\prime}$ is the set of half edges; E^{\prime} consists of edges in each M_{v} and edges connecting half edges.
- G^{\prime} must be disjoint union of cycles and paths.

Canonical Paths for Windable Functions

Their symmetric difference is

Edges matched by blue dots.

- We now for every $v \in V$, fix a matching $M_{v} \in \mathcal{M}_{\left.(x \oplus y)\right|_{E(v)}}$.
- Construct a new graph $G^{\prime}\left(V^{\prime}, E^{\prime}\right): V^{\prime}$ is the set of half edges; E^{\prime} consists of edges in each M_{v} and edges connecting half edges.
- G^{\prime} must be disjoint union of cycles and paths.
- We then unwinding these cycles and paths in some canonical order.

Canonical Paths for Windable Functions

Their symmetric difference is

Edges matched by blue dots.

- We now for every $v \in V$, fix a matching $M_{v} \in \mathcal{M}_{\left.(x \oplus y)\right|_{E(v)}}$.
- Construct a new graph $G^{\prime}\left(V^{\prime}, E^{\prime}\right): V^{\prime}$ is the set of half edges; E^{\prime} consists of edges in each M_{v} and edges connecting half edges.
- G^{\prime} must be disjoint union of cycles and paths.
- We then unwinding these cycles and paths in some canonical order.

Canonical Paths for Windable Functions

Their symmetric difference is

Edges matched by blue dots.

- We now for every $v \in V$, fix a matching $M_{v} \in \mathcal{M}_{\left.(x \oplus y)\right|_{E(v)}}$.
- Construct a new graph $G^{\prime}\left(V^{\prime}, E^{\prime}\right): V^{\prime}$ is the set of half edges; E^{\prime} consists of edges in each M_{v} and edges connecting half edges.
- G^{\prime} must be disjoint union of cycles and paths.
- We then unwinding these cycles and paths in some canonical order.

Canonical Paths for Windable Functions

Their symmetric difference is

Edges matched by blue dots.

- We now for every $v \in V$, fix a matching $M_{v} \in \mathcal{M}_{\left.(x \oplus y)\right|_{E(v)}}$.
- Construct a new graph $G^{\prime}\left(V^{\prime}, E^{\prime}\right): V^{\prime}$ is the set of half edges; E^{\prime} consists of edges in each M_{v} and edges connecting half edges.
- G^{\prime} must be disjoint union of cycles and paths.
- We then unwinding these cycles and paths in some canonical order.

Canonical Paths for Windable Functions

Their symmetric difference is

Edges matched by blue dots.

- We now for every $v \in V$, fix a matching $M_{v} \in \mathcal{M}_{\left.(x \oplus y)\right|_{E(v)}}$.
- Construct a new graph $G^{\prime}\left(V^{\prime}, E^{\prime}\right): V^{\prime}$ is the set of half edges; E^{\prime} consists of edges in each M_{v} and edges connecting half edges.
- G^{\prime} must be disjoint union of cycles and paths.
- We then unwinding these cycles and paths in some canonical order.

Canonical Paths for Windable Functions

Their symmetric difference is

Edges matched by blue dots.

- We now for every $v \in V$, fix a matching $M_{v} \in \mathcal{M}_{\left.(x \oplus y)\right|_{E(v)}}$.
- Construct a new graph $G^{\prime}\left(V^{\prime}, E^{\prime}\right): V^{\prime}$ is the set of half edges; E^{\prime} consists of edges in each M_{v} and edges connecting half edges.
- G^{\prime} must be disjoint union of cycles and paths.
- We then unwinding these cycles and paths in some canonical order.

Canonical Paths for Windable Functions

Their symmetric difference is

Edges matched by blue dots.

- We now for every $v \in V$, fix a matching $M_{v} \in \mathcal{M}_{\left.(x \oplus y)\right|_{E(v)}}$.
- Construct a new graph $G^{\prime}\left(V^{\prime}, E^{\prime}\right): V^{\prime}$ is the set of half edges; E^{\prime} consists of edges in each M_{v} and edges connecting half edges.
- G^{\prime} must be disjoint union of cycles and paths.
- We then unwinding these cycles and paths in some canonical order.

