The Complexity of Approximating Small Degree Boolean #CSP

Pinyan Lu, ITCS@SUFE Institute for Theoretical Computer Science Shanghai University of Finance and Economics

Counting CSP

- $F(\Gamma)$ is a family of functions (constraints)
- x₁, x₂, ..., x_n are variables taking values from [q] (mainly Boolean domain {0,1} in this talk).
- A function $f \in F$ is applied on $x_{i_1}, x_{i_2}, \dots, x_{i_r}$, where $i_1, i_2, \dots, i_r \in [n]$
- Partition function:

$$\sum_{x_1, x_2, \dots, x_n \in [q]} \prod_{(f, i_1, i_2, \dots, i_r) \in I} f(x_{i_1}, x_{i_2}, \dots, x_{i_r})$$

#CSP(F) (or #CSP(Γ)) denotes the computational problem

Outline

• Exact counting CSP

• Approximate counting CSP

• Bounded degree CSP

Dichotomies for Boolean #CSP

- [Creignou, Hermann 96] All the functions in F take values in {0,1} (unweighted). Only tractable cases are affine relations.
- [Dyer, Goldberg, Jerrum 07] non-negative values.
- [Bulatov, Dyer, Goldberg, Jalsenius, Richerby 09] real values.
- [Cai, L., Xia 09] complex values.

#CSP over large domain

- [Bulatov 08] Unweighted case
- [Dyer, Richerby 10, 11] Alternative proof and decidable dichotomy
- [Cai, Chen, L. 11] Non-negative weighted functions
- [Cai, Chen 12] Complex weighted

#CSP with degrees at most three

[Cai, L., Xia 09]

- For any complex value function set F over Boolean domain, #CSP₃(F) is as hard as #CSP(F).
- So we have the same dichotomy for $\#CSP_3(F)$
- This is not generally true for #CSP over large domain.

Holant

• Read twice CSP

 Also known as edge coloring model, tensor network, factor graph...

• More expressive than CSP framework

Holant

 $Holant_{\Omega} = \sum_{x_1, x_2, \dots, x_m \in [q]} \prod_{v \in V} F_v(x \mid_v)$

Examples

$Holant_{\Omega} = \sum_{x_1, x_2, ..., x_m \in \{0, 1\}} \prod_{v \in V} F_v(x \mid_v)$

Examples

$Holant_{\Omega} = \sum_{x_1, x_2, ..., x_m \in \{0, 1\}} \prod_{v \in V} F_v(x \mid_v)$

Examples

$Holant_{\Omega} = \sum_{x_1, x_2, ..., x_m \in \{0, 1\}} \prod_{v \in V} F_v(x \mid_v)$

New interesting tractable problems: an example

- NTW₃ is the Not-Two function of arity 3: $NTW_{3}(\sigma) = \begin{cases} 0 & wt(\sigma) = 2, \\ 1 & otherwise \end{cases}$
- #CSP(NTW₃) is #P-complete

Counting Holant(NTW₃) is in P.
(why? An exercise.)

Dichotomies for Holant

- Symmetric Complex Holant* [Cai, L., Xia 09]
- Symmetric Real Holant^c [Cai, L., Xia 09]
- Symmetric Complex Holant^c [Cai, Huang, L. 10]
- Complex Holant* [Cai, L., Xia 11]
- Symmetric Real Holant [Huang, L. 12]
- Symmetric Complex Holant [Cai, Guo, Williams 13]

Holant*: all the unary functions are available

Holant^c : two constant unary functions are available

Dichotomies for Holant

- Symmetric Complex Holant* [Cai, L., Xia 09]
- Symmetric Real Holant^c [Cai, L., Xia 09]
- Symmetric Complex Holant^c [Cai, Huang, L. 10]
- Complex Holant* [Cai, L., Xia 11]
- Symmetric Real Holant [Huang, L. 12]
- Symmetric Complex Holant [Cai, Guo, Williams 13]

Holant*: all the unary functions are available

Holant^c : two constant unary functions are available

Outline

• Exact counting CSP

• Approximate counting CSP

• Bounded degree CSP

Approximate Counting

- Let $\epsilon > 0$ be an approximation parameter and Zbe the correct counting number of the instance, the algorithm returns a number Z' such that $(1 - \epsilon)Z \leq Z' \leq (1 + \epsilon)Z$, in time ploy $(n, 1/\epsilon)$.
- Fully polynomial-time approximation scheme (FPTAS).
- Fully polynomial-time randomized approximation scheme (FPRAS) is its randomized version.

