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Matchings

The problem of counting matchings is #P-hard.

The problem admits FPRAS via the Markov chain Monte-Carlo
technique.
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FPRAS and Sampling

A fully polynomial-time randomized approximation scheme (FPRAS)
outputs a number M∗ satisfying

(1 − ε) · M(G) ≤ M∗ ≤ (1 + ε) · M(G)

with probability 1 − δ in time poly(|G| , 1/ε, log (1/δ)).

An efficient sampler implies FPRAS.

Jerrum and Sinclair defined a Markov chain to uniformly sample
matchings in a graph G = (V,E).
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Markov Chain for Sampling Matchings

Assume we are now at some matching M, the new matching M ′ after
one step is

▶ with prob. 1
2 , M ′ = M;

▶ otherwise, choose an edge e = {u, v} ∈ E u.a.r, and

(REMOVE) if e ∈ M, M ′ = M − e;

(ADD) if both u and v are not
matched, M ′ = M + e;

(REPLACE) if exactly one of u and
v is matched by an edge e ′,
M ′ = M − e + e ′;

otherwise, M ′ = M.
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Mixing Time

Assume G = (V,E) is a graph of n vertices.

We use Ω to denote the family of matchings in G and let π denote the
uniform distribution on Ω.

We use P ∈ QΩ×Ω to denote the transition matrix of the chain.

The chain is rapidly mixing if for every distribution σ on Ω,
∥Ptσ− π∥TV ≤ ε for t = poly(n, ε−1).
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One way to prove the rapidly mixing property is to design a family of
good canonical paths in the configuration graph.

We want to route π(x)π(y) units between
every pair (x, y) of distinct configurations
in Ω2 via a set of weighted paths Γx,y.

It is required to have

π(x)π(y) =
∑

γ∈Γx,y

w(γ).

The family of paths Γ :=
∪

x,y∈Ω2 is called the canonical paths.
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The congestion of canonical paths Γ is

ρ(Γ) = max
e=(u,v)

1
Q(e)

∑
γ∈Γ with e∈γ

w(γ),

where Q(e) = π(u)P(u, v) is the capacity of e.

Theorem (Sinclair)
A lazy reversible Markov chain is rapidly mixing if for some
canonical paths Γ , it holds that ρ(Γ) ≤ poly(n).
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Canonical Paths for Jerrum-Sinclair’s Chain

This family of canonical paths admits poly(n) congestion, and thus
the Markov chain is rapidly mixing.
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Canonical Paths for Jerrum-Sinclair’s Chain

Consider two matchings M and M ′ in a graph G.

M M ′

This family of canonical paths admits poly(n) congestion, and thus
the Markov chain is rapidly mixing.
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Canonical Paths for Jerrum-Sinclair’s Chain

Their symmetric difference is

M ⊕ M ′

▶ M ⊕ M ′ consists of disjoint
cycles and paths.

▶ Edges in M ⊕ M ′ are
unwinding in some canonical
order.

This family of canonical paths admits poly(n) congestion, and thus
the Markov chain is rapidly mixing.
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Holant Problems

An instance of Holant problem Holant(F) is a tuple
Λ =

(
G(V,E), {fv}v∈V

)
, where each fv : {0, 1}E(v) → R ∈ F is a function

defined on edges incident to vertex v.

For every assignment σ ∈ {0, 1}E, define its weight as
wΛ(σ) :=

∏
v∈V fv(σ|E(v)).

The problem is to compute the quantity Hol(Λ) :=
∑

σ∈{0,1}E wΛ(σ).

A constraint function fv is symmetric, if its value only depends on the
Hamming weight of the input.

A symmetric function f of arity m can be written as f = [f0, f1, . . . , fm],
where fi is the value of f on inputs with Hamming weight i.

The problem of counting matchings corresponds to the Holant
problem with every fv = [1, 1, 0, 0, . . . , 0].
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Windable Functions

McQuillan define a class of windable function, aim at generalizing
the sampling algorithm for matchings to other Holant problems.

Let J be a set and x ∈ {0, 1}J. Define Mx to be the set of partitions of
{i | xi = 1} into pairs and at most one singleton.

Example
Let x = (1, 0, 1, 1, 1, 1) ∈ {0, 1}[5], then

Mx = {{{1, 3}, {4, 5}, {6}}, {{1, 4}, {3, 5}, {6}}, {{1, 5}, {3, 4}, {6}},
{{{1, 3}, {4, 6}, {5}}, {{1, 4}, {3, 6}, {5}}, {{1, 6}, {3, 4}, {5}},
{{{1, 3}, {5, 6}, {4}}, {{1, 5}, {3, 6}, {4}}, {{1, 6}, {3, 5}, {4}},
{{{1, 4}, {5, 6}, {3}}, {{1, 5}, {4, 6}, {3}}, {{1, 6}, {4, 5}, {3}}
{{{3, 4}, {5, 6}, {1}}, {{3, 5}, {4, 6}, {1}}, {{3, 6}, {4, 5}, {1}}}
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the sampling algorithm for matchings to other Holant problems.

