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Counting CSP 

• 𝐹 (Γ) is a family of functions (constraints) 

• 𝑥1, 𝑥2, … , 𝑥𝑛 are variables taking values from [𝑞] 
(mainly Boolean domain {0,1} in this talk).  

• A function 𝑓 ∈ 𝐹 is applied on 𝑥𝑖1 , 𝑥𝑖2, … , 𝑥𝑖𝑟, where 
𝑖1, 𝑖2, … , 𝑖𝑟 ∈ [𝑛]  

• Partition function: 

  𝑓(

𝑓,𝑖1,𝑖2,…,𝑖𝑟 ∈𝐼𝑥1,𝑥2,…,𝑥𝑛∈ 𝑞

𝑥𝑖1 , 𝑥𝑖2, … , 𝑥𝑖𝑟) 

• #CSP(F) (or #CSP(Γ)) denotes the computational 
problem  

 
 



Outline 

• Exact counting CSP 

 

• Approximate counting CSP 

 

• Bounded degree CSP 



Dichotomies for Boolean #CSP 

• [Creignou, Hermann 96] All the functions in F take values in 
{0,1} (unweighted).  Only tractable cases are affine relations.  

 

• [Dyer, Goldberg, Jerrum 07] non-negative values.  

 

• [Bulatov, Dyer, Goldberg, Jalsenius, Richerby 09] real values.  

 

• [Cai, L., Xia 09] complex values.     



#CSP over large domain 

• [Bulatov 08] Unweighted case 

• [Dyer, Richerby 10,  11] Alternative proof and 
decidable dichotomy  

• [Cai, Chen, L.  11]  Non-negative weighted 
functions 

• [Cai, Chen 12] Complex weighted  

 



#CSP with degrees at most three  

[Cai, L., Xia 09] 

• For any complex value function set F over 
Boolean domain, #𝐶𝑆𝑃3 𝐹  is as hard as 
#𝐶𝑆𝑃(𝐹).  

• So we have the same dichotomy for #𝐶𝑆𝑃3 𝐹  

• This is not generally true for #CSP over large 
domain.  

 



Holant 

• Read twice CSP  

 

• Also known as edge coloring model, tensor 
network, factor graph… 

 

• More expressive than CSP framework 



Holant 

Variables of 
[0,1,…q-1]  

F: [0,1,…q-1]d→ C 

𝐻𝑜𝑙𝑎𝑛𝑡Ω =   𝐹𝑣(𝑥𝑣∈𝑉𝑥1,𝑥2,…,𝑥𝑚∈ 𝑞
 v) 



Examples 

𝑤𝑡 𝜎 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  1𝑠 𝑖𝑛 𝜎 

𝐻𝑜𝑙𝑎𝑛𝑡Ω =   𝐹𝑣(𝑥𝑣∈𝑉𝑥1,𝑥2,…,𝑥𝑚∈{0,1}
 v) 

𝐹𝑣 𝜎 =  
1 𝑤𝑡 𝜎 = 1,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

#Perfect Matchings 



Examples 

𝑤𝑡 𝜎 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  1𝑠 𝑖𝑛 𝜎 

𝐻𝑜𝑙𝑎𝑛𝑡Ω =   𝐹𝑣(𝑥𝑣∈𝑉𝑥1,𝑥2,…,𝑥𝑚∈{0,1}
 v) 

𝐹𝑣 𝜎 =  
1 𝑤𝑡 𝜎 ≤ 1,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

#Matchings 



Examples 

𝑤𝑡 𝜎 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  1𝑠 𝑖𝑛 𝜎 

𝐻𝑜𝑙𝑎𝑛𝑡Ω =   𝐹𝑣(𝑥𝑣∈𝑉𝑥1,𝑥2,…,𝑥𝑚∈{0,1}
 v) 

𝐹𝑣 𝜎 =  
1 𝑤𝑡 𝜎 ≥ 1,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

#Edge Covers 



New interesting tractable problems: an 
example 

• NTW3 is the Not-Two function of arity 3: 

𝑁𝑇𝑊3 𝜎 =  
0 𝑤𝑡 𝜎 = 2,
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

• #CSP(NTW3) is #P-complete  

 

• Counting Holant(NTW3) is in P.                   
(why? An exercise.)  

 



Dichotomies for Holant 

• Symmetric Complex Holant* [Cai, L., Xia 09] 

• Symmetric Real Holantc [Cai, L., Xia 09] 

• Symmetric Complex Holantc  [Cai, Huang, L. 10] 

• Complex Holant*  [Cai, L., Xia 11] 

• Symmetric Real Holant [Huang, L. 12] 

• Symmetric Complex Holant [Cai, Guo, Williams 
13] 

Holant*: all the unary functions are available 

Holantc : two constant unary functions are available 

 



Dichotomies for Holant 
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• Symmetric Complex Holantc  [Cai, Huang, L. 10] 

• Complex Holant*  [Cai, L., Xia 11] 
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Outline 

• Exact counting CSP 

 

• Approximate counting CSP 

 

• Bounded degree CSP 



Approximate Counting 

• Let 𝜖 > 0 be an approximation parameter and 𝑍 
be the correct counting number of the instance, 
the algorithm returns a number 𝑍′ such that 
1 − 𝜖 𝑍 ≤ 𝑍′ ≤ (1 + 𝜖)𝑍, in time ploy(𝑛,1/𝜖).  