Complexity of Approximate Counting

- As hard as NP problem rather than #P
- Approximation Preserving (AP) Reduction
- NP-hardness (#SAT-equivalent)
- #BIS (independent sets for bipartite graphs)
 - Conjectured to be of intermediate complexity.
 - Plays a similar role as the Unique Game for optimization problems.
 - A large number of other problems are proved to have the same complexity as #BIS (#BIS-equivalent) or at least as hard as #BIS (#BIS-hard)

Trichotomy

[Dyer, Goldberg, Jerrum 2010]

For relations over Boolean domain, #CSP(Γ) is divided into three classes:

- #CSP(Γ) in FP (if every relation in Γ is affine)
- $\#CSP(\Gamma) =_{AP} \#BIS$
- $\# CSP(\Gamma) =_{AP} \# SAT$

No non-trivial FPTAS/FPRAS (No life below #BIS)

A non-example from weighted version

- For a single binary function $\begin{vmatrix} \beta & 1 \\ 1 & \nu \end{vmatrix}$
- $\beta \gamma > 1$: FPRAS [Jerrum, Sinclair 93] [Goldberg, Jerrum, Paterson 03]
- $\beta \gamma < 1$:
 - FPTAS in uniqueness range [Li, L., Yin 12,13]
 - NP-hard in non-uniqueness range [Sly, Sun 12]
- Asymmetric binary function is open

Weighted Version

[Bulatov, Dyer, Goldberg, Jerrum, McQuillan 12] [Chen, Dyer, Goldberg, Jerrum, L., McQuillan, Richerby 13] Assuming all unary functions, $\#CSP^*(F)$ is divided into three classes:

- FP even for exact counting
- #BIS-hard (LSM family)
- #SAT-equivalent

Outline

• Exact counting CSP

• Approximate counting CSP

• Bounded degree CSP

Trichotomy ($d \ge 6$)

[Dyer, Goldberg, Jalsenius, Richerby 2011]

Let Γ be a Boolean constraint language and let $d \ge 6$. Then $\#CSP_d^c(\Gamma)$ is divided into three classes:

- $\#CSP_d^c(\Gamma)$ in FP (if every relation in Γ is affine)
- $#CSP_d^c(\Gamma) =_{AP} #BIS$
- $#CSP_d^c(\Gamma) =_{AP} #SAT$

 $#CSP_d^c(\Gamma)$ is $#CSP(\Gamma \cap \{0, 1\})$ for instances with a maximum degree of d.

A non-example without Pinning

- For the relation (X ∨ Y ∨ Z), there is an FPTAS for CSP₆(X ∨ Y ∨ Z) [Bezakova, Galanis, Goldberg, Guo, Stefankovic 16]
- For the relation mon-k-CNF: X₁ ∨ X₂ ∨ ··· ∨ X_k, there is an FPTAS/FPRAS for CSP_d(mon-k-CNF)

for large degree d
$$\left(=\frac{c2^{\frac{k}{2}}}{k^2}\right)$$
 [Sly et. al. 2016]

Single symmetric relation

[Galanis, Goldberg 16]

- For any non-affine symmetric relation f over Boolean domain, there exists a constant Δ such that $CSP_d(f)$ is NP-hard for any $d \geq \Delta$
- To identify the threshold degree for a given relation?
- Asymmetric case? Weighted case?