Let J be a set and x ∈ {0, 1}J. Define Mx to be the set of partitions of
{i | xi = 1} into pairs and at most one singleton.
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Definition
Let J be a finite set. A function f : {0, 1}J → R+ is windable, if there
exists values B(x, y,M) ≥ 0 for all x, y ∈ {0, 1}J and all M ∈ Mx⊕y
satisfying:

1. f (x)f (y) =
∑

M∈Mx⊕y
B(x, y,M) for all x, y ∈ {0, 1}J, and

2. B(x, y,M) = B(x ⊕ S, y ⊕ S,M) for all x, y ∈ {0, 1}J and all
S ∈ M ∈ Mx⊕y.

The definition, essentially captures the way one route flows in the
canonical paths arguments.

Intuitively, every M ∈ Mx⊕y corresponds to a canonical path in Γxy,
with weight proportional to B(x, y,M).

Condition 2 allows us to apply flow-encoding argument to bound the
congestion.
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Half Edges

We use Ωk to denote the set of configurations with k inconsistent (full)
edges.

An assignment in Ω1 An assignment in Ω3
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Markov Chain for Windable Functions

Let Λ =
(
G(V,E), {fv}v∈V

)
be an instance of Holant problem with

2 |E| = n.

The state space of the chain is Ω := Ω0 ∪Ω2.

For every two configurations σ, π ∈ Ω, define the transition
probability:

P ′(σ, π) =


2
n2 min

(
1, wΛ(π)

wΛ(σ)

)
, if d(σ, π) = 2;

1 − 2
n2

∑
ρ:d(σ,ρ)=2 min

(
1, wΛ(ρ)

wΛ(σ)

)
, if σ = π;

0, otherwise.

We then make the chain lazy by setting

P(σ, π) =
{

1+P ′(σ,π)
2 , if σ = π;

P ′(σ,π)
2 , if σ ̸= π.
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Approximation via Windability

Theorem (McQuillan, 2013)
If every fv is windable, then the chain is rapidly mixing.

Corollary
There exists an FPRAS for Holant(F) if

1. Every function in F is windable;
2. For every instance Λ, it holds that wΛ(Ω2)

wΛ(Ω0)
≤ poly(n).

Canonical Paths for Markov Chain Monte Carlo: from Art to Science 14/23



Approximation via Windability

Theorem (McQuillan, 2013)
If every fv is windable, then the chain is rapidly mixing.

Corollary
There exists an FPRAS for Holant(F) if

1. Every function in F is windable;
2. For every instance Λ, it holds that wΛ(Ω2)

wΛ(Ω0)
≤ poly(n).

Canonical Paths for Markov Chain Monte Carlo: from Art to Science 14/23



Approximation via Windability

Theorem (McQuillan, 2013)
If every fv is windable, then the chain is rapidly mixing.

Corollary
There exists an FPRAS for Holant(F) if

1. Every function in F is windable;
2. For every instance Λ, it holds that wΛ(Ω2)

wΛ(Ω0)
≤ poly(n).

Canonical Paths for Markov Chain Monte Carlo: from Art to Science 14/23



Canonical Paths for Windable Functions

The weight of this path is proportional to
∏

v∈V B(x|E(v), y|E(v),Mv).
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Consider two configurations x ∈ Ω0 and y ∈ Ω2.

x ∈ Ω0 y ∈ Ω2
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Canonical Paths for Windable Functions

Their symmetric difference is

z := x ⊕ y ∈ Ω2

▶ We now for every v ∈ V, fix a
matching Mv ∈ M(x⊕y)|E(v) .

▶ Construct a new graph
G ′(V ′,E ′): V ′ is the set of half
edges; E ′ consists of edges in
each Mv and edges connecting
half edges.

▶ G ′ must be disjoint union of
cycles and paths.

▶ We then unwinding these
cycles and paths in some
canonical order.

The weight of this path is proportional to
∏

v∈V B(x|E(v), y|E(v),Mv).
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Windability for Symmetric Functions

The pinning of a symmetric function f (x) = [f0, f1, . . . , fd] is a function
of the form [fi, fi+1, . . . , fi+m].