Canonical Paths for Windable Functions

Their symmetric difference is

Edges matched by blue dots.

- We now for every $v \in V$, fix a matching $M_{v} \in \mathcal{M}_{\left.(x \oplus y)\right|_{E(v)}}$.
- Construct a new graph $G^{\prime}\left(V^{\prime}, E^{\prime}\right): V^{\prime}$ is the set of half edges; E^{\prime} consists of edges in each M_{v} and edges connecting half edges.
- G^{\prime} must be disjoint union of cycles and paths.
- We then unwinding these cycles and paths in some canonical order.

The weight of this path is proportional to $\prod_{v \in V} B\left(\left.x\right|_{E(v)},\left.y\right|_{E(v)}, M_{v}\right)$.

Windability for Symmetric Functions

Windability for Symmetric Functions

The pinning of a symmetric function $f(x)=\left[f_{0}, f_{1}, \ldots, f_{d}\right]$ is a function of the form $\left[f_{i}, f_{i+1}, \ldots, f_{i+m}\right]$.

Windability for Symmetric Functions

The pinning of a symmetric function $f(x)=\left[f_{0}, f_{1}, \ldots, f_{d}\right]$ is a function of the form $\left[f_{i}, f_{i+1}, \ldots, f_{i+m}\right]$.

Theorem

Given a symmetric function $F:\{0,1\}^{d} \rightarrow \mathbb{R}^{+}, F$ is windable if and only if for every pining G of F with arity m, the function $H(x)=\left[h_{0}, h_{1}, \ldots, h_{m}\right]:=G(x) G(\bar{x})$ satisfies the following condition: The linear equations $\mathbf{A}_{m} \mathbf{x}=\mathbf{h}$ has a nonnegative solution $\mathbf{x} \geq 0$, where $\mathbf{h}=\left[h_{0}, h_{1}, \ldots, h_{\left\lfloor\frac{m}{2}\right]}\right]$.

For every integer $m \geq 1$, the matrix \mathbf{A}_{m} is defined as follows:

- If $m=2 n$ is even, then $\mathbf{A}_{m}=\left(a_{i j}\right)_{\substack{0 \leq i \leq n \\ 0 \leq j \leq n}} \in \mathcal{Q}^{(n+1) \times(n+1)}$ where

$$
a_{i j}= \begin{cases}\binom{i}{j}\binom{2 n-i}{j} j!(i-j-1)!!(2 n-i-j-1)!! & \text { if } i \equiv j(\bmod 2) \\ 0 & \text { otherwise }\end{cases}
$$

- If $m=2 n+1$ is odd, then $\mathbf{A}_{m}=\left(a_{i j}\right)_{\substack{0 \leq i \leq n \\ 0 \leq j \leq n}} \in \mathcal{Q}^{(n+1) \times(n+1)}$ where

$$
a_{i j}= \begin{cases}\binom{i}{j}\binom{2 n+1-i}{j} j!(i-j-1)!!(2 n+1-i-j)!! & \text { if } i \equiv j(\bmod 2) \\ \binom{i}{j}\binom{2 n+1-i}{j} j!(i-j)!!(2 n-i-j) & \text { otherwise }\end{cases}
$$

For every integer $m \geq 1$, the matrix \mathbf{A}_{m} is defined as follows:

- If $m=2 n$ is even, then $\mathbf{A}_{m}=\left(a_{i j}\right)_{\substack{0 \leq i \leq n \\ 0 \leq j \leq n}} \in \mathcal{Q}^{(n+1) \times(n+1)}$ where

$$
a_{i j}= \begin{cases}\binom{i}{j}\binom{2 n-i}{j} j!(i-j-1)!!(2 n-i-j-1)!! & \text { if } i \equiv j \quad(\bmod 2) ; \\ 0 & \text { otherwise. }\end{cases}
$$