Partial Classification ($d \ge 3$)

[Dyer, Goldberg, Jalsenius, Richerby 2011]

Let Γ be a Boolean constraint language and $d \ge 3$. Then $\#CSP_d^c(\Gamma)$ is divided into four classes:

- $\#CSP_d^c(\Gamma)$ in FP (if every relation in Γ is affine)
- $#CSP_d^c(\Gamma) =_{AP} #BIS$
- $#CSP_d^c(\Gamma) =_{AP} #SAT$
- Γ is a set of monotone relations

Monotone Relations

• Any monotone relation can be written as monotone CNFs (fox example $(X \lor Y) \land (X \lor Z)$)

• After suitable pinning, we can realize the relation $X \lor Y$

• $CSP_6(X \lor Y)$ is NP-hard [Sly 10]. This leads to the trichotomy for $d \ge 6$

d=5

- $CSP_5(X \lor Y)$ is FPTASable [Weitz 06]
- $CSP_5(X_1 \lor X_2 \lor \cdots \lor X_k)$ is FPTASable for any k [Liu, L. 15]
- Dis-Mon-CNF: Mon-CNFs where the variables in different clauses are disjoint

for example: $(X \lor Y) \land (Z \lor W)$

• *CSP*₅[Dis-Mon-CNF] is FPTASable

d=5 (a conjecture)

Let Γ be a Boolean constraint language. Then $\#CSP_5^c(\Gamma)$ is divided into four classes:

- $\#CSP_5^c(\Gamma)$ in FP (every relation in Γ is affine)
- FPTAS for $\#CSP_5^c(\Gamma)$ ($\Gamma \subset Dis-Mon-CNF$)
- $#CSP_d^c(\Gamma) =_{AP} #BIS$
- $#CSP_d^c(\Gamma) =_{AP} #SAT$

d=5 (an attempted proof)

• If a monotone relation is not from Dis-Mon-CNF, after suitable pinning, we can realize one of the following two relations:

$$-S_2 = (X \lor Y) \land (X \lor Z)$$

$$-K_3 = (X \lor Y) \land (X \lor Z) \land (Y \lor Z)$$

- $\#CSP_5^c(S_2)$ is NP-hard [Liu, L. 2015]
- The complexity of $\#CSP_5^c(K_3)$ is open.
- A proof of its NP-hardness will lead to the conjectured classification for #CSP₅^c

d=4

• Both $\#CSP_4^c(K_3)$ and $\#CSP_4^c(S_2)$ are open

• No new FPTASable cases are known

- The same conjectures
 - $#CSP_5^c(S_2)$ is NP-hard
 - $#CSP_4^c(S_2)$ is NP-hard
 - The same classification as d=5

d=3

• New tractability: FPTAS for $\#CSP_3^c(K_4)$ (and $\#CSP_3^c(K_3)$) [Liu, L. 15]

• $#CSP_3^c(S_2)$ is open

• The picture is much more complicate and also much more interesting

Holant Problems (d=2)

- Much more FPTASable (FPRASable) problems
 - Matching
 - Edge cover
 - B-matching and b-edge-cover
 - Not-all-equal
 - Fibonacci gate problems
- Any hardness result? Perfect matching?

Counting Edge Covers

 A set of edges such that every vertex has at least one adjacent edge in it

Counting Edge Covers

 A set of edges such that every vertex has at least one adjacent edge in it

• FPRAS for 3-regular graphs based on Markov Chain Monte Carlo[Bezakova, Rummler 2009].

• FPTAS for general graphs based on correlation decay approach. [Lin, Liu, L. 2014]

b-matching and b-edge-cover

• b-matching: $F_v(\sigma) = \begin{cases} 1 & wt(\sigma) \leq b, \\ 0 & otherwise \end{cases}$ • b-edge-cover: $F_v(\sigma) = \begin{cases} 1 & wt(\sigma) \geq b, \\ 0 & otherwise \end{cases}$

• FPRAS for counting b-matching with $b \leq 7$ and b-edge-cover with $b \leq 2$. [Huang, L., Zhang 16] (next talk)

Taking Home Messages

- Many problems for approximating Boolean #CSP remain open especially when there are degree bounds and/or weights.
- Many recent progresses in this field make the complete classification within reach.
- Some concrete (open) problems are more important as they play crucial roles in the classification.

A list of Problems

• Asymmetric 2-spin systems

• $\#CSP_d^c(K_3), \#CSP_d^c(S_2)$ with d=3,4,5

#b-matchings with d>7

Thank You!