• Fully polynomial-time approximation scheme 
(FPTAS). 

• Fully polynomial-time randomized approximation 
scheme (FPRAS) is its randomized version.   



Complexity of Approximate Counting 

• As hard as NP problem rather than #P 

• Approximation Preserving (AP) Reduction   

• NP-hardness (#SAT-equivalent)  

• #BIS (independent sets for bipartite graphs) 
– Conjectured to be of intermediate complexity. 

– Plays a similar role as the Unique Game for 
optimization problems.  

– A large number of other problems are proved to have 
the same complexity as #BIS (#BIS-equivalent) or at 
least as hard as #BIS (#BIS-hard) 

 



Trichotomy  

[Dyer, Goldberg, Jerrum 2010] 

For relations over Boolean domain,  #CSP(Γ) is 
divided into  three classes:  

– #CSP(Γ) in FP  (if every relation in Γ is affine) 

– #CSP(Γ) =𝐴𝑃 #BIS  

– #CSP(Γ) =𝐴𝑃  #SAT 

 

No non-trivial FPTAS/FPRAS  (No life below #BIS) 



A non-example from weighted version 

• For a single binary function 
𝛽 1
1 𝛾

 

• 𝛽𝛾 > 1 : FPRAS [Jerrum, Sinclair 93] [Goldberg, 
Jerrum, Paterson 03] 

• 𝛽𝛾 < 1 :  
– FPTAS in uniqueness range [Li, L., Yin 12,13] 

– NP-hard in non-uniqueness range [Sly, Sun 12] 

 

• Asymmetric binary function is open  



Weighted Version 

[Bulatov, Dyer, Goldberg, Jerrum, McQuillan 12] 

[Chen, Dyer, Goldberg, Jerrum, L., McQuillan, Richerby 13] 

Assuming all unary functions,  #𝐶𝑆𝑃∗(𝐹) is 
divided into  three classes: 

• FP even for exact counting 

• #BIS-hard  (LSM family) 

• #SAT-equivalent 

 

 

 



Outline 

• Exact counting CSP 

 

• Approximate counting CSP 

 

• Bounded degree CSP 



Trichotomy (𝑑 ≥ 6)  

[Dyer, Goldberg, Jalsenius, Richerby 2011] 

Let Γ be a Boolean constraint language and let 𝑑 ≥ 6. 
Then #𝐶𝑆𝑃𝑑

𝑐(Γ) is divided into three classes: 

• #𝐶𝑆𝑃𝑑
𝑐(Γ) in FP  (if every relation in Γ is affine) 

• #𝐶𝑆𝑃𝑑
𝑐(Γ) =𝐴𝑃 #BIS  

• #𝐶𝑆𝑃𝑑
𝑐(Γ) =𝐴𝑃 #SAT 

 

#𝐶𝑆𝑃𝑑
𝑐(Γ) is #𝐶𝑆𝑃(Γ ∩ 𝟎, 𝟏 ) for instances with a 

maximum degree of d.    



A non-example without Pinning  

• For the relation (𝑋 ∨ 𝑌 ∨ 𝑍), there is an FPTAS for 
CSP6(𝑋 ∨ 𝑌 ∨ 𝑍) [Bezakova, Galanis, Goldberg, 
Guo, Stefankovic 16] 

 

• For the relation mon-k-CNF: 𝑋1 ∨ 𝑋2 ∨ ⋯∨ 𝑋𝑘, 

    there is an FPTAS/FPRAS for CSPd(mon−k−CNF)    

    for large degree d  (= 
𝑐2
𝑘
2

𝑘2
)    [Sly et. al. 2016] 

  



Single symmetric relation 

[Galanis, Goldberg 16] 

• For any non-affine symmetric relation f over 
Boolean domain, there exists a constant Δ such 
that 𝐶𝑆𝑃𝑑(𝑓) is NP-hard for any 𝑑 ≥ Δ 

 

• To identify the threshold degree for a given 
relation?  

 

• Asymmetric case? Weighted case? 