- If $m=2 n+1$ is odd, then $\mathbf{A}_{m}=\left(a_{i j}\right)_{\substack{0 \leq i \leq n \\ 0 \leq j \leq n}} \in \mathcal{Q}^{(n+1) \times(n+1)}$ where

$$
a_{i j}= \begin{cases}\binom{i}{j}\binom{2 n+1-i}{j} j!(i-j-1)!!(2 n+1-i-j)!! & \text { if } i \equiv j \quad(\bmod 2) ; \\ \binom{i}{j}\binom{2 n+1-i}{j} j!(i-j)!!(2 n-i-j) & \text { otherwise. }\end{cases}
$$

The term $a_{i j}$ of A_{m} has following combinatorial explanation:

- There are m labeled balls, i of them are red and $m-i$ of them are blue;
- The value $a_{i j}$ is the number of ways to partition m balls into pairs (with at most one singleton) such that the number of pairs with different colors is j.

Proof Sketch

Proof Sketch

Given x and y, we can classify matchings in $\mathcal{M}_{x \oplus y}$ into equivalent classes.

Proof Sketch

Given x and y, we can classify matchings in $\mathcal{M}_{x \oplus y}$ into equivalent classes.

Let $|x \oplus y|=m$, the equivalent classes are indexed by i and j for $0 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor$ and $0 \leq j \leq i$.

Proof Sketch

Given x and y, we can classify matchings in $\mathcal{M}_{x \oplus y}$ into equivalent classes.

Let $|x \oplus y|=m$, the equivalent classes are indexed by i and j for $0 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor$ and $0 \leq j \leq i$.
We show that, if a function f is windable, then there exists a family of $B(x, y, M)$ such that $B(x, y, M)=B\left(x, y, M^{\prime}\right)$ if M and M^{\prime} belongs to the same equivalent class.

Proof Sketch

Given x and y, we can classify matchings in $\mathcal{M}_{x \oplus y}$ into equivalent classes.

Let $|x \oplus y|=m$, the equivalent classes are indexed by i and j for $0 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor$ and $0 \leq j \leq i$.
We show that, if a function f is windable, then there exists a family of $B(x, y, M)$ such that $B(x, y, M)=B\left(x, y, M^{\prime}\right)$ if M and M^{\prime} belongs to the same equivalent class.

The value $a_{i j}$ is the number of elements in the equivalent class indexed by i and j.

Proof Sketch

Given x and y, we can classify matchings in $\mathcal{M}_{x \oplus y}$ into equivalent classes.

Let $|x \oplus y|=m$, the equivalent classes are indexed by i and j for $0 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor$ and $0 \leq j \leq i$.
We show that, if a function f is windable, then there exists a family of $B(x, y, M)$ such that $B(x, y, M)=B\left(x, y, M^{\prime}\right)$ if M and M^{\prime} belongs to the same equivalent class.

The value $a_{i j}$ is the number of elements in the equivalent class indexed by i and j.
Then we can reduce the task of finding $B(x, y, M)$ s to solving a system of linear equations.

Example: Matchings

Example: Matchings

Consider the problem of counting matchings, i.e., the Holant problem Holant (\mathcal{F}) when each $f \in \mathcal{F}$ is of the form $[1,1,0,0, \ldots, 0]$.

Example: Matchings

Consider the problem of counting matchings, i.e., the Holant problem Holant (\mathcal{F}) when each $f \in \mathcal{F}$ is of the form $[1,1,0,0, \ldots, 0]$.

The possible non-zero $H(x):=G(x) G(\bar{x})$ where G is a pinning of some $f \in \mathcal{F}$ are functions: [1], $[1,1],[0,1,0]$.

Example: Matchings

Consider the problem of counting matchings, i.e., the Holant problem Holant (\mathcal{F}) when each $f \in \mathcal{F}$ is of the form $[1,1,0,0, \ldots, 0]$.

The possible non-zero $H(x):=G(x) G(\bar{x})$ where G is a pinning of some $f \in \mathcal{F}$ are functions: [1], $[1,1],[0,1,0]$.
It is easy to verify that both $A_{1} x=[1], A_{2} x=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ have nonnegative solution.

Example: Matchings

Consider the problem of counting matchings, i.e., the Holant problem Holant (\mathcal{F}) when each $f \in \mathcal{F}$ is of the form $[1,1,0,0, \ldots, 0]$.