Theorem
Given a symmetric function F : {0, 1}d → R+, F is windable if and only
if for every pining G of F with arity m, the function
H(x) = [h0, h1, . . . , hm] := G(x)G(x̄) satisfies the following condition:
The linear equations Amx = h has a nonnegative solution x ≥ 0,
where h = [h0, h1, . . . , h⌊ m

2 ⌋].
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For every integer m ≥ 1, the matrix Am is defined as follows:
▶ If m = 2n is even, then Am = (aij)0≤i≤n

0≤j≤n
∈ Q(n+1)×(n+1) where

aij =

{(i
j
)(2n−i

j
)
j!(i − j − 1)!!(2n − i − j − 1)!! if i ≡ j (mod 2);

0 otherwise.

▶ If m = 2n + 1 is odd, then Am = (aij)0≤i≤n
0≤j≤n

∈ Q(n+1)×(n+1) where

aij =

{(i
j
)(2n+1−i

j
)
j!(i − j − 1)!!(2n + 1 − i − j)!! if i ≡ j (mod 2);(i

j
)(2n+1−i

j
)
j!(i − j)!!(2n − i − j) otherwise.

The term aij of Am has following combinatorial explanation:
▶ There are m labeled balls, i of them are red and m − i of them are

blue;
▶ The value aij is the number of ways to partition m balls into pairs

(with at most one singleton) such that the number of pairs with
different colors is j.
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Proof Sketch

Given x and y, we can classify matchings in Mx⊕y into equivalent
classes.

Let |x ⊕ y| = m, the equivalent classes are indexed by i and j for
0 ≤ i ≤ ⌊m

2 ⌋ and 0 ≤ j ≤ i.

We show that, if a function f is windable, then there exists a family of
B(x, y,M) such that B(x, y,M) = B(x, y,M ′) if M and M ′ belongs to
the same equivalent class.

The value aij is the number of elements in the equivalent class
indexed by i and j.

Then we can reduce the task of finding B(x, y,M)s to solving a system
of linear equations.
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Example: Matchings

Consider the problem of counting matchings, i.e., the Holant problem
Holant (F) when each f ∈ F is of the form [1, 1, 0, 0, . . . , 0].

The possible non-zero H(x) := G(x)G(x̄) where G is a pinning of some
f ∈ F are functions: [1], [1, 1], [0, 1, 0].

It is easy to verify that both A1x =
[
1
]
, A2x =

[
0
1

]
have nonnegative

solution.

It is also straightforward to see that w(Ω2)
w(Ω0)

≤ 4n4.
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Example: Subgraphs World

The subgraphs world model was introduced by Jerrum and Sinclair
to approximate the partition function of ferromagnetic Ising model.

It is a Holant problem with parity constraint: fv = [1, µ, 1, µ, . . . ] for
some µ ≥ 0.

The possible H(x) := G(x)G(x̄) where G is a pinning of some fv are
functions: [1, 1, . . . , 1], [1, µ2, 1, µ2, . . . ] (after normalizing).

It is easy to check that fv is windable with our characterization.
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b-Matchings

Given a graph G = (V,E), a configuration σ ∈ {0, 1}E is a b-matching,
if for every v, at most b incident edges are chosen by σ.

It is a Holant problem with fv = [1, 1, . . . , 1︸ ︷︷ ︸
d+1 ones

, 0, 0, . . . , 0].

For every constant b, we only need to check a constant number of
linear equations to see whether fv is windable.

Theorem
The constraint of b-matching is windable if and only if b ≤ 7.

Similar to the case of matching, w(Ω2)
w(Ω0)

≤ poly(n) for every b.

Corollary
For every b ≤ 7, there exists an FPRAS for counting b-matchings.
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b-Edge Covers

Given a graph G = (V,E), a configuration σ ∈ {0, 1}E is a b-edge-cover,
if for every v, at least b incident edges are chosen by σ.

Theorem
The constraint of b-edge-cover is windable if and only if b ≤ 2.

Corollary
For every b ≤ 2, there exists an FPRAS for counting b-edge-covers

All previous FPRAS can be extended to edge weighted version:
subdividing each edge e and introduce a new constraint [1, 0,we].
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Future Work

▶ Windability for other Holant problems?

We study the windability of Fibonacci gates, i.e., functions
f = [f0, f1, . . . , fd] satisfying fi+2 = cfi+1 + fi.

Parity is a special case when c = 0. This class of functions is
windable for small c.

▶ Windability and matchgate

Theorem (McQuillan)
Functions realizable by a matchgate (using constraints of
matching/perfect matching, not necessarily planar) are windable.

The converse holds for functions with arity at most 3.

Is every windable function realizable by a matchgate?
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