Partial Classification (𝑑 ≥ 3) 

[Dyer, Goldberg, Jalsenius, Richerby 2011] 

Let Γ be a Boolean constraint language and 𝑑 ≥ 3. 
Then #𝐶𝑆𝑃𝑑

𝑐(Γ) is divided into four classes: 

• #𝐶𝑆𝑃𝑑
𝑐(Γ) in FP  (if every relation in Γ is affine) 

• #𝐶𝑆𝑃𝑑
𝑐(Γ) =𝐴𝑃 #BIS  

• #𝐶𝑆𝑃𝑑
𝑐(Γ) =𝐴𝑃 #SAT 

• Γ is a set of monotone relations 



Monotone Relations 

• Any monotone relation can be written as monotone 
CNFs ( fox example  (𝑋 ∨ 𝑌) ∧ (𝑋 ∨ 𝑍) )   

 

• After suitable pinning, we can realize the 
relation  𝑋 ∨ 𝑌 

 

• 𝐶𝑆𝑃6(𝑋 ∨ 𝑌) is NP-hard [Sly 10]. This leads to 
the trichotomy for 𝑑 ≥ 6 

 

 



d=5 

• 𝐶𝑆𝑃5(𝑋 ∨ 𝑌) is FPTASable [Weitz 06] 

• 𝐶𝑆𝑃5(𝑋1 ∨ 𝑋2 ∨ ⋯∨ 𝑋𝑘) is FPTASable for any 
k [Liu, L. 15] 

• Dis-Mon-CNF: Mon-CNFs where the variables 
in different clauses are disjoint  

    for example:  (𝑋 ∨ 𝑌) ∧ (𝑍 ∨𝑊)  

• 𝐶𝑆𝑃5[Dis-Mon-CNF] is FPTASable 

 

 



d=5 (a conjecture) 

Let Γ be a Boolean constraint language. Then 
#𝐶𝑆𝑃5

𝑐(Γ) is divided into four classes: 

• #𝐶𝑆𝑃5
𝑐(Γ) in FP  (every relation in Γ is affine) 

• FPTAS for #𝐶𝑆𝑃5
𝑐(Γ) (Γ ⊂Dis-Mon-CNF) 

• #𝐶𝑆𝑃𝑑
𝑐(Γ) =𝐴𝑃 #BIS  

• #𝐶𝑆𝑃𝑑
𝑐(Γ) =𝐴𝑃 #SAT 

 



d=5 (an attempted proof) 

• If a monotone relation is not from Dis-Mon-CNF, after 
suitable pinning, we can realize one of the following 
two relations: 

– 𝑆2 = (𝑋 ∨ 𝑌) ∧ (𝑋 ∨ 𝑍) 

– 𝐾3 = (𝑋 ∨ 𝑌) ∧ (𝑋 ∨ 𝑍) ∧ (𝑌 ∨ 𝑍) 

 
• #𝐶𝑆𝑃5

𝑐(𝑆2) is NP-hard   [Liu, L. 2015] 
 

• The complexity of #𝐶𝑆𝑃5
𝑐(𝐾3) is open.  

• A proof of its NP-hardness will lead to the conjectured 
classification for #𝐶𝑆𝑃5

𝑐 
 



d=4 

• Both #𝐶𝑆𝑃4
𝑐(𝐾3)  and #𝐶𝑆𝑃4

𝑐(𝑆2) are open 

 

• No new FPTASable cases are known 

 

• The same conjectures 

– #𝐶𝑆𝑃5
𝑐(𝑆2) is NP-hard 

– #𝐶𝑆𝑃4
𝑐(𝑆2) is NP-hard 

– The same classification as d=5  



d=3  

• New tractability:  FPTAS for #𝐶𝑆𝑃3
𝑐 𝐾4  (and 

#𝐶𝑆𝑃3
𝑐 𝐾3 )    [Liu, L. 15] 

 

• #𝐶𝑆𝑃3
𝑐 𝑆2  is open  

 

• The picture is much more complicate and also 
much more interesting  



Holant Problems (d=2)  

• Much more FPTASable (FPRASable) problems  

– Matching  

– Edge cover  

– B-matching and b-edge-cover  

– Not-all-equal 

– Fibonacci gate problems 

• Any hardness result? Perfect matching? 

 



Counting Edge Covers 

• A set of edges such that every vertex has at 
least one adjacent edge in it 

 



Counting Edge Covers 

• A set of edges such that every vertex has at 
least one adjacent edge in it 

 

• FPRAS for 3-regular graphs based on Markov 
Chain Monte Carlo[Bezakova, Rummler 2009]. 

 

• FPTAS for general graphs based on correlation 
decay approach. [Lin, Liu, L. 2014] 



b-matching and b-edge-cover  

• b-matching: 𝐹𝑣 𝜎 =  
1 𝑤𝑡 𝜎 ≤ 𝑏,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

• b-edge-cover: 𝐹𝑣 𝜎 =  
1 𝑤𝑡 𝜎 ≥ 𝑏,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

• FPRAS for counting b-matching with 𝑏 ≤ 7 
and  b-edge-cover with 𝑏 ≤ 2.  [Huang, L., 
Zhang 16] (next talk) 



Taking Home Messages 

• Many problems for approximating Boolean 
#CSP remain open especially when there are 
degree bounds and/or weights.   

• Many recent progresses in this field make the 
complete classification within reach.  

• Some concrete (open) problems are more 
important as they play crucial roles in the 
classification. 



A list of Problems 

• Asymmetric 2-spin systems 

 

• #𝐶𝑆𝑃𝑑
𝑐(𝐾3), #𝐶𝑆𝑃𝑑

𝑐(𝑆2)   with d=3,4,5 

 

• #b-matchings with d>7  

 

Thank You！ 

 