The possible non-zero $H(x):=G(x) G(\bar{x})$ where G is a pinning of some $f \in \mathcal{F}$ are functions: [1], $[1,1],[0,1,0]$.
It is easy to verify that both $A_{1} x=[1], A_{2} x=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ have nonnegative solution.
It is also straightforward to see that $\frac{w\left(\Omega_{2}\right)}{w\left(\Omega_{0}\right)} \leq 4 n^{4}$.

Example: Subgraphs World

Example: Subgraphs World

The subgraphs world model was introduced by Jerrum and Sinclair to approximate the partition function of ferromagnetic Ising model.

Example: Subgraphs World

The subgraphs world model was introduced by Jerrum and Sinclair to approximate the partition function of ferromagnetic Ising model.
It is a Holant problem with parity constraint: $f_{v}=[1, \mu, 1, \mu, \ldots]$ for some $\mu \geq 0$.

Example: Subgraphs World

The subgraphs world model was introduced by Jerrum and Sinclair to approximate the partition function of ferromagnetic Ising model.
It is a Holant problem with parity constraint: $f_{v}=[1, \mu, 1, \mu, \ldots]$ for some $\mu \geq 0$.

The possible $H(x):=G(x) G(\bar{x})$ where G is a pinning of some f_{v} are functions: $[1,1, \ldots, 1],\left[1, \mu^{2}, 1, \mu^{2}, \ldots\right]$ (after normalizing).

Example: Subgraphs World

The subgraphs world model was introduced by Jerrum and Sinclair to approximate the partition function of ferromagnetic Ising model.
It is a Holant problem with parity constraint: $f_{v}=[1, \mu, 1, \mu, \ldots]$ for some $\mu \geq 0$.
The possible $H(x):=G(x) G(\bar{x})$ where G is a pinning of some f_{v} are functions: $[1,1, \ldots, 1],\left[1, \mu^{2}, 1, \mu^{2}, \ldots\right]$ (after normalizing).
It is easy to check that f_{v} is windable with our characterization.

b-Matchings

b-Matchings

Given a graph $G=(V, E)$, a configuration $\sigma \in\{0,1\}^{E}$ is a b-matching, if for every v, at most b incident edges are chosen by σ.

b-Matchings

Given a graph $G=(V, E)$, a configuration $\sigma \in\{0,1\}^{E}$ is a b-matching, if for every v, at most b incident edges are chosen by σ.

It is a Holant problem with $f_{v}=\underbrace{[1,1, \ldots, 1}_{d+1 \text { ones }}, 0,0, \ldots, 0]$.

b-Matchings

Given a graph $G=(V, E)$, a configuration $\sigma \in\{0,1\}^{E}$ is a b-matching, if for every v, at most b incident edges are chosen by σ.
It is a Holant problem with $f_{v}=\underbrace{[1,1, \ldots, 1}_{d+1 \text { ones }}, 0,0, \ldots, 0]$.
For every constant b, we only need to check a constant number of linear equations to see whether f_{v} is windable.

b-Matchings

Given a graph $G=(V, E)$, a configuration $\sigma \in\{0,1\}^{E}$ is a b-matching, if for every v, at most b incident edges are chosen by σ.
It is a Holant problem with $f_{v}=\underbrace{[1,1, \ldots, 1}_{d+1 \text { ones }}, 0,0, \ldots, 0]$.
For every constant b, we only need to check a constant number of linear equations to see whether f_{v} is windable.

Theorem

The constraint of b-matching is windable if and only if $b \leq 7$.

b-Matchings

Given a graph $G=(V, E)$, a configuration $\sigma \in\{0,1\}^{E}$ is a b-matching, if for every v, at most b incident edges are chosen by σ.
It is a Holant problem with $f_{v}=\underbrace{[1,1, \ldots, 1}_{d+1 \text { ones }}, 0,0, \ldots, 0]$.
For every constant b, we only need to check a constant number of linear equations to see whether f_{v} is windable.

Theorem

The constraint of b-matching is windable if and only if $b \leq 7$.
Similar to the case of matching, $\frac{w\left(\Omega_{2}\right)}{w\left(\Omega_{0}\right)} \leq \operatorname{poly}(n)$ for every b.

b-Matchings

Given a graph $G=(V, E)$, a configuration $\sigma \in\{0,1\}^{E}$ is a b-matching, if for every v, at most b incident edges are chosen by σ.
It is a Holant problem with $f_{v}=\underbrace{[1,1, \ldots, 1}_{d+1 \text { ones }}, 0,0, \ldots, 0]$.
For every constant b, we only need to check a constant number of linear equations to see whether f_{v} is windable.

Theorem

The constraint of b-matching is windable if and only if $b \leq 7$.
Similar to the case of matching, $\frac{w\left(\Omega_{2}\right)}{w\left(\Omega_{0}\right)} \leq \operatorname{poly}(n)$ for every b.

Corollary

For every $b \leq 7$, there exists an FPRAS for counting b-matchings.

b-Edge Covers

b-Edge Covers

Given a graph $G=(V, E)$, a configuration $\sigma \in\{0,1\}^{E}$ is a b-edge-cover, if for every v, at least b incident edges are chosen by σ.

b-Edge Covers

Given a graph $G=(V, E)$, a configuration $\sigma \in\{0,1\}^{E}$ is a b-edge-cover, if for every v, at least b incident edges are chosen by σ.

Theorem

The constraint of b-edge-cover is windable if and only if $b \leq 2$.

b-Edge Covers

Given a graph $G=(V, E)$, a configuration $\sigma \in\{0,1\}^{E}$ is a b-edge-cover, if for every v, at least b incident edges are chosen by σ.

Theorem

The constraint of b-edge-cover is windable if and only if $b \leq 2$.

Corollary

For every $b \leq 2$, there exists an FPRAS for counting b-edge-covers

b-Edge Covers

Given a graph $G=(V, E)$, a configuration $\sigma \in\{0,1\}^{E}$ is a b-edge-cover, if for every v, at least b incident edges are chosen by σ.

Theorem

The constraint of b-edge-cover is windable if and only if $b \leq 2$.

Corollary

For every $b \leq 2$, there exists an FPRAS for counting b-edge-covers
All previous FPRAS can be extended to edge weighted version: subdividing each edge e and introduce a new constraint $\left[1,0, w_{e}\right]$.

Future Work

Future Work

- Windability for other Holant problems?

Future Work

- Windability for other Holant problems?

We study the windability of Fibonacci gates, i.e., functions
$f=\left[f_{0}, f_{1}, \ldots, f_{d}\right]$ satisfying $f_{i+2}=c f_{i+1}+f_{i}$.

Future Work

- Windability for other Holant problems?

We study the windability of Fibonacci gates, i.e., functions
$f=\left[f_{0}, f_{1}, \ldots, f_{d}\right]$ satisfying $f_{i+2}=c f_{i+1}+f_{i}$.
Parity is a special case when $c=0$. This class of functions is windable for small c.

Future Work

- Windability for other Holant problems?

We study the windability of Fibonacci gates, i.e., functions
$f=\left[f_{0}, f_{1}, \ldots, f_{d}\right]$ satisfying $f_{i+2}=c f_{i+1}+f_{i}$.
Parity is a special case when $c=0$. This class of functions is windable for small c.

- Windability and matchgate

Theorem (McQuillan)

Functions realizable by a matchgate (using constraints of matching/perfect matching, not necessarily planar) are windable.
The converse holds for functions with arity at most 3 .

Future Work

- Windability for other Holant problems?

We study the windability of Fibonacci gates, i.e., functions
$f=\left[f_{0}, f_{1}, \ldots, f_{d}\right]$ satisfying $f_{i+2}=c f_{i+1}+f_{i}$.
Parity is a special case when $c=0$. This class of functions is windable for small c.

- Windability and matchgate

Theorem (McQuillan)

Functions realizable by a matchgate (using constraints of matching/perfect matching, not necessarily planar) are windable.
The converse holds for functions with arity at most 3 .
Is every windable function realizable by a matchgate?

